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Motivation and Objectives
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Distributed Service ModelDistributed Service Model
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Research ObjectivesResearch Objectives

• Demonstrate the efficiency of the distributed data-flow model
• Define a framework for constructing software services
• Provide tools for composing software services
• Investigate techniques for performance optimization
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Theoretical Analysis
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Service Integration ModelsService Integration Models
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System ModelingSystem Modeling
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Aggregated CostAggregated Cost

Aggregated cost  =  Amount of system resource consumed
by a megaservice

• Centralized data-flow model incurs more data traffic
• Distributed data-flow model incurs more message overheads
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Messaging Cost for a Service InvocationMessaging Cost for a Service Invocation
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Response TimeResponse Time

Response time  =  Time consumed to execute a megaservice

• Distributed data-flow model performs better if
CMki ≥ CM0i for all k ≠ 0 and i ≠ 0
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Representation
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Computing Networks and Integration ModelsComputing Networks and Integration Models
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Summary of FindingsSummary of Findings

Distributed data-flow model is suited for coarse grain 
service integration

Performance optimization for megaservice
• Establish direct data exchanges among services
• Distribute computations to where data is located

System architecture
• Improve the communication network among the services

for distributed data-flow model
• Improve the access links of the megaservices for

centralized data-flow model
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FICAS
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FICASFICAS

Flow-based Infrastructure for Composing Autonomous Services

• Autonomous Services
– Wrap legacy software applications
– Provide an access protocol

• Buildtime Environment
– Specify composition logic

• Runtime Environment
– Coordinate service execution
– Conduct performance optimization
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Autonomous Services
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Autonomous Service MetamodelAutonomous Service Metamodel
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• Provide service functionalities
• Wrap software applications

Two Data Containers
• Handle I/O data
• Enable distributed data-flows

Two Event Queues
• Handle inqueries and issue requests
• Support asynchronous invocations
• Form control-flows

Megaservice Controller
• Coordinate megaservice execution
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Autonomous Service Access ProtocolAutonomous Service Access Protocol

ASAP
• Light-weight, asynchronous and event-based
• Define how autonomous services respond to events 
• Use XML as transport medium for both control and data

Events
• SETUP: Initialize a service
• TERMINATE: Terminate a service
• INVOKE: Start execution of a service
• MAPDATA: Establish a data-flow between two services
• CONTROLFILE: Execute a megaservice
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Autonomous Service WrapperAutonomous Service Wrapper

public interface ServiceCore
{

public boolean setup (
Container inc,
Container outc,
FlowId fid );

public boolean execute (
Container inc,
Container outc,
FlowId fid );

public boolean terminate (
Container inc, 
Container outc,
FlowId fid );

}

Autonomous
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Wrapper

initialize invoke terminate

Encapsulated
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Application
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Buildtime Environment
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Architecture of Buildtime EnvironmentArchitecture of Buildtime Environment
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Composition
• Invocation of services
• Dependencies among services
• Process flow of services

Computation
• Processing of service data
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CLASCLAS

Compositional Language for Autonomous Services
• High-level and declarative
• Based on CLAM developed in CHAIMS
• Simple (for domain experts, NOT technical experts)
• Separation between composition and computation

Features
• Decomposition of a CALL statement into 4 primitives

– SETUP, INVOKE, EXTRACT, TERMINATE

• Control primitives
– IF … THEN … ELSE
– WHILE
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Sample CLAS ProgramSample CLAS Program

SchedulingDemo http://ficas.stanford.edu/Megaprogram
{

/* Setup Services */
psl_svc = SETUP("SIPsl")
p3_svc = SETUP("SIP3")
notification_svc = SETUP("SINotification")

/* Invoke services */
psl = psl_svc.INVOKE("to-psl", "CEIL")
ceil = psl.EXTRACT()
p3 = p3_svc.INVOKE("reschedule", ceil)
ceil2 = p3.EXTRACT()
oracle = psl_svc.INVOKE("to-oracle", ceil2)
status = oracle.EXTRACT()
IF (status == “SUCCESS”)
THEN {

notif = notification_svc.INVOKE("171.64.55.32", 8250, status)
}
…

}
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Mobile ClassMobile Class

Mobile Class
• Java-based and reusable
• Perform complex computations

Usage of Mobile Class
• Arithmetic operation
• Relational operation
• Data aggregation and 

abstraction
• Type conversion

/* A mobile class for type conversion */

public class int2float implements MobileClass

{

public DataElement execute(Vector params) {

DataElement arg =

(DataElement) params.firstElement();

int val = arg.getIntValue();

return new DataElement().setValue(

new Double(val).doubleValue());

}

}

/* Using mobile class in a CLAS program */

floatnum = MCLASS("int2float", num)
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Mobile Class for Type MediationMobile Class for Type Mediation
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Runtime Environment
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Architecture of Runtime EnvironmentArchitecture of Runtime Environment
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Megaservice ControllerMegaservice Controller

ASAP Event Receiver

Outgoing Event Pool

FICAS
Control Sequence

Control Manager

Flow
Dependency

Table

Variable
Cache

Megaservice Controller

Autonomous Service Wrapper

From
Autonomous

Services

Input Event Q
ueue

O
utput Event Q

ueue

Input Data Container

Output Data Container

Service
Core

Active Mediator

To
Autonomous

Services

FICAS Control Sequence

...

