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Abstract 
 

This paper presents a Flow-based Infrastructure for Composing Autonomous Services (FICAS) 

that supports a software composition paradigm, where software components are linked together 

through an integration framework to form composed software applications called megaservices.  

The software components are provided as processes managed by independent service providers; 

we call these components autonomous services.  FICAS employs a distributed data-flow 

approach that differs from the centralized data-flow approach adopted by many current service 

integration frameworks, such as CORBA, J2EE and SOAP.  The distributed data-flow approach 

allows direct data exchange among the autonomous services and consequently facilitates the 

distribution of computations.  FICAS is implemented as a collection of software modules that 

support the construction of autonomous services, facilitate the functional composition of 

autonomous services into megaservices, and carry out the execution of megaservices.  We have 

built a prototype for an information service environment based on FICAS that incorporates a 

variety of construction project scheduling software.  The prototype demonstrates that the 

distributed data-flow approach is more efficient than the centralized approach when integrating 

large engineering software services. 
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1 Introduction 
A software engineering paradigm where large software services are decomposed into 

cooperating components has been envisioned for over 30 years [11].  Under this paradigm, 

software components are linked together through an integration framework to form composed 

software applications called megaservices [17].  Software components are provided as processes 

managed by independent service providers.  The components have clearly defined functions with 

accessible interfaces.  We call these software components autonomous services.  With the rapid 

development of the Internet and networking technologies, the computing environment is 

evolving toward an interconnected web of autonomous services, both inside and outside of 

enterprise boundaries. 

Prior research has addressed the issue of composing megaservices based on autonomous 

services [16].  A megaservice acts as a central controller for invoking, monitoring, querying, and 

terminating the autonomous services.  Autonomous services take turns to process the data 

supplied by the megaservice and return the processed results to the megaservice.  Data are 

exchanged using a client-server model where the megaservice serves as the central hub of all 

data traffic.  This centralized data-flow approach is used in many current software integration 

frameworks such as CORBA [13], J2EE [4], and Microsoft .NET [10]. 

This paper demonstrates that the centralized data-flow approach is inefficient for integrating 

large-scale engineering software services.  A distributed data-flow approach is proposed to 

allow data to be exchanged directly among the services.  This paper presents the Flow-based 

Infrastructure for Composing Autonomous Services (FICAS).  FICAS is implemented as a 

collection of software modules that support the construction of autonomous services, facilitate 

the functional composition of autonomous services into megaservices, and conduct the execution 

of megaservices.  There are three objectives in designing FICAS: (1) Scalability – integration 

and management of large number of autonomous services in the service composition 

infrastructure; (2) Performance – high efficiency in the execution of megaservices; and (3) Ease 

of composition – effective and convenient specification of service compositions by the 

application programmers.  FICAS aims to utilize the distributed data-flow approach to achieve 

better scalability and performance without sacrificing ease of composition. 
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The paper is organized as follows.  Section 2 outlines the key issues in building service 

composition infrastructures and gives an overview of FICAS.  Section 3 defines a metamodel to 

enable homogeneous access for autonomous services within FICAS.  Section 4 describes the 

runtime environment of FICAS, focusing on distributing data communications among the 

services.  Section 5 explores techniques in distributing computations among autonomous 

services.  Section 6 illustrates a prototype for a ubiquitous computing environment based on 

FICAS.  Section 7 summarizes our findings. 

2 Service Composition Infrastructures 
As software becomes more complex, there is a paradigm shift from coding as the focus of 

programming to a focus on software composition.  Traditionally, large programs are partitioned 

into subtasks of manageable sizes.  The subtasks are assigned to programmers who code the 

instructions in a programming language.  The resulting subtasks are subsequently submitted for 

integration.  Software composition, on the other hand, starts from an existing software base.  Pre-

existing software applications are wrapped into autonomous services, whose functionalities are 

then composed together.  Many of the services may be distributed over the network and 

heterogeneous in nature. 

2.1 Integration of Software Components 
Software integration takes place in many forms.  Early methods are based on code reuse.  The 

simplest method is to copy the source code to wherever the desired functionality is needed.  

There are significant drawbacks to this approach, ranging from compiler incompatibility to 

difficulties in maintaining duplicate copies of program code.  To deal with these drawbacks, 

software components written in a programming language are compiled into shared libraries.  The 

libraries have public interfaces, through which the users invoke the functions contained in the 

libraries.  The software components are executed on a single machine. The ownership of the 

reused software components belongs to the users of the software components. 

The development of network computing allows software components to be distributed to 

multiple machines.  Each software component runs as a separate process, communicating with 

each other by exchanging messages.  With the proliferation of web services [9], more and more 

software components are provided in the form of autonomous services, each managed 
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autonomously by its own providers [14].  Figure 1 illustrates an integration environment that 

consists of autonomous services connected by a communication network.  Each autonomous 

service has four hierarchical layers: 

• The “Host” layer represents the hardware platform the autonomous service runs on.  This 

layer provides the hardware means for executing application instructions and routing data 

through the communication network. 

• The “Operating System” layer provides software support for the system resource.  It manages 

the processes of the software applications that perform the service.  It also provides protocol 

support for the network intercommunications among different hardware platforms.  For 

instance, the TCP/IP [7] protocol support belongs to this layer. 

• The “Access Protocol” layer provides protocol support for accessing the data and the 

functionalities of the autonomous service.  The access protocol defines how to encode a 

service request, and also specifies the manner in which the autonomous service responds to 

the request.  The layer provides a level of abstraction to enable a service client to 

communicate with an autonomous service in a different operating system.   

• The “Autonomous Service” layer is the application layer, which is concerned with the 

semantics of the autonomous service.  Data integration is conducted at this layer so that 

autonomous services can exchange information in a mutually understandable fashion. 

A megaservice is a conceptual composition of the functionalities exported by the autonomous 

services through the “Autonomous Service” layer.  The execution of the megaservice is 

coordinated by a controller, which itself may be an autonomous service.  The service integration 

environment can be conceptually viewed as a set of service nodes interconnected by a 

communication network.  There are two types of messages: control messages and data messages, 

distinguished by their use at the message destinations.  Control messages are mostly short 

messages that trigger state changes at the receiving services.  Examples of control messages 

include service invocation requests and status polling requests.  Data messages are mostly large 

data packets that are given to the receiving services for processing.  Examples of data messages 

include engineering design, manufacturing and resource information to conduct simulation.  To 

execute a megaservice, control and data messages need to be exchanged among autonomous 

services. 
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Figure 1: Hierarchical Model of Autonomous Services 

2.2 Distribution of Data-flows 
A control-flow is formed by a group of related and partially ordered control messages, and a 

data-flow is formed by a group of related and partially ordered data messages.  Service 

integration environments differ in how control-flows and data-flows are formed and managed. 

