

Composition of Autonomous Services with Distributed
Data Flows and Computations

David Liu1, Jun Peng2, Kincho H. Law3, Gio Wiederhold4, and Ram D. Sriram5

Abstract

This paper presents a Flow-based Infrastructure for Composing Autonomous Services (FICAS)

that supports a software composition paradigm, where software components are linked together

through an integration framework to form composed software applications called megaservices.

The software components are provided as processes managed by independent service providers;

we call these components autonomous services. FICAS employs a distributed data-flow

approach that differs from the centralized data-flow approach adopted by many current service

integration frameworks, such as CORBA, J2EE and SOAP. The distributed data-flow approach

allows direct data exchange among the autonomous services and consequently facilitates the

distribution of computations. FICAS is implemented as a collection of software modules that

support the construction of autonomous services, facilitate the functional composition of

autonomous services into megaservices, and carry out the execution of megaservices. We have

built a prototype for an information service environment based on FICAS that incorporates a

variety of construction project scheduling software. The prototype demonstrates that the

distributed data-flow approach is more efficient than the centralized approach when integrating

large engineering software services.

1 Ph.D. Candidate, Department of Electrical Engineering, Stanford University, Stanford, CA 94305. E-mail:
davidliu@stanford.edu
2 Research Associate, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA
94305. E-mail: junpeng@stanford.edu
3 Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305. E-mail:
law@stanford.edu
4 Professor, Computer Science Department, Stanford University, Stanford, CA 94305. E-mail: gio@db.stanford.edu
5 Group Leader, Manufacturing Systems Integration Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899. E-mail: sriram@cme.nist.gov

 1

1 Introduction
A software engineering paradigm where large software services are decomposed into

cooperating components has been envisioned for over 30 years [11]. Under this paradigm,

software components are linked together through an integration framework to form composed

software applications called megaservices [17]. Software components are provided as processes

managed by independent service providers. The components have clearly defined functions with

accessible interfaces. We call these software components autonomous services. With the rapid

development of the Internet and networking technologies, the computing environment is

evolving toward an interconnected web of autonomous services, both inside and outside of

enterprise boundaries.

Prior research has addressed the issue of composing megaservices based on autonomous

services [16]. A megaservice acts as a central controller for invoking, monitoring, querying, and

terminating the autonomous services. Autonomous services take turns to process the data

supplied by the megaservice and return the processed results to the megaservice. Data are

exchanged using a client-server model where the megaservice serves as the central hub of all

data traffic. This centralized data-flow approach is used in many current software integration

frameworks such as CORBA [13], J2EE [4], and Microsoft .NET [10].

This paper demonstrates that the centralized data-flow approach is inefficient for integrating

large-scale engineering software services. A distributed data-flow approach is proposed to

allow data to be exchanged directly among the services. This paper presents the Flow-based

Infrastructure for Composing Autonomous Services (FICAS). FICAS is implemented as a

collection of software modules that support the construction of autonomous services, facilitate

the functional composition of autonomous services into megaservices, and conduct the execution

of megaservices. There are three objectives in designing FICAS: (1) Scalability – integration

and management of large number of autonomous services in the service composition

infrastructure; (2) Performance – high efficiency in the execution of megaservices; and (3) Ease

of composition – effective and convenient specification of service compositions by the

application programmers. FICAS aims to utilize the distributed data-flow approach to achieve

better scalability and performance without sacrificing ease of composition.

 2

The paper is organized as follows. Section 2 outlines the key issues in building service

composition infrastructures and gives an overview of FICAS. Section 3 defines a metamodel to

enable homogeneous access for autonomous services within FICAS. Section 4 describes the

runtime environment of FICAS, focusing on distributing data communications among the

services. Section 5 explores techniques in distributing computations among autonomous

services. Section 6 illustrates a prototype for a ubiquitous computing environment based on

FICAS. Section 7 summarizes our findings.

2 Service Composition Infrastructures
As software becomes more complex, there is a paradigm shift from coding as the focus of

programming to a focus on software composition. Traditionally, large programs are partitioned

into subtasks of manageable sizes. The subtasks are assigned to programmers who code the

instructions in a programming language. The resulting subtasks are subsequently submitted for

integration. Software composition, on the other hand, starts from an existing software base. Pre-

existing software applications are wrapped into autonomous services, whose functionalities are

then composed together. Many of the services may be distributed over the network and

heterogeneous in nature.

2.1 Integration of Software Components
Software integration takes place in many forms. Early methods are based on code reuse. The

simplest method is to copy the source code to wherever the desired functionality is needed.

There are significant drawbacks to this approach, ranging from compiler incompatibility to

difficulties in maintaining duplicate copies of program code. To deal with these drawbacks,

software components written in a programming language are compiled into shared libraries. The

libraries have public interfaces, through which the users invoke the functions contained in the

libraries. The software components are executed on a single machine. The ownership of the

reused software components belongs to the users of the software components.

The development of network computing allows software components to be distributed to

multiple machines. Each software component runs as a separate process, communicating with

each other by exchanging messages. With the proliferation of web services [9], more and more

software components are provided in the form of autonomous services, each managed

 3

autonomously by its own providers [14]. Figure 1 illustrates an integration environment that

consists of autonomous services connected by a communication network. Each autonomous

service has four hierarchical layers:

• The “Host” layer represents the hardware platform the autonomous service runs on. This

layer provides the hardware means for executing application instructions and routing data

through the communication network.

• The “Operating System” layer provides software support for the system resource. It manages

the processes of the software applications that perform the service. It also provides protocol

support for the network intercommunications among different hardware platforms. For

instance, the TCP/IP [7] protocol support belongs to this layer.

• The “Access Protocol” layer provides protocol support for accessing the data and the

functionalities of the autonomous service. The access protocol defines how to encode a

service request, and also specifies the manner in which the autonomous service responds to

the request. The layer provides a level of abstraction to enable a service client to

communicate with an autonomous service in a different operating system.

• The “Autonomous Service” layer is the application layer, which is concerned with the

semantics of the autonomous service. Data integration is conducted at this layer so that

autonomous services can exchange information in a mutually understandable fashion.

A megaservice is a conceptual composition of the functionalities exported by the autonomous

services through the “Autonomous Service” layer. The execution of the megaservice is

coordinated by a controller, which itself may be an autonomous service. The service integration

environment can be conceptually viewed as a set of service nodes interconnected by a

communication network. There are two types of messages: control messages and data messages,

distinguished by their use at the message destinations. Control messages are mostly short

messages that trigger state changes at the receiving services. Examples of control messages

include service invocation requests and status polling requests. Data messages are mostly large

data packets that are given to the receiving services for processing. Examples of data messages

include engineering design, manufacturing and resource information to conduct simulation. To

execute a megaservice, control and data messages need to be exchanged among autonomous

services.

 4

Autonomous
Service

Access
Protocol

Operating
System

Host

A

A

A

Autonomous
Service

Access
Protocol

Operating
System

Host

N

N

N

Physical Communication Backbone

Megaservice
Conceptual Composition of

Autonomous Services

Autonomous
Service

Access
Protocol

Operating
System

Host

B

B

B

Megaservice Controller

.....