<INVOKE>
<INVOCATIONHANDLE>Invocation1</INVOCATIONHANDLE>
<SERVICEHANDLE>Service1</SERVICEHANDLE>

</INVOKE>
<INVOKE>
<INVOCATIONHANDLE>Invocation2</INVOCATIONHANDLE>
<SERVICEHANDLE>Service2</SERVICEHANDLE>

</INVOKE>
<EXTRACT>
<VARIABLE>A</VARIABLE>
<INVOCATIONHANDLE>Invocation1</INVOCATIONHANDLE>

</EXTRACT>
<EXTRACT>
<VARIABLE>B</VARIABLE>
<INVOCATIONHANDLE>Invocation2</INVOCATIONHANDLE>

</EXTRACT>
<INVOKE>
<INVOCATIONHANDLE>Invocation3</INVOCATIONHANDLE>
<SERVICEHANDLE>Service3</SERVICEHANDLE>
<VALUELIST>
<VARIABLE>A</VARIABLE>
<VARIABLE>B</VARIABLE>

</VALUELIST>
</INVOKE>

...
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Extract Data Dependencies from MegaserviceExtract Data Dependencies from Megaservice
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Invocation1 = Service1.INVOKE();

Invocation2 = Service2.INVOKE();

A = Invocation1.EXTRACT();

B = Invocation2.EXTRACT();

Invocation3 = Service3.INVOKE(A, B);

C = Invocation3.EXTRACT();

Invocation4 = Service4.INVOKE(C)

D = Invocation4.EXTRACT();



31

Event Dependency Graph (1C1D)Event Dependency Graph (1C1D)
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Event Dependency Graph (1CnD)Event Dependency Graph (1CnD)
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Performance Evaluation Performance Evaluation –– SOAP vs. FICASSOAP vs. FICAS

SwitchMege
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   (LAN)          in = 10 mbps;   out = 10 mbps
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 {
     a = S1(size)
     S2(a)
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SingleService
 {
     a = S1(size)
 }
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Performance in LAN SettingPerformance in LAN Setting
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Performance in Wireless SettingPerformance in Wireless Setting
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Active MediatorActive Mediator
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Example Megaservice Utilizing a Mobile ClassExample Megaservice Utilizing a Mobile Class
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     Invocation1 = S1.INVOKE(size)
     A = Invocation1.EXTRACT()

     B = MCLASS ("FILTER", A)

     Invocation2 = S2.INVOKE(B)
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Placement of Mobile ClassPlacement of Mobile Class

S1

Mega
service

S2

S1

Mega
service

S2

mobile class
FILTER S1

Mega
service

S2mobile class
FILTER

(c) Using an autonomous service(a) Placing FILTER at S1 (b) Placing FILTER at S2

1

3

1

2

1

2

Data-flowService
Invocation

A

B

B A FILTER2



39

Performance Comparison for Mobile ClassPerformance Comparison for Mobile Class
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Infrastructure for
Engineering Services
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An Integrated Service EnvironmentAn Integrated Service Environment
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Data Mediation Among the ToolsData Mediation Among the Tools
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Related work by Jim Cheng at Engineering Informatics Group, Stanford University
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Review Design in 4D ViewerReview Design in 4D Viewer
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Review Schedule in PrimaveraReview Schedule in Primavera
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Review Schedule in Microsoft ProjectReview Schedule in Microsoft Project
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View Schedule on SiteView Schedule on Site

http://med...!! History
SCHEDULE

Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001 
1.….………………….. Update

18T1-33241
02-01-2001 

http://med...!!                 History
SCHEDULE

Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001 
1..…………………….. Update

18T1-33241
02-01-2001 
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Modifying Schedule OnModifying Schedule On--sitesite

http://med...!!                 History
SCHEDULE

Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001 
40…………………….. Update

18T1-33241
02-01-2001 

http://med...!! History
SCHEDULE

Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001 
40…………………….. Update

18T1-33241
02-01-2001 

Change duration of activity
18T1-33201 (“Erect Roof Element 1”)
From 1 day to 40 days
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Invoke Rescheduling Megaservice Invoke Rescheduling Megaservice 

Network

Rescheduling
MegaService

 RescheduleService  {
    model = PSLModel(modelname, 'oracle-to-psl')
    new_model = P3Scheduling(model, 'reschedule')
    PSLModel(new_model, 'psl-to-oracle')
    excel_data = MCLASS("psltoexcel", new_model)
    ExcelService(excel_data, 'show')
    ChangeNotify(modelname)
 }

PSL
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Model
Service

P3
Scheduling

Service

Change
Notify

Service

Excel
Service
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Review Modified Schedule in ExcelReview Modified Schedule in Excel

Actual 
Change

Affected activity 18T1-33201
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Review Changed Activities in BrowserReview Changed Activities in Browser

Actual change

Affected Activities
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Review Modified Schedule in PrimaveraReview Modified Schedule in Primavera

Updated activity
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Review Modified Design in 4D ViewerReview Modified Design in 4D Viewer

Roof construction
is delayed
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Review Modified Schedule in ProjectReview Modified Schedule in Project

Actual change

Affected activities
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Summary
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ContributionsContributions

• Data-flow distribution improves megaservice performance

• Distributed data-flow model is supported in service composition

– Separate data from controls in services

– Separate computation from composition

– Establish direct data communications among services

• Distribution of computations facilities service composition

– Mobile class allows performance optimization

– Active mediation enhances the flexibility of services

• FICAS provides comprehensive support for service composition
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