Traditionally, both control-flows and data-flows are centrally coordinated, as illustrated in 

Figure 2(a).  The megaservice requests information from Service1 and passes the information 

onto Service2 for further processing.  The result of Service2 is then forwarded to Service3.  The 

central megaservice coordinates all the autonomous service invocations.  Since the data-flows 

and the control-flows are not separated, the megaservice control serves as the hub for all the data 

communications.  We call this runtime model the centralized control-flow centralized data-flow 

model, or 1C1D model.  The 1C1D model represents the simplest form of service composition 

runtime environment.  Examples of the 1C1D model include CORBA [13], J2EE [4], and 

Microsoft .NET architecture [10]. 
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Figure 2: Centralized and Distributed Data-flows 

There are performance and scalability issues associated with the 1C1D model.  The 

megaservice forwards data between the two autonomous services when the data produced by one 

service is utilized by another service.  Since the data is sent indirectly, redundant data traffic is 

resulted.  The megaservice control becomes a communication bottleneck when large amount of 

data are exchanged among the services.  Furthermore, since all data traffic go through the 

megaservice, the communication links of the megaservice become the critical system resource.  

It is especially problematic in an Internet environment, where the communication links between 

the megaservice and autonomous services are likely to be of limited bandwidth.  The centralized 

communication topology makes the 1C1D model difficult to scale. 

The issues observed in the 1C1D model motivate us to distribute the data-flows for the 

executions of megaservices.  Figure 2(b) shows the control-flows and the data-flows exhibited in 

a distributed data-flow infrastructure.  The megaservice has the ability to inform two autonomous 

services to establish a direct data-flow.  For instance, data are exchanged between autonomous 

services, from Service1 to Service2, and from Service2 to Service3, without going through the 

megaservice. 

In this paper, we discuss how FICAS distributes data-flows while maintaining the same 

centralized control mechanism as in the 1C1D model.  We call this runtime model the 

centralized control-flow distributed data-flow model, or 1CnD model.  The decision to retain a 

centralized control-flow is due to its ease of implementation and management.  We find it 

difficult to effectively apply distributed control-flow models to conduct service composition.  

Because operational code segments would have to be distributed to relevant function units for 
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execution, distributed control-flows require homogeneity in the underlying hardware platform.  

In addition, there remain many technical challenges to convert a centralized megaservice 

specification of control sequences into distributed operational code segments. 

By distributing data-flows, FICAS eliminates the redundant data traffic caused by the 

forwarding of data through the megaservice.  The distributed data-flow model also utilizes the 

communication network among the autonomous service, and thus alleviates the communication 

load on the megaservice.  Furthermore, FICAS allows computations to be efficiently distributed 

to where data resides, so that the data can be processed without incurring communication traffic. 

2.3 Components in FICAS 
The service composition infrastructure, FICAS, allows distributed software applications to 

hide heterogeneities in the network, platform, and language.  FICAS is built upon a previously 

developed service composition infrastructure CHAIMS [3, 16], which focuses on the 

composition of services that are large distributed components.  Residing on different computers, 

the services are inherently concurrent in nature, and the long duration of service execution 

necessitates asynchronous invocation and collection of results.  CHAIMS developed a simple 

compositional language and runtime support for applications composed from distributed 

modules.  FICAS builds on the prior efforts of CHAIMS because its compositional language 

supports the same goal for ease of composition. 

Figure 3 illustrates the main components of FICAS.  The buildtime components are 

responsible for specifying megaservices and compiling megaservice specifications into control 

sequences that serve as inputs to the runtime environment.  For FICAS, we have defined the 

CLAS (Compositional Language for Autonomous Services) to provide the application 

programmers the necessary abstractions to describe the behaviors of their megaservices. The 

CLAS language focuses on functional composition of autonomous services.  A CLAS program is 

essentially a sequential specification of the relationships among collaborating autonomous 

services, without providing primitives to schedule or to coordinate control-flows and data-flows.  

The CLAS program is compiled by the buildtime component into a control sequence that can be 

executed by the runtime environment.  The control sequence is language and platform 

independent, providing a bridge between the buildtime and runtime environments of FICAS. 
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Figure 3: FICAS Architecture 

The runtime environment of FICAS is responsible for executing the control sequences.  At its 

minimum, the runtime can consist of just one autonomous service, along with the service 

directory.  The runtime environment can be expanded by simply plugging additional autonomous 

services into the communication network and registering the autonomous services with the 

service directory.  The autonomous service directory keeps track of available autonomous 

services within the infrastructure.  While the directory is viewed globally as a centralized entity, 

it may be implemented as a distributed structure.   

Autonomous services are formed by wrapping software applications.  A metamodel is defined 

to allow the construction of homogeneous autonomous services in a heterogeneous computing 

environment.  The key feature of the FICAS metamodel is the separation of the data-flows from 

the control-flows.  The control-flows are coordinated by a megaservice controller, which is the 

centralized coordinator that carries out the execution of a megaservice.  The controller generates 

an execution plan based on an input control sequence, and then follows the plan to coordinate the 

control-flows among the respective autonomous services.  The controller is also responsible for 

optimizing the performance of the megaservice. 
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3 Autonomous Services 
Autonomous services are running processes that involve one or more software applications 

along with the domain data they operate on.  The client-server interaction model is used.  The 

clients of the autonomous services make service requests, as autonomous services wait for 

service requests.  To fulfill the service requests, autonomous services invoke processing routines 

to operate on their domain data.  Autonomous services may also request information from other 

autonomous services.  As the result of the services, desired information is returned to the clients. 

3.1 Autonomous Service Metamodel 
Autonomous services are specified under a homogeneous model in order to communicate and 

cooperate with each other.  Figure 4 illustrates the autonomous service metamodel in FICAS.  

An autonomous service consists of a service core, an input event queue, an output event queue, 

an input data container, and an output data container: 

• The service core represents the core functionality of the autonomous service.  It is 

responsible for performing computation on the input data elements and generating the result 

data elements.  We can usually wrap existing software applications into a service core. 

• Events are exchanged between services to control the flow of autonomous service 

executions.  Asynchronicity of autonomous service execution is achieved by using queues for 

event processing.  Incoming events are placed at the tail of the input event queue, and 

outgoing events are placed at the tail of the output event queue.  The default queuing system 

used in FICAS is the FIFO (first in and first out) queue, where events are processed in the 

order by which they are received. 