Figure 1: Hierarchical Model of Autonomous Services

2.2 Distribution of Data-flows
A control-flow is formed by a group of related and partially ordered control messages, and a

data-flow is formed by a group of related and partially ordered data messages. Service

integration environments differ in how control-flows and data-flows are formed and managed.

Traditionally, both control-flows and data-flows are centrally coordinated, as illustrated in

Figure 2(a). The megaservice requests information from Service1 and passes the information

onto Service2 for further processing. The result of Service2 is then forwarded to Service3. The

central megaservice coordinates all the autonomous service invocations. Since the data-flows

and the control-flows are not separated, the megaservice control serves as the hub for all the data

communications. We call this runtime model the centralized control-flow centralized data-flow

model, or 1C1D model. The 1C1D model represents the simplest form of service composition

runtime environment. Examples of the 1C1D model include CORBA [13], J2EE [4], and

Microsoft .NET architecture [10].

 5

Service
1

Service
3

Mega
Service

(a) (b)

Control-flow

Data-flow

Service
2

Service
1

Service
3

Mega
Service

Service
2

Figure 2: Centralized and Distributed Data-flows

There are performance and scalability issues associated with the 1C1D model. The

megaservice forwards data between the two autonomous services when the data produced by one

service is utilized by another service. Since the data is sent indirectly, redundant data traffic is

resulted. The megaservice control becomes a communication bottleneck when large amount of

data are exchanged among the services. Furthermore, since all data traffic go through the

megaservice, the communication links of the megaservice become the critical system resource.

It is especially problematic in an Internet environment, where the communication links between

the megaservice and autonomous services are likely to be of limited bandwidth. The centralized

communication topology makes the 1C1D model difficult to scale.

The issues observed in the 1C1D model motivate us to distribute the data-flows for the

executions of megaservices. Figure 2(b) shows the control-flows and the data-flows exhibited in

a distributed data-flow infrastructure. The megaservice has the ability to inform two autonomous

services to establish a direct data-flow. For instance, data are exchanged between autonomous

services, from Service1 to Service2, and from Service2 to Service3, without going through the

megaservice.

In this paper, we discuss how FICAS distributes data-flows while maintaining the same

centralized control mechanism as in the 1C1D model. We call this runtime model the

centralized control-flow distributed data-flow model, or 1CnD model. The decision to retain a

centralized control-flow is due to its ease of implementation and management. We find it

difficult to effectively apply distributed control-flow models to conduct service composition.

Because operational code segments would have to be distributed to relevant function units for

 6

execution, distributed control-flows require homogeneity in the underlying hardware platform.

In addition, there remain many technical challenges to convert a centralized megaservice

specification of control sequences into distributed operational code segments.

By distributing data-flows, FICAS eliminates the redundant data traffic caused by the

forwarding of data through the megaservice. The distributed data-flow model also utilizes the

communication network among the autonomous service, and thus alleviates the communication

load on the megaservice. Furthermore, FICAS allows computations to be efficiently distributed

to where data resides, so that the data can be processed without incurring communication traffic.

2.3 Components in FICAS
The service composition infrastructure, FICAS, allows distributed software applications to

hide heterogeneities in the network, platform, and language. FICAS is built upon a previously

developed service composition infrastructure CHAIMS [3, 16], which focuses on the

composition of services that are large distributed components. Residing on different computers,

the services are inherently concurrent in nature, and the long duration of service execution

necessitates asynchronous invocation and collection of results. CHAIMS developed a simple

compositional language and runtime support for applications composed from distributed

modules. FICAS builds on the prior efforts of CHAIMS because its compositional language

supports the same goal for ease of composition.

Figure 3 illustrates the main components of FICAS. The buildtime components are

responsible for specifying megaservices and compiling megaservice specifications into control

sequences that serve as inputs to the runtime environment. For FICAS, we have defined the

CLAS (Compositional Language for Autonomous Services) to provide the application

programmers the necessary abstractions to describe the behaviors of their megaservices. The

CLAS language focuses on functional composition of autonomous services. A CLAS program is

essentially a sequential specification of the relationships among collaborating autonomous

services, without providing primitives to schedule or to coordinate control-flows and data-flows.

The CLAS program is compiled by the buildtime component into a control sequence that can be

executed by the runtime environment. The control sequence is language and platform

independent, providing a bridge between the buildtime and runtime environments of FICAS.

 7

FICAS Buildtime

Autonomous
Service

Directory

Communication
Network

CLAS
Program

FICAS
Controls

Autonomo
us Service

Autonomo
us Service

Autonomo
us Service

Software
Application

Autonomous
Service Wrapper

FICAS RuntimeFICAS Buildtime

Megaservice
Controller

Figure 3: FICAS Architecture

The runtime environment of FICAS is responsible for executing the control sequences. At its

minimum, the runtime can consist of just one autonomous service, along with the service

directory. The runtime environment can be expanded by simply plugging additional autonomous

services into the communication network and registering the autonomous services with the

service directory. The autonomous service directory keeps track of available autonomous

services within the infrastructure. While the directory is viewed globally as a centralized entity,

it may be implemented as a distributed structure.

Autonomous services are formed by wrapping software applications. A metamodel is defined

to allow the construction of homogeneous autonomous services in a heterogeneous computing

environment. The key feature of the FICAS metamodel is the separation of the data-flows from

the control-flows. The control-flows are coordinated by a megaservice controller, which is the

centralized coordinator that carries out the execution of a megaservice. The controller generates

an execution plan based on an input control sequence, and then follows the plan to coordinate the

control-flows among the respective autonomous services. The controller is also responsible for

optimizing the performance of the megaservice.

 8

3 Autonomous Services
Autonomous services are running processes that involve one or more software applications

along with the domain data they operate on. The client-server interaction model is used. The

clients of the autonomous services make service requests, as autonomous services wait for

service requests. To fulfill the service requests, autonomous services invoke processing routines

to operate on their domain data. Autonomous services may also request information from other

autonomous services. As the result of the services, desired information is returned to the clients.

3.1 Autonomous Service Metamodel
Autonomous services are specified under a homogeneous model in order to communicate and

cooperate with each other. Figure 4 illustrates the autonomous service metamodel in FICAS.

An autonomous service consists of a service core, an input event queue, an output event queue,

an input data container, and an output data container:

• The service core represents the core functionality of the autonomous service. It is

responsible for performing computation on the input data elements and generating the result

data elements. We can usually wrap existing software applications into a service core.

• Events are exchanged between services to control the flow of autonomous service

executions. Asynchronicity of autonomous service execution is achieved by using queues for

event processing. Incoming events are placed at the tail of the input event queue, and

outgoing events are placed at the tail of the output event queue. The default queuing system

used in FICAS is the FIFO (first in and first out) queue, where events are processed in the

order by which they are received.

• The data containers are groupings of input and output data elements for the autonomous

service. The input data elements are fetched from the input data container and processed by

the service core. The generated data elements are put into the output data container. The

data containers enable autonomous services to look up generated data elements. The

existence of data containers is essential for the distribution of data-flows. Under the 1CnD

model, the data-flows can be formed between data containers of two autonomous services,

while control-flows continue to go through the megaservice controller.

