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Abstract 
 

This paper presents FICAS, a distributed data-flow 
infrastructure for composing software services into 
megaservices.  We discuss the basic features of FICAS that 
enable the distribution of data-flows within megaservices.  
An autonomous service access protocol, ASAP, is defined to 
enforce the explicit separation of control-flows from data-
flows of software services. We illustrate the procedure to 
construct and optimize megaservice execution plans that 
form distributed data-flows among collaborating services.  
The megaservice performance under FICAS is evaluated and 
compared with that under the centralized data-flow 
infrastructures. FICAS enhances the megaservice 
performance and is especially suitable for large-scale service 
composition. 

1. INTRODUCTION 

1.1. Background 

As computation and communication technologies evolve, 
we are seeing a change in how large software applications 
are built.  Rather than being constructed from ground up, 
applications are constructed by gluing together software 
services, each provides portion of functionalities.  The 
megaprogramming framework [3, 12] and more recently 
Computational Grids computing systems [2] echo the vision 
of software composition that links together autonomous 
services to form megaservices. Though distributed and 
heterogeneous, autonomous services can be utilized as if 
they were locally available to the megaservices.  

Service composition infrastructure is responsible for 
composing and executing megaservices.  There are three 
goals in building service composition infrastructure: (1) 
Ease of composition – effective and convenient specification 
of service compositions by the application programmers; (2) 
Scalability – integration and management of large number of 
autonomous service in the service composition 
infrastructure; and (3) Performance – high efficiency in the 
execution of megaservices. 

We build on prior systems such as CHAIMS (Compiling 
High-level Access Interfaces for Multi-site Software) [11] 
for autonomous service composition. The compositional 
language developed in CHAIMS supports well the goal for 

ease of composition.  We intend to improve the scalability 
and the performance of the megaservices in CHAIMS via 
the distribution of data-flows at runtime.  Given that many 
existing service composition infrastructures employ similar 
execution model as CHAIMS, our findings should also be 
broadly applicable to other systems. 

1.2. Overview 

A service composition runtime environment is 
conceptually viewed as a set of service nodes interconnected 
by a communication network.  Messages are passed between 
pairs of service nodes.  There are two types of messages: 
control messages and data messages, distinguished by their 
use at the recipients of the messages.  Control messages are 
mostly short messages that trigger state changes at the 
receiving services.  Data messages are mostly large data 
packets that are given to the receiving services for 
processing.  We use control-flow to describe a group of 
related and partially ordered control messages, and use data-
flow to describe a group of related and partially ordered data 
messages. 

Service composition runtime environments differ in how 
control-flows and data-flows are formed and managed.  
Figure 1(a) illustrates the control-flows and the data-flows 
exhibited by a megaservice in the CHAIMS runtime.  The 
megaservice control node serves as the hub for all the data 
communications.  We call this runtime model the centralized 
control-flow centralized data-flow model, or 1C1D model.  
The 1C1D model represents the simplest form of service 
composition runtime environment.  Examples of the 1C1D 
model include CORBA, DCOM, Java RMI, and SOAP [10]. 

There are performance and scalability issues associated 
with the 1C1D model, where the centralized megaservice 
control node becomes the communication bottleneck when 
large amount of data are exchanged among autonomous 
services.  The issues observed in the 1C1D model motivate 
us to distribute the data-flows for the executions of 
megaservices.  Figure 1(b) shows the control-flows and the 
data-flows exhibited in a distributed data-flow infrastructure.  
The megaservice has the ability to inform two or more 
autonomous services to establish a data-flow through which 
data can be directly communicated.  For instance, data are 
exchanged between autonomous services, from Service1 to 
Service2, and from Service2 to Service3, without going 



through the megaservice.  We call this runtime model the 
centralized control-flow distributed data-flow model, or 
1CnD model.  This paper explores the techniques that 
support the distribution of data-flows within the service 
composition infrastructure. 