• The data containers are groupings of input and output data elements for the autonomous 

service.  The input data elements are fetched from the input data container and processed by 

the service core.  The generated data elements are put into the output data container.  The 

data containers enable autonomous services to look up generated data elements.  The 

existence of data containers is essential for the distribution of data-flows.  Under the 1CnD 

model, the data-flows can be formed between data containers of two autonomous services, 

while control-flows continue to go through the megaservice controller. 
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Figure 4: FICAS Autonomous Service Metamodel 

The key characteristic of the FICAS autonomous service model is the explicit separation of 

control-flow and data-flow.  For control-flow, the autonomous service primarily concerns about 

the event processing and the state management of the service core.  For data-flow, the 

autonomous service primarily concerns about the exchange of data elements between the data 

containers and the processing of the data elements by the service core.  The control-flows and the 

data-flows are managed by asynchronous components of the autonomous service.  While each 

component uses its own thread, the service core ties together the components into a coordinated 

entity. 

3.2 Autonomous Service Access Protocol 
Given the autonomous service metamodel, we define an autonomous service access protocol, 

ASAP, by which the autonomous services are accessed.  ASAP manages control-flows and data-

flows through a set of events.  These events exist in the form of XML based messages that are 

used to interact with autonomous services.  The hierarchical structure of XML provides a 

convenient method of defining the composition of an event.  ASAP is asynchronous and non-

blocking.  The sender of an event may not wait for the response of the event.  Instead, the sender 

can continue to execute other activities that are not dependent on the response of the event.  The 

protocol removes the barriers imposed by different megaservice programming languages and 

distribution protocols.  For simplicity, we represent the ASAP events using their abbreviated 
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functional representations instead of their full XML representations.  The key ASAP events that 

related to data-flow scheduling are listed below: 

• SETUP (Service) 

The SETUP event is used to initialize an autonomous service.  The autonomous service is 

informed to prepare necessary system resources for the actual invocations.  A reply event is 

issued after the initialization of the autonomous service. 

• TERMINATE (Service) 

The TERMINATE event unconditionally terminates an autonomous service.  Garbage 

collection is conducted during the termination process to release the system resources involved 

with an autonomous service instance.  A reply event is issued after the termination of the 

autonomous service. 

• INVOKE (Service) 

The INVOKE event is used to request an autonomous service.  The service core of the 

autonomous service is started upon the processing of the INVOKE event.  After the completion 

of the service invocation, output data elements are generated by the service core and are placed 

onto the output data container.  In addition, a reply event is issued. 

• MAPDATA (DataElement, SourceService, DestinationService) 

The MAPDATA event is used to establish a data-flow between two data containers.  The 

event enables the distribution of data-flows within the service composition infrastructure.  The 

sender of the MAPDATA event does not need to be the recipient of the data element.  The events 

are usually sent from the megaservice controller that coordinates the autonomous service 

invocations, and the data elements are exchanged directly among the data containers of the 

autonomous services.  While the support of the MAPDATA event makes it possible to have 

distributed data-flows, it is up to the megaservice controller to generate an execution plan that 

can take advantage of this capability. 

There are two forms of implementation for the MAPDATA event.  The first is called “push 

MAPDATA”, in which case the event is sent to the SourceService.  The SourceService fetches 

the data element from its output data container and pushes the data element over to the 
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DestinationService.  Another implementation is called “pull MAPDATA”, in which case the 

event is sent to the DestinationService.  The DestinationService pulls the data element from the 

SourceService and put the data element onto its input data container.  Both implementations are 

supported by FICAS. 

3.3 Autonomous Service Wrapper 
Autonomous services export the service functionalities contained in the encapsulated software 

applications.  Although the service functionalities differ, the way by which the functionalities are 

exported is similar for all the autonomous services.  The autonomous services share many 

common components, such as the event queues and the data containers.  In addition, the 

interactions among the components are largely identical.  Hence, the construction of autonomous 

services can be significantly simplified by building the common components into a standard 

module.  We call such a module autonomous service wrapper.  The wrapper provides the support 

for the ASAP protocol, and facilitates the encapsulation of software applications into 

autonomous services. 

In FICAS, the autonomous service wrapper has been implemented in Java.  The Java classes 

and interfaces are incorporated into a Java library.  With the autonomous service wrapper 

provided as a standard module, the wrapping of a software application into an autonomous 

service is simplified to a matter of defining the ServiceCore interface, as shown in Figure 5.  The 

application core connects to the autonomous service wrapper through three methods.  The setup() 

method defines the actions of the application when the service is initialized; the execute() method 

is called when the service is invoked, triggering the application to process the data in the 

containers; and the terminate() method is called when the service is terminated.  Each method 

takes three parameters.  The autonomous service wrapper fills in the values for these parameters 

when it actives the connector.  The inputcontainer provides the reference to the input data 

container of the autonomous service; the outputcontainer provides the reference to the output 

data container of the autonomous service; and the flowid identifies the flow to which the service 

request belongs.  With the references to the data containers and the flow identifier of the request, 

the software application can look up the input parameters from the input data container and 

generates the results into the output data container. 
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public interface ServiceCore { 
 
  public boolean setup(Container inputcontainer, 
                       Container outputcontainer, 
                       FlowId flowid); 
 
  public boolean execute(Container inputcontainer, 
                         Container outputcontainer, 
                         FlowId flowid); 
 
  public boolean terminate(Container inputcontainer,  
                           Container outputcontainer, 
                           FlowId flowid); 
}  

Figure 5: ServcieCore Interface 

4 Distributed Data-flow Planning 
In FICAS, the megaservice controller has the sole responsibility for managing the control-

flows for a megaservice.  The controller executes and coordinates autonomous services by 

controlling the choice and the timing of ASAP events.  We characterize the coordination as an 

execution plan, which defines the choice, timing, sequence, and dependencies of the outgoing 

ASAP events.  

4.1 Planning Distributed Data-flows 
There are three steps in generating an execution plan.  First, the megaservice program is 

analyzed to discover data dependencies among autonomous services.  Then, a data dependency 

graph is constructed to identify independent data-flows.  Finally, based on the data dependency 

graph, the megaservice controller can build an execution plan for the megaservice. 

The megaservice program segment in Figure 6 shows implicit data dependencies between 

autonomous services.  For instance, invocation of Service3 takes A and B as input, which are the 

outputs of the invocations of Service1 and Service2, respectively.  Hence, Service3 is data 

dependent on Service1 and Service2. 