 9

Data-flow

Control-
flow

Input Data Container

Output Data Container

Input Event Q
ueue

O
utput Event Q

ueue

Service Core

Figure 4: FICAS Autonomous Service Metamodel

The key characteristic of the FICAS autonomous service model is the explicit separation of

control-flow and data-flow. For control-flow, the autonomous service primarily concerns about

the event processing and the state management of the service core. For data-flow, the

autonomous service primarily concerns about the exchange of data elements between the data

containers and the processing of the data elements by the service core. The control-flows and the

data-flows are managed by asynchronous components of the autonomous service. While each

component uses its own thread, the service core ties together the components into a coordinated

entity.

3.2 Autonomous Service Access Protocol
Given the autonomous service metamodel, we define an autonomous service access protocol,

ASAP, by which the autonomous services are accessed. ASAP manages control-flows and data-

flows through a set of events. These events exist in the form of XML based messages that are

used to interact with autonomous services. The hierarchical structure of XML provides a

convenient method of defining the composition of an event. ASAP is asynchronous and non-

blocking. The sender of an event may not wait for the response of the event. Instead, the sender

can continue to execute other activities that are not dependent on the response of the event. The

protocol removes the barriers imposed by different megaservice programming languages and

distribution protocols. For simplicity, we represent the ASAP events using their abbreviated

 10

functional representations instead of their full XML representations. The key ASAP events that

related to data-flow scheduling are listed below:

• SETUP (Service)

The SETUP event is used to initialize an autonomous service. The autonomous service is

informed to prepare necessary system resources for the actual invocations. A reply event is

issued after the initialization of the autonomous service.

• TERMINATE (Service)

The TERMINATE event unconditionally terminates an autonomous service. Garbage

collection is conducted during the termination process to release the system resources involved

with an autonomous service instance. A reply event is issued after the termination of the

autonomous service.

• INVOKE (Service)

The INVOKE event is used to request an autonomous service. The service core of the

autonomous service is started upon the processing of the INVOKE event. After the completion

of the service invocation, output data elements are generated by the service core and are placed

onto the output data container. In addition, a reply event is issued.

• MAPDATA (DataElement, SourceService, DestinationService)

The MAPDATA event is used to establish a data-flow between two data containers. The

event enables the distribution of data-flows within the service composition infrastructure. The

sender of the MAPDATA event does not need to be the recipient of the data element. The events

are usually sent from the megaservice controller that coordinates the autonomous service

invocations, and the data elements are exchanged directly among the data containers of the

autonomous services. While the support of the MAPDATA event makes it possible to have

distributed data-flows, it is up to the megaservice controller to generate an execution plan that

can take advantage of this capability.

There are two forms of implementation for the MAPDATA event. The first is called “push

MAPDATA”, in which case the event is sent to the SourceService. The SourceService fetches

the data element from its output data container and pushes the data element over to the

 11

DestinationService. Another implementation is called “pull MAPDATA”, in which case the

event is sent to the DestinationService. The DestinationService pulls the data element from the

SourceService and put the data element onto its input data container. Both implementations are

supported by FICAS.

3.3 Autonomous Service Wrapper
Autonomous services export the service functionalities contained in the encapsulated software

applications. Although the service functionalities differ, the way by which the functionalities are

exported is similar for all the autonomous services. The autonomous services share many

common components, such as the event queues and the data containers. In addition, the

interactions among the components are largely identical. Hence, the construction of autonomous

services can be significantly simplified by building the common components into a standard

module. We call such a module autonomous service wrapper. The wrapper provides the support

for the ASAP protocol, and facilitates the encapsulation of software applications into

autonomous services.

In FICAS, the autonomous service wrapper has been implemented in Java. The Java classes

and interfaces are incorporated into a Java library. With the autonomous service wrapper

provided as a standard module, the wrapping of a software application into an autonomous

service is simplified to a matter of defining the ServiceCore interface, as shown in Figure 5. The

application core connects to the autonomous service wrapper through three methods. The setup()

method defines the actions of the application when the service is initialized; the execute() method

is called when the service is invoked, triggering the application to process the data in the

containers; and the terminate() method is called when the service is terminated. Each method

takes three parameters. The autonomous service wrapper fills in the values for these parameters

when it actives the connector. The inputcontainer provides the reference to the input data

container of the autonomous service; the outputcontainer provides the reference to the output

data container of the autonomous service; and the flowid identifies the flow to which the service

request belongs. With the references to the data containers and the flow identifier of the request,

the software application can look up the input parameters from the input data container and

generates the results into the output data container.

 12

public interface ServiceCore {

 public boolean setup(Container inputcontainer,
 Container outputcontainer,
 FlowId flowid);

 public boolean execute(Container inputcontainer,
 Container outputcontainer,
 FlowId flowid);

 public boolean terminate(Container inputcontainer,
 Container outputcontainer,
 FlowId flowid);
}

Figure 5: ServcieCore Interface

4 Distributed Data-flow Planning
In FICAS, the megaservice controller has the sole responsibility for managing the control-

flows for a megaservice. The controller executes and coordinates autonomous services by

controlling the choice and the timing of ASAP events. We characterize the coordination as an

execution plan, which defines the choice, timing, sequence, and dependencies of the outgoing

ASAP events.

4.1 Planning Distributed Data-flows
There are three steps in generating an execution plan. First, the megaservice program is

analyzed to discover data dependencies among autonomous services. Then, a data dependency

graph is constructed to identify independent data-flows. Finally, based on the data dependency

graph, the megaservice controller can build an execution plan for the megaservice.

The megaservice program segment in Figure 6 shows implicit data dependencies between

autonomous services. For instance, invocation of Service3 takes A and B as input, which are the

outputs of the invocations of Service1 and Service2, respectively. Hence, Service3 is data

dependent on Service1 and Service2.

The data dependencies among the autonomous services are analyzed when the program is

interpreted. The megaservice controller extracts from the statements the data dependencies

among autonomous services. The dependencies are mapped into a data dependency graph

(DDG) as shown in Figure 7. The nodes represent autonomous service invocations, and the

 13

directed arcs represent data dependencies between autonomous service invocations. Each

directed arc points to the dependent autonomous service and is tagged with the data elements

exchanged between the pair of autonomous services. For example, the arc between Invocation1

and Invocation3 represents that Invocation3 is dependent on Invocation1, with A being the data

element passed from Invocation1 to Invocation3.

The megaservice execution plan is represented by the event dependency graph (EDG). The

node in the EDG contains an outgoing ASAP event from the megaservice controller. The arc

establishes a predecessor-successor relationship between a pair of ASAP events. The successor

ASAP event cannot be sent until the action taken by the predecessor ASAP event is completed,

i.e., the megaservice controller receives the response of the predecessor ASAP event. The

megaservice controller uses the EDG to coordinate the execution of the megaservice. Invocation

nodes in the DDG can be directly mapped into the INVOKE event nodes in the EDG. The

mapping from the directed arcs in the DDG to the event nodes in the EDG is more complex.

Different mapping schemes can produce different data-flow models for the megaservice.