 

Service
1

Service
3

Mega
Service

(a) (b)

Control-flow

Data-flow

Service
2

Service
1

Service
3

Mega
Service

Service
2

 
Figure 1: Centralized and Distributed Data-flows 

2. FICAS 

FICAS (Flow-based Infrastructure for Composing 
Autonomous Services) is a service composition 
infrastructure that  supports distributed data-flows.  FICAS 
consists of many interrelated components.  As shown in 
Figure 2, FICAS is divided into buildtime and runtime.  The 
buildtime components are responsible for composing 
megaservices and compiling megaservice specifications into 
control sequences that serve as inputs to the runtime 
environment.  The runtime components are responsible for 
the executions of the control sequences. 

Composition of autonomous services starts with the 
megaservice specification.  For FICAS, we have defined 
CLAS (Compositional Language for Autonomous Services) 
to provide the application programmers the necessary 
abstractions to describe the behaviors of their megaservices 
[8]. CLAS focuses on functional composition of autonomous 
services.  A CLAS program is essentially a sequential 
specification of the relationships among collaborating 
autonomous services.  It does not provide any primitives to 
schedule and coordinate control-flows and data-flows.  The 
CLAS program is translated by the buildtime component 
into a control sequence that can be executed by the runtime 
environment.  The control sequence is language and 
platform independent, providing a bridge between 
megaservice specification and megaservice execution. 

The FICAS runtime environment is responsible for 
executing the control sequences.  The megaservice 
controller is the entity that carries out the execution of a 
megaservice.  The controller first converts an input control 
sequence into an execution plan, and then follows the plan to 
coordinate control-flows among the respective autonomous 
services.  The controller serves as the centralized 
coordinator for all the control messages incurred by the 
megaservice.  Since the megaservice execution is carried out 

with parallel invocations of autonomous services, the 
controller is also responsible for synchronizing control-
flows and conducting performance optimization. 
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Figure 2: FICAS Architecture 

Building a scalable runtime environment requires a 
mechanism to easily incorporate new software applications.  
This is achieved by wrapping each software application into 
an autonomous service with a mediator.  The autonomous 
service mediator supports a common protocol that is 
developed to provide uniform access to the autonomous 
services.  Autonomous services can join (or quit) the service 
composition infrastructure by directly connecting to (or 
disconnecting from) the communication network.  The 
modularity of the autonomous services provides the 
infrastructure scalability and fault isolation. 

The autonomous service directory is created to index the 
autonomous service parameters.  It keeps track of available 
autonomous services within the infrastructure.  The directory 
is viewed globally as a centralized entity, while it may be 
implemented as a distributed structure.  The address of the 
directory is universally known to all the components within 
FICAS. 

3. AUTONOMOUS SERVICE 

The behavior of autonomous services is characterized by 
the autonomous service metamodel, based on which an 
access protocol is defined to provide uniform access to the 
autonomous services. 

3.1. Autonomous Service Metamodel 

Figure 3 illustrates the FICAS autonomous service 
metamodel, where an autonomous service consists of a 
service core, an input event queue, an output event queue, an 
input data container, and an output data container.  The most 
important characteristic of the autonomous service 
metamodel is the explicit separation of control-flows from 
data-flows.  For data-flow, the autonomous service primarily 
concerns about performing services on the data elements.  
For control-flow, the autonomous service primarily concerns 
about the state management of an autonomous service. 



The service core represents the core functionality of the 
autonomous service.  It is responsible for performing 
computation on the input data elements and generating the 
result data elements.  We can usually wrap an existing 
software application into a service core. 

Events are exchanged between services to control the 
flow of autonomous service executions.  Asynchronicity of 
autonomous service execution is achieved by using queues 
for event processing.  Incoming events are placed at the tail 
of the input event queue, and outgoing events are placed at 
the tail of the output event queue.  The default queuing 
system used in FICAS is the FIFO queue, where events are 
processed in the order by which they are received. 
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Figure 3: FICAS Autonomous Service Metamodel 

The data containers are groupings of input and output 
data elements for the autonomous service.  The input data 
elements are fetched from the input data container and 
processed by the service core.  The generated data elements 
are put into the output data container.  The data containers 
enable autonomous services to look up generated data 
elements.  The existence of data containers is essential for 
the distribution of data-flows.  Under the 1CnD model, the 
data-flows can be formed between data containers of two 
autonomous services, while control-flows continue to go 
through the megaservice controller. 