The data dependencies among the autonomous services are analyzed when the program is 

interpreted.  The megaservice controller extracts from the statements the data dependencies 

among autonomous services.  The dependencies are mapped into a data dependency graph 

(DDG) as shown in Figure 7.  The nodes represent autonomous service invocations, and the 
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directed arcs represent data dependencies between autonomous service invocations.  Each 

directed arc points to the dependent autonomous service and is tagged with the data elements 

exchanged between the pair of autonomous services.  For example, the arc between Invocation1 

and Invocation3 represents that Invocation3 is dependent on Invocation1, with A being the data 

element passed from Invocation1 to Invocation3. 

The megaservice execution plan is represented by the event dependency graph (EDG).  The 

node in the EDG contains an outgoing ASAP event from the megaservice controller.  The arc 

establishes a predecessor-successor relationship between a pair of ASAP events.  The successor 

ASAP event cannot be sent until the action taken by the predecessor ASAP event is completed, 

i.e., the megaservice controller receives the response of the predecessor ASAP event.  The 

megaservice controller uses the EDG to coordinate the execution of the megaservice.  Invocation 

nodes in the DDG can be directly mapped into the INVOKE event nodes in the EDG.  The 

mapping from the directed arcs in the DDG to the event nodes in the EDG is more complex.  

Different mapping schemes can produce different data-flow models for the megaservice.   

 

Invocation1 = Service1.invoke() 
Invocation2 = Service2.invoke() 
 
A = Invocation1.extract(); 
B = Invocation2.extract(); 
 
Invocation3 = Service3.invoke(A, B) 
 
C = Invocation3.extract(); 
 
Invocation4 = Service4.invoke(C) 
D = Invocation4.extract(); 

Figure 6: Sample Megaservice Program Segment 

Figure 8 shows the mapping scheme where data communications are directed between 

dependent autonomous services, resulting in the 1CnD execution model.  The megaservice 

controller functions merely as a coordinator for the ASAP events that control the data 

communication activities.  Each directed arc in the DDG is mapped into a MAPDATA event 

node with arcs connecting the predecessor and successor event nodes.  For instance, the arc 
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tagged with A in the DDG (shown in Figure 7) is mapped into the MAPDATA(A, Service1, 

Service3) event node in the EDG (shown in Figure 8). 

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

 
Figure 7: Sample DDG 
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Figure 8: EDG with Distributed Data-flows 

 15 



   

4.2 Performance Analysis 
In this section, we measure the performance of a sample megaservice supported by FICAS.  

Different configurations of the computing environment are used to examine the performance of 

the megaservice.  We also compare FICAS with the centralized data-flow model by 

implementing the same megaservice under SOAP [5].  As a lightweight protocol for exchanging 

information between applications in a distributed computing environment, SOAP has shown 

great potential for simplifying web service composition and the distribution of software over the 

Internet.  There are several implementations of SOAP.  They differ in their support for class 

binding, ease of use and performance [8].  As one of the popular choices for the SOAP 

implementations, Apache SOAP [1] is selected to be the reference implementation. 

Figure 9 illustrates the computing environment for the performance evaluation.  Two 

autonomous services that focus on data communications are involved.  No computational 

processing occurs on these autonomous services.  Autonomous service S1 randomly generates 

and returns a string whose size is specified by the input parameter.  Autonomous service S2 takes 

the string as input and immediately returns without doing anything.  Two megaservices that 

utilize the autonomous services are constructed.  The first megaservice, MultiService, forwards 

the string generated by the autonomous service S1 to the autonomous service S2.  This 

megaservice is designed to examine the impact of the data-flow distribution.  The second 

megaservice, SingleService, simply invokes the autonomous service S1.  This megaservice is 

used to measure the cost of a single service call. 

The autonomous services and the megaservices are implemented for both SOAP and FICAS.  

All Java programs are written and compiled with Sun’s JDK 1.3.0 for the Microsoft Windows 

operating system.  For SOAP, the autonomous services are implemented as Java methods whose 

interfaces are registered with the Apache Tomcat application server v4.0.  The megaservices are 

implemented as Java applications that invoke the services using the Apache SOAP v2.2 API 

library.  For FICAS, the autonomous services are wrapped using our developed Java library.  The 

service cores of the autonomous services are identical in functionality to their SOAP 

counterparts.  The megaservices are specified as CLAS programs, which are compiled into 

control sequences by the FICAS buildtime environment.  The megaservices are executed by 

sending the control sequences to a megaservice controller. 
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Figure 9: Test Environment for Comparing SOAP and FICAS 

The tests are performed in a distributed computing environment.  The machines are each 

configured with a Pentium-III 1 GHz processor and 256 MB RAM, running Windows 2000 

Professional.  The autonomous services run on two separate servers connected to a switch via a 

Local Area Network (LAN), whose bandwidth is 10 mbps each way.  The megaservices run on 

the client machine.  Two types of network connections are used to connect the client machine to 

the servers.  The first connection uses LAN, whose communication bandwidth among all 

machines is 10 mbps each way.  This type of connection resembles many corporate computing 

environments.  The second connection uses an 802.11b wireless link.  The downloading 

bandwidth is approximately 2 mbps, and the uploading bandwidth is approximately 0.5 mbps.  

This type of connection resembles a computing center environment, where servers are connected 

by high-speed communication links, but are accessed via relatively slower communication links. 

The execution times of the megaservices are measured with different settings on the data 

volume involved with the megaservices.  The data volume is specified by the input parameter to 

the autonomous service S1.  Figure 10 shows the measured performance of the megaservices 

when the client machine is connected to the LAN.  The following observations can be made: 

• FICAS performs worse than SOAP when the data volume is low.  This is expected and can 

be explained by two reasons.  First, FICAS has more complicated control-flows than SOAP.  

FICAS breaks down a single service call in SOAP into multiple control messages.  FICAS 

also incurs more overheads in initializing and terminating the autonomous services.  

Although FICAS achieves performance gains by distributing the data-flows, the gains are not 

 17 



   

enough to offset the extra overheads in the control-flows.  Second, it is expected that Apache 

SOAP, being under development for quite some time, is better optimized than FICAS in 

terms of its Java source codes.  

• The performance of the FICAS megaservice MultiService is comparable to that of the SOAP 

megaservice SingleService.  The megaservices are similar in performance because two 

megaservices incur the same amount of data-flows.  For SingleService, the string generated 

by the autonomous service S1 is sent to the megaservice.  For MultiService, the same string is 

sent from the autonomous service S1 to the autonomous service S2. The slight difference in 

the execution times of the megaservices can be attributed to the differences in control-flows. 

• The execution times of the megaservices increase linearly with respect to the data volume.  

Since there is no computational processing on either the autonomous services or the 

megaservices, the increase in execution times comes from the increased data-flows.  The 

execution times approximately double each time the data volume doubles. 