Invocation1 = Service1.invoke()
Invocation2 = Service2.invoke()

A = Invocation1.extract();
B = Invocation2.extract();

Invocation3 = Service3.invoke(A, B)

C = Invocation3.extract();

Invocation4 = Service4.invoke(C)
D = Invocation4.extract();

Figure 6: Sample Megaservice Program Segment

Figure 8 shows the mapping scheme where data communications are directed between

dependent autonomous services, resulting in the 1CnD execution model. The megaservice

controller functions merely as a coordinator for the ASAP events that control the data

communication activities. Each directed arc in the DDG is mapped into a MAPDATA event

node with arcs connecting the predecessor and successor event nodes. For instance, the arc

 14

tagged with A in the DDG (shown in Figure 7) is mapped into the MAPDATA(A, Service1,

Service3) event node in the EDG (shown in Figure 8).

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

Figure 7: Sample DDG

INVOKE
(Service1)

INVOKE
(Service2)

MAPDATA
 (A, Service1,

Service3)

INVOKE
(Service3)

MAPDATA
(C, Service3,

Service4)

MAPDATA
(B, Service2,

Service3)

INVOKE
(Service4)

MAPDATA
(D, Service4,
Megaservice)

Figure 8: EDG with Distributed Data-flows

 15

4.2 Performance Analysis
In this section, we measure the performance of a sample megaservice supported by FICAS.

Different configurations of the computing environment are used to examine the performance of

the megaservice. We also compare FICAS with the centralized data-flow model by

implementing the same megaservice under SOAP [5]. As a lightweight protocol for exchanging

information between applications in a distributed computing environment, SOAP has shown

great potential for simplifying web service composition and the distribution of software over the

Internet. There are several implementations of SOAP. They differ in their support for class

binding, ease of use and performance [8]. As one of the popular choices for the SOAP

implementations, Apache SOAP [1] is selected to be the reference implementation.

Figure 9 illustrates the computing environment for the performance evaluation. Two

autonomous services that focus on data communications are involved. No computational

processing occurs on these autonomous services. Autonomous service S1 randomly generates

and returns a string whose size is specified by the input parameter. Autonomous service S2 takes

the string as input and immediately returns without doing anything. Two megaservices that

utilize the autonomous services are constructed. The first megaservice, MultiService, forwards

the string generated by the autonomous service S1 to the autonomous service S2. This

megaservice is designed to examine the impact of the data-flow distribution. The second

megaservice, SingleService, simply invokes the autonomous service S1. This megaservice is

used to measure the cost of a single service call.

The autonomous services and the megaservices are implemented for both SOAP and FICAS.

All Java programs are written and compiled with Sun’s JDK 1.3.0 for the Microsoft Windows

operating system. For SOAP, the autonomous services are implemented as Java methods whose

interfaces are registered with the Apache Tomcat application server v4.0. The megaservices are

implemented as Java applications that invoke the services using the Apache SOAP v2.2 API

library. For FICAS, the autonomous services are wrapped using our developed Java library. The

service cores of the autonomous services are identical in functionality to their SOAP

counterparts. The megaservices are specified as CLAS programs, which are compiled into

control sequences by the FICAS buildtime environment. The megaservices are executed by

sending the control sequences to a megaservice controller.

 16

SwitchMegeService

S1
produces

and returns a
string value

10mbps

S2
consumes a

string

out
10mbps

in

(LAN) in = 10 mbps; out = 10 mbps
(802.11b) in = 2 mbps; out = 0.5 mbps

 MultiService
 {
 a = S1(size)
 S2(a)
 }

SingleService
 {
 a = S1(size)
 }

Figure 9: Test Environment for Comparing SOAP and FICAS

The tests are performed in a distributed computing environment. The machines are each

configured with a Pentium-III 1 GHz processor and 256 MB RAM, running Windows 2000

Professional. The autonomous services run on two separate servers connected to a switch via a

Local Area Network (LAN), whose bandwidth is 10 mbps each way. The megaservices run on

the client machine. Two types of network connections are used to connect the client machine to

the servers. The first connection uses LAN, whose communication bandwidth among all

machines is 10 mbps each way. This type of connection resembles many corporate computing

environments. The second connection uses an 802.11b wireless link. The downloading

bandwidth is approximately 2 mbps, and the uploading bandwidth is approximately 0.5 mbps.

This type of connection resembles a computing center environment, where servers are connected

by high-speed communication links, but are accessed via relatively slower communication links.

The execution times of the megaservices are measured with different settings on the data

volume involved with the megaservices. The data volume is specified by the input parameter to

the autonomous service S1. Figure 10 shows the measured performance of the megaservices

when the client machine is connected to the LAN. The following observations can be made:

• FICAS performs worse than SOAP when the data volume is low. This is expected and can

be explained by two reasons. First, FICAS has more complicated control-flows than SOAP.

FICAS breaks down a single service call in SOAP into multiple control messages. FICAS

also incurs more overheads in initializing and terminating the autonomous services.

Although FICAS achieves performance gains by distributing the data-flows, the gains are not

 17

enough to offset the extra overheads in the control-flows. Second, it is expected that Apache

SOAP, being under development for quite some time, is better optimized than FICAS in

terms of its Java source codes.

• The performance of the FICAS megaservice MultiService is comparable to that of the SOAP

megaservice SingleService. The megaservices are similar in performance because two

megaservices incur the same amount of data-flows. For SingleService, the string generated

by the autonomous service S1 is sent to the megaservice. For MultiService, the same string is

sent from the autonomous service S1 to the autonomous service S2. The slight difference in

the execution times of the megaservices can be attributed to the differences in control-flows.

• The execution times of the megaservices increase linearly with respect to the data volume.

Since there is no computational processing on either the autonomous services or the

megaservices, the increase in execution times comes from the increased data-flows. The

execution times approximately double each time the data volume doubles.

• FICAS outperforms SOAP when the data volume is high. The larger the data volume, the

bigger is the difference between the execution time of the FICAS megaservice MultiService

and that of the SOAP megaservice MultiService. This is because the SOAP megaservice

incurs twice as much data-flows as the FICAS megaservice. For the SOAP megaservice, two

data messages are used to send the string from the autonomous service S1 to the autonomous

service S2, via the megaservice controller. For the FICAS megaservice, only one data

message is used to send the string from the autonomous service S1 to the autonomous service

S2.

To summarize, Apache SOAP and FICAS are similar in many aspects, while their most

significant difference is in how they deal with data-flows. Apache SOAP incurs the centralized

data-flows, and FICAS distributes the data-flows among the autonomous services. When the

data volume is low, Apache SOAP outperforms FICAS since Apache SOAP has simpler control-

flows. When data volume is high, FICAS outperforms SOAP by taking advantage of the data-

flow distribution.