3.2. Protocol Support for Data-flow Distribution 

Given the autonomous service metamodel, we define an 
autonomous service access protocol, ASAP, by which the 
autonomous services are accessed.  The protocol removes 
the barriers imposed by different megaservice programming 
languages and distribution protocols.   

ASAP manages control-flows and data-flows through a 
set of events.  These events exist in the form of XML based 
messages that are used to interact with autonomous services.  
The hierarchical structure of XML provides a convenient 
method of defining the composition of an event.  ASAP is 
asynchronous and non-blocking.  The sender of an event 
may not wait for the response of the event.  Instead, the 
sender can continue to execute other activities that are not 
dependent on the response of the event. 

For simplicity, we represent the ASAP events using their 
abbreviated functional representations instead of their full 
XML representations.  The key ASAP events that related to 
data-flow scheduling are listed below.  More complete 
information on the ASAP protocol is given in [8]. 

• SETUP (Service) 
The SETUP event is used to initialize an autonomous 

service.  The autonomous service is informed to prepare 
necessary system resources for the actual invocations. 

• TERMINATE (Service) 
The TERMINATE event unconditionally terminates an 

autonomous service.  Garbage collection is conducted 
during the termination process, when system resources 
involved with an autonomous service instance are released. 

• INVOKE (Service) 
The INVOKE event is used to request an autonomous 

service.  The service core of the autonomous service is 
started upon the processing of the INVOKE event.  After the 
completion of the service invocation, output data elements 
are generated by the service core and are placed onto the 
output data container. 

• MAPDATA (DataElement, SourceService, 
DestinationService) 

The MAPDATA event is used to establish a data-flow 
between two data containers.  The event enables the 
distribution of data-flows within the service composition 
infrastructure.  The sender of the MAPDATA event does not 
need to be the recipient of the data element.  The events are 
usually sent from the megaservice controller that coordinates 
the autonomous service invocations, and the data elements 
are exchanged directly among the data containers of the 
autonomous services. 

4. DISTRIBUTED DATA-FLOW SCHEDULING 

FICAS assigns the megaservice controller the sole 
responsibility in coordinating control-flows for a 
megaservice.  The controller is responsible for issuing the 
ASAP events and monitoring their results.  An execution 
plan is generated to determine the choice, timing and 
sequence of ASAP events. 

There are three steps in generating an execution plan.  
First, the megaservice program is analyzed to discover data 
dependencies among the invocations of autonomous 
services.  Then, a data dependency graph is constructed to 
identify independent data-flows.  Finally, based on the data 
dependency graph, the megaservice controller can build an 
execution plan for the megaservice. 

The megaservice program segment in Figure 4 shows 
implicit data dependencies between autonomous services.  
For instance, invocation of Service3 takes A and B as input, 
which are the outputs of the invocations of Service1 and 
Service2, respectively.  Hence, Service3 is data dependent 
on Service1 and Service2. 



 

Invocation1 = Service1.INVOKE()
Invocation2 = Service2.INVOKE()

A = Invocation1.EXTRACT();
B = Invocation2.EXTRACT();

Invocation3 = Service3.INVOKE(A,
B)

C = Invocation3.EXTRACT();

Invocation4 = Service4.INVOKE(C)
D = Invocation4.EXTRACT();

Figure 4: Sample Megaservice Program Segment 

The data dependencies are mapped into a data 
dependency graph (DDG) as shown in Figure 5.  The nodes 
represent autonomous service invocations, and the directed 
arcs represent data dependencies between autonomous 
service invocations.  Each directed arc points to the 
dependent autonomous service and is tagged with the data 
elements exchanged between the pair of autonomous 
services.  For example, the arc between Invocation1 and 
Invocation3 represents that Invocation3 is dependent on 
Invocation1, with A being the data element passed from 
Invocation1 to Invocation3. 
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Figure 5: Sample DDG 

The DDG can be further converted into a megaservice 
execution plan in the form of an event dependency graph 
(EDG).  The megaservice controller uses the EDG to 
coordinate the execution of autonomous services.  In an 
EDG, the nodes represent the ASAP events managed by the 
megaservice controller, and the arcs represent the 
dependency between a pair of related ASAP events.  
Invocation nodes in the DDG can be directly mapped into 
the INVOKE event nodes in the EDG.  The mapping of the 
directed arcs in the DDG is more complex.  Different 
mapping schemes may produce different data-flow models 
for the megaservice. 