• FICAS outperforms SOAP when the data volume is high.  The larger the data volume, the 

bigger is the difference between the execution time of the FICAS megaservice MultiService 

and that of the SOAP megaservice MultiService.  This is because the SOAP megaservice 

incurs twice as much data-flows as the FICAS megaservice.  For the SOAP megaservice, two 

data messages are used to send the string from the autonomous service S1 to the autonomous 

service S2, via the megaservice controller.  For the FICAS megaservice, only one data 

message is used to send the string from the autonomous service S1 to the autonomous service 

S2. 

To summarize, Apache SOAP and FICAS are similar in many aspects, while their most 

significant difference is in how they deal with data-flows.  Apache SOAP incurs the centralized 

data-flows, and FICAS distributes the data-flows among the autonomous services.  When the 

data volume is low, Apache SOAP outperforms FICAS since Apache SOAP has simpler control-

flows.  When data volume is high, FICAS outperforms SOAP by taking advantage of the data-

flow distribution. 
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Figure 10: Comparison Between FICAS and SOAP on Local Area Network 

Figure 11 compares the performance of the SOAP megaservice MultiService and the FICAS 

megaservice MultiService under various network settings.  Under the LAN setting, the 

megaservices access the autonomous services through the 10 mbps LAN.  Under the wireless 

setting, the megaservices access the autonomous services via a slower 802.11b access point.  The 

communications with the megaservice have much lower bandwidth than the communications 

among the autonomous services.  Comparing the megaservice performance between the LAN 

and the wireless 802.11b settings, we observe the following: 

• The execution times for the SOAP megaservice increase significantly as the bandwidth of the 

communications with the megaservice decreases.  Since all data-flows and control-flows go 

through the megaservice, the communications with the megaservice become the bottleneck of 

the system.  Hence, when deploying a SOAP service composition infrastructure, it is 

important to ensure the high quality of the network connections between the megaservice and 

the autonomous services 

• The execution times for the FICAS megaservice increase only slightly when comparing the 

wireless and the LAN settings.  As the data-flows are distributed among the autonomous 

services, communications with the megaservice are only used for the control-flows.  Because 

the control messages are small and compact in nature, the control-flows place little burden on 

the network.  Thus, the performance of the megaservice is barely affected. 
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Figure 11: Megaservice Performance Under Different Network Configurations 

To summarize, FICAS responds better than SOAP when the bandwidth is limited for 

communicating with the megaservice.  All network traffic in SOAP goes through the 

megaservice, and thus places heavy burden on its communication links.  In contrast, FICAS 

distributes the data-flows and takes advantage of the fast communication network among the 

autonomous services.   

5 Mobile Classes and Active Mediation 
The distribution of data allows computations to be distributed to minimize data traffic.  We 

describe in this section how distributed computation is enabled by the mobile class.  We define 

an architecture that supports the execution of mobile classes.  We also outline an algorithm that 

determines the optimal location to carry out the execution of a mobile class. 

5.1 Mobile Classes 
A mobile class is an information-processing module that can be dynamically loaded.  

Conceptually, the mobile class is a function that takes some input data elements, performs certain 

operations, and then outputs a new data element.  For instance, ),,( 321 xxxfy = , represents a 

mobile class named f that takes three data elements as input and produces an output y. 
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Java is chosen as the specification language for mobile classes in FICAS.  Such selection is 

made for a few reasons.  First, Java is a general programming language that is suitable for 

specifying computational intensive tasks.  There are many available standard libraries that 

provide a wide range of computational functionalities.  Second, Java has extensive support for 

portability.  Java programs can be executed on any platform that incorporates a Java virtual 

machine.  Third, Java supports dynamic linking and loading.  Java class files are object files 

rather than executables in the traditional senses.  Linking is performed when the Java class files 

are loaded onto the Java virtual machine.  Compiled into a Java class, the mobile class can be 

dynamically loaded at runtime. 

All mobile classes need to implement a common interface named MobileClass, whose 

interface is shown in Figure 12.  The interface contains a single function that represents the 

functionality of a mobile class.  The execute() function takes a vector of data elements as the 

input and generates a data element as the output.  The execute() function is overloaded by a 

mobile class to provide specific processing functionality.  Once coded, a mobile class is 

compiled into a Java class and put into the mobile class repository.  The Java class will be looked 

up later when the mobile class is invoked by a megaservice.   

 

public interface MobileClass { 
  public DataElement execute(Vector params); 
} 

Figure 12: Sample Megaservice Program Segment 

Mobile classes enable megaservices to perform computations with greater efficiency.  Figure 

13 shows an example where mobile classes are used in place of type broker services to conduct 

type conversions.  Traditionally, an autonomous service serving as a type broker or a distributed 

network of type brokers can be used to mediate the difference among data in various formats 

[12].  The type brokers can convert data in unknown formats to known formats.  A type graph is 

used to figure out the chain of necessary conversions.  An example of automating this process 

can be seen in [6].  Figure 13(a) presents an example of data-flows in the type-broker 

architecture.  Data from the source service are represented in the type T1, and the destination 

service consumes data in the type T3.  Two type brokers are employed to convert source data 
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from the type T1 to the type T3.  Potentially large amount of data are passed among the type 

brokers.  Alternatively, mobile classes can be used in place of type brokers to handle type 

mediation.  Rather than forwarding data among the type brokers, the megaservice loads the 

mobile classes onto the autonomous services to provide the type mediation functions.  Multiple 

mobile classes for type mediation can be utilized together, similar to the network of the type 

brokers.  As shown in Figure 13(b), two mobile classes are used to convert data from type T1 to 

type T3.  The type mediation is conducted at the source autonomous service, where the source 

data of type T1 is converted to type T3.  Data in the consumable format T3 is directly sent to the 

destination autonomous service.  Since the mobile classes are invoked on the source autonomous 

service, the multiple interim data transfers are eliminated and the data traffic is limited to 

essential transmissions.   