 18

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

SOAP (SingleService) SOAP (MultiService) FICAS (MultiService)

Figure 10: Comparison Between FICAS and SOAP on Local Area Network

Figure 11 compares the performance of the SOAP megaservice MultiService and the FICAS

megaservice MultiService under various network settings. Under the LAN setting, the

megaservices access the autonomous services through the 10 mbps LAN. Under the wireless

setting, the megaservices access the autonomous services via a slower 802.11b access point. The

communications with the megaservice have much lower bandwidth than the communications

among the autonomous services. Comparing the megaservice performance between the LAN

and the wireless 802.11b settings, we observe the following:

• The execution times for the SOAP megaservice increase significantly as the bandwidth of the

communications with the megaservice decreases. Since all data-flows and control-flows go

through the megaservice, the communications with the megaservice become the bottleneck of

the system. Hence, when deploying a SOAP service composition infrastructure, it is

important to ensure the high quality of the network connections between the megaservice and

the autonomous services

• The execution times for the FICAS megaservice increase only slightly when comparing the

wireless and the LAN settings. As the data-flows are distributed among the autonomous

services, communications with the megaservice are only used for the control-flows. Because

the control messages are small and compact in nature, the control-flows place little burden on

the network. Thus, the performance of the megaservice is barely affected.

 19

0

10000

20000

30000

40000

50000

60000

70000

80000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

SOAP (LAN) SOAP (802.11b) FICAS (LAN) FICAS (802.11b)

Figure 11: Megaservice Performance Under Different Network Configurations

To summarize, FICAS responds better than SOAP when the bandwidth is limited for

communicating with the megaservice. All network traffic in SOAP goes through the

megaservice, and thus places heavy burden on its communication links. In contrast, FICAS

distributes the data-flows and takes advantage of the fast communication network among the

autonomous services.

5 Mobile Classes and Active Mediation
The distribution of data allows computations to be distributed to minimize data traffic. We

describe in this section how distributed computation is enabled by the mobile class. We define

an architecture that supports the execution of mobile classes. We also outline an algorithm that

determines the optimal location to carry out the execution of a mobile class.

5.1 Mobile Classes
A mobile class is an information-processing module that can be dynamically loaded.

Conceptually, the mobile class is a function that takes some input data elements, performs certain

operations, and then outputs a new data element. For instance,),,(321 xxxfy = , represents a

mobile class named f that takes three data elements as input and produces an output y.

 20

Java is chosen as the specification language for mobile classes in FICAS. Such selection is

made for a few reasons. First, Java is a general programming language that is suitable for

specifying computational intensive tasks. There are many available standard libraries that

provide a wide range of computational functionalities. Second, Java has extensive support for

portability. Java programs can be executed on any platform that incorporates a Java virtual

machine. Third, Java supports dynamic linking and loading. Java class files are object files

rather than executables in the traditional senses. Linking is performed when the Java class files

are loaded onto the Java virtual machine. Compiled into a Java class, the mobile class can be

dynamically loaded at runtime.

All mobile classes need to implement a common interface named MobileClass, whose

interface is shown in Figure 12. The interface contains a single function that represents the

functionality of a mobile class. The execute() function takes a vector of data elements as the

input and generates a data element as the output. The execute() function is overloaded by a

mobile class to provide specific processing functionality. Once coded, a mobile class is

compiled into a Java class and put into the mobile class repository. The Java class will be looked

up later when the mobile class is invoked by a megaservice.

public interface MobileClass {
 public DataElement execute(Vector params);
}

Figure 12: Sample Megaservice Program Segment

Mobile classes enable megaservices to perform computations with greater efficiency. Figure

13 shows an example where mobile classes are used in place of type broker services to conduct

type conversions. Traditionally, an autonomous service serving as a type broker or a distributed

network of type brokers can be used to mediate the difference among data in various formats

[12]. The type brokers can convert data in unknown formats to known formats. A type graph is

used to figure out the chain of necessary conversions. An example of automating this process

can be seen in [6]. Figure 13(a) presents an example of data-flows in the type-broker

architecture. Data from the source service are represented in the type T1, and the destination

service consumes data in the type T3. Two type brokers are employed to convert source data

 21

from the type T1 to the type T3. Potentially large amount of data are passed among the type

brokers. Alternatively, mobile classes can be used in place of type brokers to handle type

mediation. Rather than forwarding data among the type brokers, the megaservice loads the

mobile classes onto the autonomous services to provide the type mediation functions. Multiple

mobile classes for type mediation can be utilized together, similar to the network of the type

brokers. As shown in Figure 13(b), two mobile classes are used to convert data from type T1 to

type T3. The type mediation is conducted at the source autonomous service, where the source

data of type T1 is converted to type T3. Data in the consumable format T3 is directly sent to the

destination autonomous service. Since the mobile classes are invoked on the source autonomous

service, the multiple interim data transfers are eliminated and the data traffic is limited to

essential transmissions.

M

S1

(a) Type Brokers

T1

T2T1_T2 T2_T3

S2

T3

M

S1

(b) Type Mediation Mobile Classes

T3 S2

mobile class
T1_T2

mobile class
T2_T3

Control-flow

Data-flow

Figure 13: Type Conversion Using Type Broker Services and Mobile Classes

5.2 Active Mediation
Active mediator is the information-processing engine that resides between source information

services and information clients. Incorporation of an active mediator allows an autonomous

service to support the execution of mobile classes. Active mediator processes the source

information by executing mobile classes specified by information clients. Figure 14 illustrates

the architecture of an active mediator:

 22

Autonomous
Service
Wrapper

Mobile
Class

Fetcher

Mobile
Class

Runtime

Exception
Handling

Mobile Class
Cache

Mobile Class
Repository

Input Data Container

Output Data Container

Mobile
Class
API

Library

Active Mediator

Figure 14: Active Mediation Architecture

• The Mobile Class Fetcher is responsible for loading the Java class of the mobile class. The

name of the mobile class indicates where the Java class file can be found. If the name of the

mobile class starts with “http://”, then the URL for loading the Java byte codes can be

obtained by appending “.class” to the name of the mobile class. For example, the Java class

file for the mobile class “http://mobile.class.repository/int2float” can be found at

“http://mobile.class.repository/int2float.class”. If the name of the mobile class is a normal

string, then the URL can be obtained by prefixing a base URL and appending “.class” to the

name. For example, if the base class path for a megaservice is

“http://mobile.class.repository”, then the Java class file for the mobile class “int2float” can

be located at “http://mobile.class.repository/int2float.class”.

• The Mobile Class Cache is a temporary storage for the loaded Java class. The Mobile Class

Cache is used to avoid the duplicate loading of a mobile class. The cache is looked up first

before any Java classes are loaded. Only when the cache miss occurs, the Mobile Class

Fetcher is used.

• The Mobile Class API Library stores the utility classes that make the construction of mobile

classes more convenient. For instance, the Java Development Kit library [2] is provided as

part of the Mobile Class API Library.

• The Mobile Class Runtime is the execution engine for the mobile classes. To execute a

mobile class, the Mobile Class Runtime loads the Java class from the Mobile Class Cache

 23

and invokes the execute() function. The runtime uses the data containers of the autonomous

service to manage the input and output data of the mobile class. The parameters for invoking

the mobile class are loaded into the input data container by the megaservice controller before

the invocation of the mobile class. The parameters are looked up and supplied to the

execute() function. The result of the execute() function is put into the output data container,

and can then be utilized by the megaservice controller.

• The Exception Handling module provides error handling for the loading and the execution of

mobile classes.