Figure 6 shows the mapping scheme where data 
communications are directed between dependent 
autonomous services, resulting in the 1CnD execution 
model.  The megaservice controller functions merely as a 
coordinator for the ASAP events that control the data 

communication activities.  Each directed arc in the DDG is 
mapped into a MAPDATA event node with arcs connecting 
the predecessor and successor event nodes.  For instance, the 
arc tagged with A in the DDG (shown in Figure 5) is 
mapped into the MAPDATA(A, Service1, Service3) event 
node in the EDG (shown in Figure 6). 
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Figure 6: EDG with Distributed Data-flows 

5. PERFORMANCE ANALYSIS 

The distribution of data-flows improves performances 
and scalability by avoiding the data communication 
bottleneck at the megaservice controller.  In this section, we 
study the performance characteristics of megaservices under 
different system settings. 

5.1. FICAS vs. SOAP 

We study the performance of megaservices in an example 
engineering service environment as shown in Figure 7.  The 
megaservice is specified to retrieve a specific project model 
using the ModelRetriever service, then conduct scheduling 
on the model using the Scheduler service, and finally notify 
the related parties about the change via the ChangeManager 
service.   

Model
Retriever

Switch

Mega
Service

 MegaService  {
    model = ModelRetriever(name)
    new_model = Scheduler(model)
    ChangeManager(new_model)
 }

Scheduler

Change
Manager

 
Figure 7: A Megaservice for Engineering Services 

The autonomous services run on distributed servers that 
are connected via a switch with 10mbps bandwidth on each 
port.  The megaservice runs on a client machine that is 



connected to the servers either directly via the switch or via 
an 802.11 wireless access point.  The two network settings 
facilitate our comparison of megaservice performances. 

We implement the megaservice with two different 
integration models: (1) SOAP [10] is used as the reference 
platform for the 1C1D model, where each service invocation 
is a remote procedure call initiated from the megaservice; 
and (2) FICAS is used as the reference platform for 1CnD 
model, where data-flows are distributed. 

The response times of megaservices are measured with 
different settings on the size of the project model.  Since the 
computational elapsed times contributed to the autonomous 
service executions are identical under both integration 
models, we compare only the communication elapsed time, 
which is calculated as the megaservice response time minus 
the sum of processing elapsed times of autonomous services.  
Figure 8 shows the megaservice performances measured 
with various network settings and integration models. 
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Figure 8: Performance of the Megaservice 

A couple of observations can be made that are consistent 
with our mathematical analysis conducted in [7].  First, the 
response times under FICAS are better than their 
counterparts under SOAP for all load settings.  The larger 
the project model size, the more significant the performance 
improvement the FICAS model has over the SOAP model.  
Secondly, the response time increases linearly with respect 
to the volume of the data-flows.  The response times under 
SOAP increase at much faster rates than the response times 
under FICAS.  The rate of increase is especially significant 
in the wireless connection scenario, when data 
communications between client machines and servers 
become a bottleneck in SOAP.  On the other hand, we 
observe small increase in response time in FICAS with large 
model sizes.  The FICAS (1CnD) model alleviates the 
bottleneck by distributing network traffic among the 
autonomous services. 

5.2. Performance Impact of Control-flows 

When the control message size is comparable to the data 
message size, the impact of control-flows on the 
performance of megaservices needs to be accounted for. 

Under the 1C1D model, a SOAP service invocation 
consists of two messages: (1) an invocation request message 
sent from the megaservice controller to the autonomous 
service, and (2) a message returned from the autonomous 
service containing the result of the service invocation.  
Under the 1CnD model, FICAS breaks up a service 
invocation into multiple stages, introducing a sequence of 
messages: (1) an invocation request message sent from the 
megaservice controller to the autonomous service, (2) an 
acknowledgement message sent back to notify the 
completion of the service, (3) a MAPDATA message sent 
from the megaservice to notice the autonomous service 
where the result data should be forwarded, (4) a data 
message forwarding the data content between two 
autonomous services, and (5) an acknowledgement message 
notifying the megaservice controller the completion of the 
MAPDATA task. 