M

S1

(a) Type Brokers

T1

T2T1_T2 T2_T3

S2

T3

M

S1

(b) Type Mediation Mobile Classes

T3 S2

mobile class
T1_T2

mobile class
T2_T3

Control-flow

Data-flow

 
Figure 13: Type Conversion Using Type Broker Services and Mobile Classes 

5.2 Active Mediation 
Active mediator is the information-processing engine that resides between source information 

services and information clients.  Incorporation of an active mediator allows an autonomous 

service to support the execution of mobile classes.  Active mediator processes the source 

information by executing mobile classes specified by information clients.  Figure 14 illustrates 

the architecture of an active mediator: 

 22 



   

Autonomous
Service
Wrapper

Mobile
Class

Fetcher

Mobile
Class

Runtime

Exception
Handling

Mobile Class
Cache

Mobile Class
Repository

Input Data Container

Output Data Container

Mobile
Class
API

Library

Active Mediator

 
Figure 14: Active Mediation Architecture 

• The Mobile Class Fetcher is responsible for loading the Java class of the mobile class.  The 

name of the mobile class indicates where the Java class file can be found.  If the name of the 

mobile class starts with “http://”, then the URL for loading the Java byte codes can be 

obtained by appending “.class” to the name of the mobile class.  For example, the Java class 

file for the mobile class “http://mobile.class.repository/int2float” can be found at 

“http://mobile.class.repository/int2float.class”.  If the name of the mobile class is a normal 

string, then the URL can be obtained by prefixing a base URL and appending “.class” to the 

name.  For example, if the base class path for a megaservice is 

“http://mobile.class.repository”, then the Java class file for the mobile class “int2float” can 

be located at “http://mobile.class.repository/int2float.class”. 

• The Mobile Class Cache is a temporary storage for the loaded Java class.  The Mobile Class 

Cache is used to avoid the duplicate loading of a mobile class.  The cache is looked up first 

before any Java classes are loaded.  Only when the cache miss occurs, the Mobile Class 

Fetcher is used. 

• The Mobile Class API Library stores the utility classes that make the construction of mobile 

classes more convenient.  For instance, the Java Development Kit library [2] is provided as 

part of the Mobile Class API Library. 

• The Mobile Class Runtime is the execution engine for the mobile classes.  To execute a 

mobile class, the Mobile Class Runtime loads the Java class from the Mobile Class Cache 
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and invokes the execute() function.  The runtime uses the data containers of the autonomous 

service to manage the input and output data of the mobile class.  The parameters for invoking 

the mobile class are loaded into the input data container by the megaservice controller before 

the invocation of the mobile class.  The parameters are looked up and supplied to the 

execute() function.  The result of the execute() function is put into the output data container, 

and can then be utilized by the megaservice controller. 

• The Exception Handling module provides error handling for the loading and the execution of 

mobile classes. 

5.3 Placement of Mobile Classes 
The choice of which autonomous service executes the mobile class affects how the data-flows 

are formed for the megaservice to which the mobile class belongs.  The placement of the mobile 

class therefore has significant impact on the performance of the megaservice.  An example 

megaservice, as shown in Figure 15, is used to demonstrate such impact.  The megaservice 

involves two autonomous services and one mobile class.  The autonomous services, S1 and S2, 

are the same as the ones in the example illustrated in Figure 9.  The mobile class FILTER takes a 

large string as input, filters through the content, and returns a string that consists of every 10th 

character of the input string.  Effectively, the mobile class compresses the content by ten fold.  

Since the mobile class can be executed on any one of the autonomous services involved in the 

megaservice, we have three potential placement strategies, as shown in Figure 16: 

• Strategy 1:  By placing the mobile class FILTER at the autonomous service that hosts the 

megaservice controller, we can construct the execution plan as shown in Figure 16(a).  S1 

generates the data element A and passes it to the megaservice.  The mobile class processes A 

at the megaservice, and the result B is then sent to S2 for further processing. 

• Strategy 2:  By placing the mobile class FILTER at S1, we can construct the execution plan 

as shown in Figure 16(b).  S1 generates the data element A and processes it locally using the 

mobile class.  The result B is sent from S1 to S2 for further processing. 

• Strategy 3:  By placing the mobile class FILTER at S2, we can construct the execution plan 

as shown in Figure 16(c).  S1 generates the data element A and passes it to S2.  S2 processes 

A locally using the mobile class to generate the result B. 
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To compare the strategies, we assume that the performance of loading and executing the mobile 

class is the same on all autonomous services.  Strategy 1 requires both the input data element A 

and the output data element B to be transmitted among the megaservice and the autonomous 

services.  Thus Strategy 1 incurs the most communication traffic compared to the other two 

strategies and has the worst performance.  Strategy 2 and Strategy 3 differ in the data content 

sent between the autonomous services.  For Strategy 2, the data element B is sent from S1 to S2.  

For Strategy 3, the data element A is sent from S1 to S2.  Since the data element B is one tenth in 

size compared to the data element A, Strategy 2 incurs the least amount of communication 

traffic.  Therefore, Strategy 2 is the placement strategy that has the best performance. 

SwitchMegeService

S1
produces

and returns a
string value

10mbps

S2
consumes a

string

10mbps

     Invocation1 = S1.invoke(size)
     A = Invocation1.extract()
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     Invocation2 = S2.extract(B)

10mbps

Mobile Class
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Figure 15: Example Megaservice that Utilizes the Mobile Class FILTER 
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Figure 16: Execution Plans with Different Placements for the Mobile Class 
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The optimal placement of a mobile class should minimize the data-flows among related 

autonomous services.  For a mobile class, each input data element to the mobile class is 

represented as a pair, (Si, Vi), where Si is the autonomous service that generates the ith input data 

element, and Vi is the volume of the data element.  The output is a (S0, V0) pair, where S0 is the 

destination autonomous service to which the result of the mobile class will be sent, and V0 is the 

size of the data element.  Two observations can be made.  First, the sum of Vi remains the same 

regardless where the mobile class is executed.  Second, by placing the mobile class on the 

autonomous service Si, we can eliminate the corresponding data-flow volume Vi as the data 

element is local to the autonomous service.  Therefore, the optimal placement of the mobile class 

is the autonomous service Si that has the largest aggregated Vi. 

Figure 17 shows the LDS (Largest Data Size) algorithm that selects the autonomous service 

that generates and consumes the largest volume of data for a given mobile class.  The algorithm 

first computes the total amount of data attributed to each unique autonomous service.  Then, the 

autonomous service with the largest data volume is selected as Smax, which represents the optimal 

placement for the mobile class.  Smax is returned as the output of the algorithm. 

 

INPUT: input pairs(S1, V1), …, (Sn,Vn) 
       output pair (S0, V0) 
OUTPUT: Smax 
METHOD: 
 Vmax=0 
 for every unique S in input and output pairs 
  V=0 
  for i=0,…,n 
   if Si==S 
    V=V+Vi 
  if V>Vmax 
   Smax=S 
   Vmax=V 

Figure 17: LDS Algorithm for Optimal Mobile Class Placement 

The LDS algorithm is applicable when the input and output data sizes are known for the 

mobile classes.   For a situation where the output data size of a mobile class is only determined 

after the execution of the mobile class, we need to estimate the output data size.  We view the 

output data size of an mobile class as a function on the input data sizes of the mobile class: SO = f 

(SA, SB, …).  The function f is called the sizing function of the mobile class, where SO is the 
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output data size and SA, SB are the input data sizes.  The sizing function may be stored along 

with the Java byte codes in the mobile class repository.  The megaservice controller can then use 

the sizing function to estimate the mobile class output data size for running the LDS algorithm. 