5.3 Placement of Mobile Classes
The choice of which autonomous service executes the mobile class affects how the data-flows

are formed for the megaservice to which the mobile class belongs. The placement of the mobile

class therefore has significant impact on the performance of the megaservice. An example

megaservice, as shown in Figure 15, is used to demonstrate such impact. The megaservice

involves two autonomous services and one mobile class. The autonomous services, S1 and S2,

are the same as the ones in the example illustrated in Figure 9. The mobile class FILTER takes a

large string as input, filters through the content, and returns a string that consists of every 10th

character of the input string. Effectively, the mobile class compresses the content by ten fold.

Since the mobile class can be executed on any one of the autonomous services involved in the

megaservice, we have three potential placement strategies, as shown in Figure 16:

• Strategy 1: By placing the mobile class FILTER at the autonomous service that hosts the

megaservice controller, we can construct the execution plan as shown in Figure 16(a). S1

generates the data element A and passes it to the megaservice. The mobile class processes A

at the megaservice, and the result B is then sent to S2 for further processing.

• Strategy 2: By placing the mobile class FILTER at S1, we can construct the execution plan

as shown in Figure 16(b). S1 generates the data element A and processes it locally using the

mobile class. The result B is sent from S1 to S2 for further processing.

• Strategy 3: By placing the mobile class FILTER at S2, we can construct the execution plan

as shown in Figure 16(c). S1 generates the data element A and passes it to S2. S2 processes

A locally using the mobile class to generate the result B.

 24

To compare the strategies, we assume that the performance of loading and executing the mobile

class is the same on all autonomous services. Strategy 1 requires both the input data element A

and the output data element B to be transmitted among the megaservice and the autonomous

services. Thus Strategy 1 incurs the most communication traffic compared to the other two

strategies and has the worst performance. Strategy 2 and Strategy 3 differ in the data content

sent between the autonomous services. For Strategy 2, the data element B is sent from S1 to S2.

For Strategy 3, the data element A is sent from S1 to S2. Since the data element B is one tenth in

size compared to the data element A, Strategy 2 incurs the least amount of communication

traffic. Therefore, Strategy 2 is the placement strategy that has the best performance.

SwitchMegeService

S1
produces

and returns a
string value

10mbps

S2
consumes a

string

10mbps

 Invocation1 = S1.invoke(size)
 A = Invocation1.extract()

 B = MCLASS ("FILTER", A)

 Invocation2 = S2.extract(B)

10mbps

Mobile Class
FILTER

Figure 15: Example Megaservice that Utilizes the Mobile Class FILTER

S1

Mega
service

S2

S1

Mega
service

S2

mobile class
FILTER

S1

Mega
service

S2mobile class
FILTER

(a) Placing FILTER at Megaservice (b) Placing FILTER at S1 (c) Placing FILTER at S2

1

2

1

2

1

2

Data-flowService
Invocation

mobile class
FILTER

A

B

B A

Figure 16: Execution Plans with Different Placements for the Mobile Class

 25

The optimal placement of a mobile class should minimize the data-flows among related

autonomous services. For a mobile class, each input data element to the mobile class is

represented as a pair, (Si, Vi), where Si is the autonomous service that generates the ith input data

element, and Vi is the volume of the data element. The output is a (S0, V0) pair, where S0 is the

destination autonomous service to which the result of the mobile class will be sent, and V0 is the

size of the data element. Two observations can be made. First, the sum of Vi remains the same

regardless where the mobile class is executed. Second, by placing the mobile class on the

autonomous service Si, we can eliminate the corresponding data-flow volume Vi as the data

element is local to the autonomous service. Therefore, the optimal placement of the mobile class

is the autonomous service Si that has the largest aggregated Vi.

Figure 17 shows the LDS (Largest Data Size) algorithm that selects the autonomous service

that generates and consumes the largest volume of data for a given mobile class. The algorithm

first computes the total amount of data attributed to each unique autonomous service. Then, the

autonomous service with the largest data volume is selected as Smax, which represents the optimal

placement for the mobile class. Smax is returned as the output of the algorithm.

INPUT: input pairs(S1, V1), …, (Sn,Vn)
 output pair (S0, V0)
OUTPUT: Smax
METHOD:
 Vmax=0
 for every unique S in input and output pairs
 V=0
 for i=0,…,n
 if Si==S
 V=V+Vi
 if V>Vmax
 Smax=S
 Vmax=V

Figure 17: LDS Algorithm for Optimal Mobile Class Placement

The LDS algorithm is applicable when the input and output data sizes are known for the

mobile classes. For a situation where the output data size of a mobile class is only determined

after the execution of the mobile class, we need to estimate the output data size. We view the

output data size of an mobile class as a function on the input data sizes of the mobile class: SO = f

(SA, SB, …). The function f is called the sizing function of the mobile class, where SO is the

 26

output data size and SA, SB are the input data sizes. The sizing function may be stored along

with the Java byte codes in the mobile class repository. The megaservice controller can then use

the sizing function to estimate the mobile class output data size for running the LDS algorithm.

5.4 Performance Analysis
We now analyze the performance of the megaservice previously defined in Figure 15. The

megaservice is executed using different placements of the mobile class FILTER. We intend to

measure the impact of the placement of the mobile class on the performance of the megaservice.

In addition, we replace the mobile class FILTER with an autonomous service that implements the

same functionality. The performance of the megaservice utilizing the autonomous service is

compared with the megaservice utilizing the mobile class. We consider the following scenarios:

• Strategy 1: The megaservice conducts active mediation on S1 by executing the mobile class

FILTER on S1. The placement of the mobile class is generated by the LDS algorithm.

• Strategy 2: The megaservice conducts active mediation on S2 by executing the mobile class

FILTER on S2.

• Strategy 3: We implement a utility autonomous service that replaces the mobile class

FILTER. The string generated by S1 is fed into the autonomous service, and the result is

forwarded onto S2 for further processing.

Figure 18 shows the execution times of the megaservice. Different settings on the size of the

string generated by S1 are used. The following observations are made:

• The execution times of the megaservices increase with the size of the string. Three factors

contribute to the increased execution times. First, longer time is taken to measure the size of

the string. It results in the longer execution time for the LDS algorithm. Second, it takes

longer to execute the mobile class or the utility autonomous service. Third, the larger string

results in longer transmission time for the data elements.

• The placement of the mobile class significantly impacts the performance of the megaservice.

Strategy 1 performs significantly better than Strategy 2. Strategy 1 utilizes the LDS

algorithm to minimize the amount of data-flows incurred by the megaservice. In Strategy 2,

S1 transmits the original string to S2. Whereas in Strategy 1, S1 only transmits the filtered

string to S2. Strategy 1 causes significantly less amount of data traffic than Strategy 2.

 27

0

2000

4000

6000

8000

10000

12000

100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

Mobile Class on S1 Mobile Class on S2 Utility Autonomous Service

Figure 18: Comparison Between Mobile Class and Autonomous Service

• Both strategies involving the mobile class perform better than Strategy 3, which uses the

utility autonomous service. Strategy 3 incurs the most amount of data-flows, as both the

original string and the filtered string are transmitted among the autonomous services. In

addition, the invocation of the autonomous service is more costly than the invocation of the

mobile class.