We model the cost of messages as a linear function to 
their sizes.  Each message has a fixed setup cost of λ0 (e.g. 
the cost of initialization, buffering, etc.).  In addition, a 
control message has a payload of 1, and a data message has 
a payload of λd.  Hence, each control message incurs a cost 
of (λ0+1), and each data message incurs a cost of (λ0+λd). 

The aggregated communication cost for a service 
invocation can be calculated by adding up the costs of all 
messages.  Under the 1C1D model, the aggregated cost is 
(2λ0+1+2λd).  Under the 1CnD model, the aggregated cost is 
(5λ0+4+λd).  Figure 9 illustrates the costs under both models 
with different λ0 and λd settings. 

 
Figure 9: Communication Costs for Service Invocations 

We observe that higher message setup cost λ0 attributes 
to higher communication cost for service invocations.  The 
performance in the 1CnD model is more adversely affected 
than in the 1C1D model.  Since the 1CnD model incurs 
more messages for each service invocation, its performance 
is more sensitive to the message setup cost.  Furthermore 
with a small data payload, the 1C1D model may perform 
better that the 1CnD model.  However, the communication 
cost for 1C1D model scales up much faster than for the 
1CnD model.  The 1CnD model outperforms the 1C1D 



model with a larger data payload.  The 1CnD model 
becomes a preferred environment for the composition of 
autonomous services when exchanged data are much larger 
than the control messages. 

6. RELATED WORK 

Dataflow network based systems [6, 9] are similar to 
FICAS in how data-flows are distributed.  However, there 
are several important differences: (1) Computational nodes 
in dataflow networks usually handle fine-grained tasks and 
require homogeneity in the underlying hardware platform, 
whereas autonomous services in FICAS are coarser-grained 
and heterogeneous in nature.  (2) The dataflow networks use 
the flow of information as the only control mechanism.  
State transitions within a node are caused by arrivals of its 
input data.  FICAS adopts an event driven paradigm where 
control logic is centrally specified and executed, greatly 
simplifying the programming and execution model.  (3) The 
dataflow network is established at initialization time, prior to 
the program execution.  This lack of ability to dynamically 
establish links between computational nodes limits the use 
of dataflow networks in realistic applications. 

MANIFOLD [1] introduces event driven control 
paradigm to complement the dataflow like control 
mechanism.  Events and the logic to handle the events are 
explicitly specified in MANIFOLD programs.  Facilities are 
provided to explicitly manage synchronization, proper 
ordering, and timing of activities involved in a program.  
Compared to MANIFOLD, FICAS has a much simpler 
programming model that is intended for application 
specialist with minimum programming experience.  
Furthermore, MANIFOLD programs explicitly specify data 
communication links between concurrent processes, whereas 
megaservices in FICAS rely on the runtime system to 
perform optimization and schedule dynamic data-flows 
between autonomous services. 

In our research, we use the CHAIMS system as a point of 
departure.  There are other compositional tools and 
frameworks that we could have chosen, such as Globus [4] 
or Ninja Paths [5].  The purely compositional nature of 
CHAIMS allowed us to focus wholly on data-flow 
distribution without the distraction of the non-compositional 
(e.g., brokering, security) aspects of alternative frameworks. 

7. CONCLUSIONS 

This paper presents FICAS, a service composition 
infrastructure with distributed data-flows.  Autonomous 
services are built to support the service access protocol 
ASAP, which enforces the explicit separation of data-flows 
from control flows.  ASAP serves as the basis for building 
the high-performance, scalable, and distributed data-flow 
service composition runtime environment. 

We illustrate the construction of the megaservice 
execution plan that takes advantage of the distributed data-
flows.  The performance of megaservices is analyzed and 
compared between the 1C1D model and the 1CnD model.  
We conclude that the distribution of data-flow in FICAS 
enhances megaservice performance and thus is especially 
suitable for large-scale autonomous service composition. 
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