5.4 Performance Analysis 
We now analyze the performance of the megaservice previously defined in Figure 15.  The 

megaservice is executed using different placements of the mobile class FILTER.  We intend to 

measure the impact of the placement of the mobile class on the performance of the megaservice.  

In addition, we replace the mobile class FILTER with an autonomous service that implements the 

same functionality.  The performance of the megaservice utilizing the autonomous service is 

compared with the megaservice utilizing the mobile class.  We consider the following scenarios: 

• Strategy 1:  The megaservice conducts active mediation on S1 by executing the mobile class 

FILTER on S1.  The placement of the mobile class is generated by the LDS algorithm. 

• Strategy 2:  The megaservice conducts active mediation on S2 by executing the mobile class 

FILTER on S2. 

• Strategy 3:  We implement a utility autonomous service that replaces the mobile class 

FILTER.  The string generated by S1 is fed into the autonomous service, and the result is 

forwarded onto S2 for further processing. 

Figure 18 shows the execution times of the megaservice.  Different settings on the size of the 

string generated by S1 are used.  The following observations are made: 

• The execution times of the megaservices increase with the size of the string.  Three factors 

contribute to the increased execution times.  First, longer time is taken to measure the size of 

the string.  It results in the longer execution time for the LDS algorithm.  Second, it takes 

longer to execute the mobile class or the utility autonomous service.  Third, the larger string 

results in longer transmission time for the data elements. 

• The placement of the mobile class significantly impacts the performance of the megaservice.  

Strategy 1 performs significantly better than Strategy 2.  Strategy 1 utilizes the LDS 

algorithm to minimize the amount of data-flows incurred by the megaservice.  In Strategy 2, 

S1 transmits the original string to S2. Whereas in Strategy 1, S1 only transmits the filtered 

string to S2.  Strategy 1 causes significantly less amount of data traffic than Strategy 2. 
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Figure 18: Comparison Between Mobile Class and Autonomous Service 

• Both strategies involving the mobile class perform better than Strategy 3, which uses the 

utility autonomous service.  Strategy 3 incurs the most amount of data-flows, as both the 

original string and the filtered string are transmitted among the autonomous services.  In 

addition, the invocation of the autonomous service is more costly than the invocation of the 

mobile class. 

In summary, active mediation enabled by the mobile class is an effective approach in 

improving the performance of the megaservice.  The mobile class can be placed onto the 

appropriate autonomous service to minimize the amount of data communications. 

6 Information Service Infrastructure 
We have shown through simple examples that FICAS is well suited for composing 

autonomous services that exchange large amount of data.  The distribution of data-flows and the 

use of mobile classes facilitate service composition and improve the performance of the 

megaservice.  To demonstrate the effectiveness of FICAS, we implement an engineering service 

infrastructure for construction project management applications.  We illustrate the process of 

building the service infrastructure by: (1) wrapping software applications into autonomous 

services, (2) implementing mobile classes, and (3) constructing megaservices to accomplish the 

engineering tasks. 
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6.1 Building Autonomous Services 
The first step in building the engineering service infrastructure is to wrap each software 

application into an autonomous service.  We create the service core of the autonomous service by 

defining the ServiceCore interface based on the software application.  The service core is then 

linked to an autonomous service wrapper (ASW).  Figure 19 shows an example of wrapping the 

Primavera P3 application software into an autonomous service that supports project 

scheduling.  The P3Service class implements the three methods in the ServiceCore interface.  

The setup() method and the terminate() method specify that no action is performed for the 

initialization and the termination of the autonomous service.  The execute() method defines the 

actions for the invocation of the autonomous service.  The method starts by fetching the input 

parameters from the input data container.  The first parameter specifies the service request, and 

the second parameter contains the input data for a schedule, based on which the Primavera P3™ 

application is utilized to conduct scheduling.  The result of the scheduling is encapsulated into a 

data element and put into the output data container.  The P3Service class is provided as an input 

to the constructor of the ASW class to connect the Primavera P3 application with the 

autonomous service wrapper.  After the autonomous service is built, it is registered with the 

autonomous service directory.  The registration entry specifies the name, the IP address, and the 

port number of the autonomous service.  Once registered, the autonomous service is ready to be 

used for composition. 

6.2 Constructing Mobile Classes 
Lightweight information processing routines are specified as mobile classes, whose executions 

are determined by megaservices during the runtime.  Figure 20 shows a sample mobile class that 

converts data from Process Specification Language (PSL) format [15] into Microsoft Excel 

format.  The psltoexcel class implements the MobileClass interface, whose definition is provided 

in the FICAS.zip class library.  The execute() function take the first argument for the mobile class 

as the input data in PSL, convert the data into Microsoft Excel format, and return the converted 

data as the output data element. 

In our engineering information service infrastructure, mobile classes are compiled and their 

byte codes are stored in a repository that is accessible from the web.  Megaservices locate a 

mobile class by attaching a base URL to the mobile class name.  For instance, if the base URL 
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for the mobile class repository is http://ficas.stanford.edu/mcrepo, then the byte codes for 

psltoexcel can be located at http://ficas.stanford.edu/mcrepo/psltoexcel.class. 

 

public class P3Service implements ServiceCore 
{ 
  public boolean setup(Container inc, Container outc, FlowId inf) { 
    return true; 
  } 
 
  public boolean terminate(Container inc, Container outc, FlowId inf) 
  { 
    return true; 
  } 
 
  public boolean execute(Container inc, Container outc, FlowId inf) { 
    /* Fetch the desired operation from the input data container */ 
    String operation = inc.fetch(inf, 0).getStringValue(); 
 
    if (operation.equals("reschedule")) { 
      /* Fetch the input schedule from the input data container */ 
      String input = inc.fetch(inf, 1).getStringValue(); 
 
      /* Invoke P3 to conduct rescheduling */ 
      String output = P3Schedule(input); 
 
      /* Put regenerated schedule on the output container */ 
      outc.put(inf, 0, new DataElement().setValue(output)); 
    } 
 
    return true; 
  } 
 
  private String P3Schedule(String schedule) { 
    /* Invokes the Primavera P3 software to process the input, 
       the result of the rescheduling is returned */ 
    ... 
  } 
 
  public static void main(String argv[]) throws Exception { 
    if (argv.length != 1) { 
      System.err.println("Usage: java P3Service port"); 
      return; 
 } 
 