In summary, active mediation enabled by the mobile class is an effective approach in

improving the performance of the megaservice. The mobile class can be placed onto the

appropriate autonomous service to minimize the amount of data communications.

6 Information Service Infrastructure
We have shown through simple examples that FICAS is well suited for composing

autonomous services that exchange large amount of data. The distribution of data-flows and the

use of mobile classes facilitate service composition and improve the performance of the

megaservice. To demonstrate the effectiveness of FICAS, we implement an engineering service

infrastructure for construction project management applications. We illustrate the process of

building the service infrastructure by: (1) wrapping software applications into autonomous

services, (2) implementing mobile classes, and (3) constructing megaservices to accomplish the

engineering tasks.

 28

6.1 Building Autonomous Services
The first step in building the engineering service infrastructure is to wrap each software

application into an autonomous service. We create the service core of the autonomous service by

defining the ServiceCore interface based on the software application. The service core is then

linked to an autonomous service wrapper (ASW). Figure 19 shows an example of wrapping the

Primavera P3 application software into an autonomous service that supports project

scheduling. The P3Service class implements the three methods in the ServiceCore interface.

The setup() method and the terminate() method specify that no action is performed for the

initialization and the termination of the autonomous service. The execute() method defines the

actions for the invocation of the autonomous service. The method starts by fetching the input

parameters from the input data container. The first parameter specifies the service request, and

the second parameter contains the input data for a schedule, based on which the Primavera P3™

application is utilized to conduct scheduling. The result of the scheduling is encapsulated into a

data element and put into the output data container. The P3Service class is provided as an input

to the constructor of the ASW class to connect the Primavera P3 application with the

autonomous service wrapper. After the autonomous service is built, it is registered with the

autonomous service directory. The registration entry specifies the name, the IP address, and the

port number of the autonomous service. Once registered, the autonomous service is ready to be

used for composition.

6.2 Constructing Mobile Classes
Lightweight information processing routines are specified as mobile classes, whose executions

are determined by megaservices during the runtime. Figure 20 shows a sample mobile class that

converts data from Process Specification Language (PSL) format [15] into Microsoft Excel

format. The psltoexcel class implements the MobileClass interface, whose definition is provided

in the FICAS.zip class library. The execute() function take the first argument for the mobile class

as the input data in PSL, convert the data into Microsoft Excel format, and return the converted

data as the output data element.

In our engineering information service infrastructure, mobile classes are compiled and their

byte codes are stored in a repository that is accessible from the web. Megaservices locate a

mobile class by attaching a base URL to the mobile class name. For instance, if the base URL

 29

for the mobile class repository is http://ficas.stanford.edu/mcrepo, then the byte codes for

psltoexcel can be located at http://ficas.stanford.edu/mcrepo/psltoexcel.class.

public class P3Service implements ServiceCore
{
 public boolean setup(Container inc, Container outc, FlowId inf) {
 return true;
 }

 public boolean terminate(Container inc, Container outc, FlowId inf)
 {
 return true;
 }

 public boolean execute(Container inc, Container outc, FlowId inf) {
 /* Fetch the desired operation from the input data container */
 String operation = inc.fetch(inf, 0).getStringValue();

 if (operation.equals("reschedule")) {
 /* Fetch the input schedule from the input data container */
 String input = inc.fetch(inf, 1).getStringValue();

 /* Invoke P3 to conduct rescheduling */
 String output = P3Schedule(input);

 /* Put regenerated schedule on the output container */
 outc.put(inf, 0, new DataElement().setValue(output));
 }

 return true;
 }

 private String P3Schedule(String schedule) {
 /* Invokes the Primavera P3 software to process the input,
 the result of the rescheduling is returned */
 ...
 }

 public static void main(String argv[]) throws Exception {
 if (argv.length != 1) {
 System.err.println("Usage: java P3Service port");
 return;
 }

 /* Creating the autonomous service */
 new ASM(Integer.parseInt(argv[0]), new P3Service());
 }
}

Figure 19: Example Autonomous Service that Utilizes Primavera P3

 30

6.3 A Sample Megaservice
Figure 21 shows an example megaservice that utilizes multiple autonomous services and

mobile classes to perform rescheduling of project plans. The megaservice is specified as a

CLAS program. Three autonomous services are utilized by the megaservice: (1) the PSLService

that handles the access of the project models, (2) the P3Service that conducts the scheduling of a

project plan, and (3) the ExcelService that displays the project plan. In addition, the mobile class

psltoexcel is used to convert data between the PSL format and the Microsoft Excel format. The

megaservice is compiled into a control sequence in FICAS, which is accessible on the web at

http://ficas.stanford.edu/CLASParser/SchedulingDemo.xml. The invocation of the megaservice

causes the PSLService to fetch the project model, which is then rescheduled by the P3Service.

The update schedule is stored back to the database using the PSLService and shown to the project

personnel using the ExcelService.

We now look at a sample scenario to demonstrate how the engineering service infrastructure

helps facilitate personnel from different functional groups conduct collaborations. We use the

model of the Mortenson Ceiling project (part of the construction of the Disney Concert Hall) as

the test case. Figure 22 shows the view of the scheduling information using Primavera P3.

The project data is stored in a relational database. The data is shared between the relational data

model and the proprietary Primavera data model using the PSLService. The project schedule can

also be reviewed using a handheld Palm device to directly access the relational database. This

capability is particularly important for the on-site personnel of the construction project. Suppose

that the duration for the activity 18T1-33201, for erecting a roof element, is changed from 1 day

to 40 days, as shown in Figure 23. The change can be made remotely using the Palm device.

The update will trigger the SchedulingDemo megaservice, which updates the project schedule.

As part of the SchedulingDemo megaservice, the project schedule is also automatically updated

in Excel to notify the project personnel, as shown in Figure 24. The updated schedule can also

be retrieved from the relational database using MS Project. Figure 25 shows that not only the

activity 18T1-33201 is updated, but the dependent activities are also updated as well.

The example infrastructure involves software applications that exchange large amount of data.

The applications are conveniently wrapped into autonomous services. Computational tasks are

easily specified using mobile classes. Engineering processes are systematically defined as

 31

megaservices. Our example demonstrates that FICAS model is suitable for the composition of

large-scale autonomous services.

public class psltoexcel implements MobileClass
{
 public DataElement execute(Vector params) {
 /* Fetch the input data, in PSL format */
 String p3 =
 ((DataElement) params.firstElement()).getStringValue();

 /* Convert the input data to excel format */
 String excel = Convert_PSL_To_Excel(p3);

 /* Return the converted data, in Excel format */
 return new DataElement().setValue(excel);
 }

 private String Convert_PSL_To_Excel(String p3) {
 ...
 }
}

Figure 20: Example Mobile Class that Converts Data from PSL to Microsoft Excel

SchedulingDemo "http://ficas.stanford.edu/mcrepo"
{
 psl_svc = SETUP("PSLService")
 p3_svc = SETUP("P3Service")
 excel_svc = SETUP("ExcelService")

 /* Fetch project data from database */
 psl = psl_svc.INVOKE("to-psl", "%%")
 original_schedule = psl.EXTRACT()

 /* Reschedule project */
 p3 = p3_svc.INVOKE("reschedule", original_schedule)
 updated_schedule = p3.EXTRACT()