    /* Creating the autonomous service */ 
      new ASM(Integer.parseInt(argv[0]), new P3Service()); 
  } 
} 

Figure 19: Example Autonomous Service that Utilizes Primavera P3 
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6.3 A Sample Megaservice 
Figure 21 shows an example megaservice that utilizes multiple autonomous services and 

mobile classes to perform rescheduling of project plans.  The megaservice is specified as a 

CLAS program.  Three autonomous services are utilized by the megaservice: (1) the PSLService 

that handles the access of the project models, (2) the P3Service that conducts the scheduling of a 

project plan, and (3) the ExcelService that displays the project plan.  In addition, the mobile class 

psltoexcel is used to convert data between the PSL format and the Microsoft Excel format.  The 

megaservice is compiled into a control sequence in FICAS, which is accessible on the web at 

http://ficas.stanford.edu/CLASParser/SchedulingDemo.xml.  The invocation of the megaservice 

causes the PSLService to fetch the project model, which is then rescheduled by the P3Service.  

The update schedule is stored back to the database using the PSLService and shown to the project 

personnel using the ExcelService. 

We now look at a sample scenario to demonstrate how the engineering service infrastructure 

helps facilitate personnel from different functional groups conduct collaborations.  We use the 

model of the Mortenson Ceiling project (part of the construction of the Disney Concert Hall) as 

the test case.  Figure 22 shows the view of the scheduling information using Primavera P3.  

The project data is stored in a relational database.  The data is shared between the relational data 

model and the proprietary Primavera data model using the PSLService.  The project schedule can 

also be reviewed using a handheld Palm device to directly access the relational database.  This 

capability is particularly important for the on-site personnel of the construction project.  Suppose 

that the duration for the activity 18T1-33201, for erecting a roof element, is changed from 1 day 

to 40 days, as shown in Figure 23.  The change can be made remotely using the Palm device.  

The update will trigger the SchedulingDemo megaservice, which updates the project schedule.  

As part of the SchedulingDemo megaservice, the project schedule is also automatically updated 

in Excel to notify the project personnel, as shown in Figure 24.  The updated schedule can also 

be retrieved from the relational database using MS Project.  Figure 25 shows that not only the 

activity 18T1-33201 is updated, but the dependent activities are also updated as well. 

The example infrastructure involves software applications that exchange large amount of data.  

The applications are conveniently wrapped into autonomous services.  Computational tasks are 

easily specified using mobile classes.  Engineering processes are systematically defined as 
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megaservices.  Our example demonstrates that FICAS model is suitable for the composition of 

large-scale autonomous services. 

 

public class psltoexcel implements MobileClass 
{ 
  public DataElement execute(Vector params) { 
    /* Fetch the input data, in PSL format */ 
    String p3 = 
      ((DataElement) params.firstElement()).getStringValue(); 
 
    /* Convert the input data to excel format */ 
    String excel = Convert_PSL_To_Excel(p3); 
 
    /* Return the converted data, in Excel format */ 
    return new DataElement().setValue(excel); 
  } 
 
  private String Convert_PSL_To_Excel(String p3) { 
    ... 
  } 
} 

Figure 20: Example Mobile Class that Converts Data from PSL to Microsoft Excel 

SchedulingDemo "http://ficas.stanford.edu/mcrepo" 
{ 
  psl_svc = SETUP("PSLService") 
  p3_svc = SETUP("P3Service") 
  excel_svc = SETUP("ExcelService") 
 
  /* Fetch project data from database */ 
  psl = psl_svc.INVOKE("to-psl", "%%") 
  original_schedule = psl.EXTRACT() 
 
  /* Reschedule project */ 
  p3 = p3_svc.INVOKE("reschedule", original_schedule) 
  updated_schedule = p3.EXTRACT() 
 
  /* Store the updated project data into database */ 
  oracle = psl_svc.INVOKE("to-oracle", updated_schedule) 
  status1 = oracle.EXTRACT() 
 
  /* Populate Excel Service with updated project data */ 
  excel_data = MCLASS("psltoexcel", updated_schedule) 
  excel = excel_svc.INVOKE("populate", excel_data) 
 
  psl_svc.TERMINATE() 
  p3_svc.TERMINATE() 
  excel_svc.TERMINATE() 
} 

Figure 21: Sample Megaservice Specified in CLAS 
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Figure 22: Reviewing the Project Schedule in Primavera P3 
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Figure 23: Revising the Project Schedule via a Palm Device 
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Figure 24: Reviewing the Updated Project Schedule in Microsoft Excel 

 
Figure 25: Reviewing the Updated Schedule in Microsoft Project 
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7 Summary 
This paper investigates the integration of services that communicate large volumes of data.  

Traditionally, a megaservice is the central hub for all the data traffic, while the autonomous 

services process the data supplied by the megaservice and return the processed results to the 

megaservice.  This centralized data-flow approach is shown to be inefficient.  To improve 

performance, the distributed data-flow approach is introduced to allow direct data exchange 

among the autonomous services.  The distribution of data also enables computations to be more 

effectively distributed. 

FICAS is a service composition infrastructure that utilizes the distributed data-flow approach.  

We define in FICAS a metamodel for autonomous services, based on which services can be 

accessed and composed in a homogeneous manner.  The metamodel leads to the ASAP protocol 

that separates the data communications from the control processing in autonomous services.  

Autonomous services conforming to the ASAP protocol can be coordinated by a centralized 

controller, while data communications are distributed among the services.  The conducted 

performance analysis shows that the distribution of data communications improves megaservice 

performance, especially when large volumes of data are exchanged among the services.  The 

distributed data-flow approach also eliminates the bottleneck on the communication links of the 

megaservice by taking advantage of the communication network among the services. 

We introduce active mediation and mobile classes that enable computations to be distributed 

among autonomous service.  A mobile class, which implements specific information processing 

functionality, can be dynamically loaded onto an autonomous service to process data local to the 

autonomous service.  We discuss how autonomous services support the execution of mobile 

classes with an active mediator.  By moving computations closer to data, we can significantly 

reduce the amount of data traffic for a megaservice.  The algorithm to determine the optimal 

location for the execution of mobile classes is discussed. 

An information service infrastructure is described at the end.  We use construction project 

scheduling software to illustrate the process by which services are built and integrated using 

FICAS.  Legacy engineering applications are tied together to form integrated work processes.  

FICAS, based on the distributed data-flow approach, is shown to be suited for integrating large-

scale engineering services. 
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