 /* Store the updated project data into database */
 oracle = psl_svc.INVOKE("to-oracle", updated_schedule)
 status1 = oracle.EXTRACT()

 /* Populate Excel Service with updated project data */
 excel_data = MCLASS("psltoexcel", updated_schedule)
 excel = excel_svc.INVOKE("populate", excel_data)

 psl_svc.TERMINATE()
 p3_svc.TERMINATE()
 excel_svc.TERMINATE()
}

Figure 21: Sample Megaservice Specified in CLAS

 32

Figure 22: Reviewing the Project Schedule in Primavera P3

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

Change duration of activity
18T1-33201 (“Erect Roof Element 1”)
From 1 day to 40 days

Figure 23: Revising the Project Schedule via a Palm Device

 33

Figure 24: Reviewing the Updated Project Schedule in Microsoft Excel

Figure 25: Reviewing the Updated Schedule in Microsoft Project

 34

7 Summary
This paper investigates the integration of services that communicate large volumes of data.

Traditionally, a megaservice is the central hub for all the data traffic, while the autonomous

services process the data supplied by the megaservice and return the processed results to the

megaservice. This centralized data-flow approach is shown to be inefficient. To improve

performance, the distributed data-flow approach is introduced to allow direct data exchange

among the autonomous services. The distribution of data also enables computations to be more

effectively distributed.

FICAS is a service composition infrastructure that utilizes the distributed data-flow approach.

We define in FICAS a metamodel for autonomous services, based on which services can be

accessed and composed in a homogeneous manner. The metamodel leads to the ASAP protocol

that separates the data communications from the control processing in autonomous services.

Autonomous services conforming to the ASAP protocol can be coordinated by a centralized

controller, while data communications are distributed among the services. The conducted

performance analysis shows that the distribution of data communications improves megaservice

performance, especially when large volumes of data are exchanged among the services. The

distributed data-flow approach also eliminates the bottleneck on the communication links of the

megaservice by taking advantage of the communication network among the services.

We introduce active mediation and mobile classes that enable computations to be distributed

among autonomous service. A mobile class, which implements specific information processing

functionality, can be dynamically loaded onto an autonomous service to process data local to the

autonomous service. We discuss how autonomous services support the execution of mobile

classes with an active mediator. By moving computations closer to data, we can significantly

reduce the amount of data traffic for a megaservice. The algorithm to determine the optimal

location for the execution of mobile classes is discussed.

An information service infrastructure is described at the end. We use construction project

scheduling software to illustrate the process by which services are built and integrated using

FICAS. Legacy engineering applications are tied together to form integrated work processes.

FICAS, based on the distributed data-flow approach, is shown to be suited for integrating large-

scale engineering services.

 35

8 Acknowledgement
This work is partially sponsored by the Center for Integrated Facility Engineering at Stanford

University, a Stanford Graduate Fellowship, the Air Force (Grant F49620-97-1-0339, Grant

F30602-00-2-0594), and the Product Engineering Program at NIST. The Product Engineering

Program gets its current support from the NIST’s SIMA (Systems Integration for Manufacturing

Applications) program. The 4D Viewer and the 4D model of the Mortenson Ceiling Project are

provided by Professor Martin Fischer and his research group at Stanford University. No

approval or endorsement of any commercial product by the National Institute of Standards and

Technology or by Stanford University is intended or implied. Certain commercial equipments,

instruments, or materials are identified in this paper in order to facilitate better understanding.

Such identification does not imply recommendations or endorsement by the National Institute of

Standards and Technology or by Stanford University, nor does it imply the materials or

equipment identified are necessarily the best available for the purpose.

9 References
[1] Apache SOAP, Apache Software Foundation, http://xml.apache.org/soap/, 2002.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language, Java Series,

Boston, MA, Addison-Wesley, 2000.

[3] D. Beringer, C. Tornabene, P. Jain, and G. Wiederhold. "A Language and System for

Composing Autonomous, Heterogeneous and Distributed Megamodules," Proceedings of

DEXA International Workshop on Large-Scale Software Composition, Vienna Austria,

August 1998.

[4] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, and B. Stearns. The J2EE

Tutorial, Addison Wesley Professional, 2002.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte,

and D. Winer. Simple Object Access Protocol (SOAP), W3C Note,

http://www.w3.org/TR/SOAP, 2000.

 36

 37

[6] S. Chandrasekaran, S. Madden, and M. Ionescu. Ninja Paths: An Architecture for

Composing Services over Wide Area Networks, UC Berkeley, Technical Report,

http://ninja.cs.berkeley.edu/dist/papers/path.ps.gz, 2000.

[7] D. E. Comer. Internetworking with TCP/IP, Volume I, Principles, Protocols, and

Architecture, 4th ed, Prentice Hall, 2000.

[8] D. Davis and M. Parashar. "Latency Performance of SOAP Implementations,"

Proceedings of 2nd IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGrid2002), Berlin, Germany, pp. 407-412, May 2002.

[9] D. F. Ferguson. "Web Services Architecture: Direction and Position Paper," Proceedings

of W3C Web Services Workshop, San Jose, CA, April 2001.

[10] M. Kirtland. "The Programmable Web: Web Services Provides Building Blocks for the

Microsoft .NET Framework," MSDN Magazine, September 2000.

[11] M. D. McIlroy. "Mass Produced Software Components," Software Engineering, NATO

Science Committee, pp. 138-150 January 1969.

[12] J. Ockerbloom. Mediating Among Diverse Data Formats, Carnegie Mellon University,

Pittsburgh, PA, PhD. Thesis, 1998.

[13] OMG. The Common Object Request Broker: Architecture and Specification Version 2.0,

Object Management Group, Report # 95-3-10, July 1995.

[14] L. Perrochon, G. Wiederhold, and R. Burback. "A Compiler for Composition: CHAIMS,"

Proceedings of Fifth International Symposium on Assessment of Software Tools and

Technologies, Pittsburgh, June 1997.

[15] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, and J. Lee. The Process

Specification Language (PSL): Overview and Version 1.0 Specification, National

Institute of Standards and Technology, Gaithersburg, MD, Report # 6459, 2000.

[16] G. Wiederhold, D. Beringer, N. Sample, and L. Melloul. "Composition of Multi-site

Services," Proceedings of IDPT'99, Kusadasi, Turkey, June 1999.

[17] G. Wiederhold, P. Wegner, and S. Ceri. "Towards Megaprogramming," Comm. ACM,

vol. 35(11), pp. 89-99 Nov 1992.

	Introduction
	Service Composition Infrastructures
	Integration of Software Components
	Distribution of Data-flows
	Components in FICAS

	Autonomous Services
	Autonomous Service Metamodel
	Autonomous Service Access Protocol
	Autonomous Service Wrapper

	Distributed Data-flow Planning
	Planning Distributed Data-flows
	Performance Analysis

	Mobile Classes and Active Mediation
	Mobile Classes
	Active Mediation
	Placement of Mobile Classes
	Performance Analysis

	Information Service Infrastructure
	Building Autonomous Services
	Constructing Mobile Classes
	A Sample Megaservice

	Summary
	Acknowledgement
	References

