
Stanford University Ph.D. Oral Examination
Department of Electrical Engineering

A Distributed Data Flow Model for
Composing Software Services

David W. Liu
May 9, 2003

2

Presentation OutlinePresentation Outline

• Motivation and Objectives

• Theoretical Analysis

• FICAS Service Composition Infrastructure

• Summary

3

Motivation and Objectives

4

Paradigm Shift in Software EngineeringParadigm Shift in Software Engineering

Coding

Integration

1970 1990 2010

Coding

Integration

1970 1990 2010

Courtesy of Professor Gio Wiederhold

5

Distributed Service ModelDistributed Service Model

Autonomous
Service

Access
Protocol

Operating
System

Host

A

A

A

Autonomous
Service

Access
Protocol

Operating
System

Host

N

N

N

Communication Network

Megaservice:
Conceptual Composition of

Autonomous Services

Autonomous
Service

Access
Protocol

Operating
System

Host

B

B

B

......

6

Research ObjectivesResearch Objectives

• Demonstrate the efficiency of the distributed data-flow model
• Define a framework for constructing software services
• Provide tools for composing software services
• Investigate techniques for performance optimization

Service
1

Service
3

Mega
Service

(a) Centralized Data-flow Model (b) Distributed Data-flow Model

Control-flow

Data-flow

Service
2

Service
1

Service
3

Mega
Service

Service
2

7

Theoretical Analysis

8

Service Integration ModelsService Integration Models

M

S1

S2 S3

S4

M

S1

S2 S3

S4

M

S1

S2 S3

S4

M

S1

S2 S3

S4

(a) Centralized Control-flow and
Centralized Data-flow Model (1C1D)

Control-flows

Data-flows

Megaservice
M

Autonomous
Services

S

(b) Centralized Control-flow and
Distributed Data-flow Model (1CnD)

(c) Distributed Control-flow and
Centralized Data-flow Model (nC1D)

(d) Distributed Control-flow and
Distributed Data-flow Model (nCnD)

9

System ModelingSystem Modeling

CP2 CPn

CPn

CP1

CP0
CM0n/CMn0

S1: f1 (SI1, SP1, SO1)

CM01
/C

M10

S2: f2 (SI2, SP2, SO2) Sn: fn (SIn, SPn, SOn)

Sn: fn (SIn, SPn, SOn)M: (_, MP, _)

CP: processing power
CM: communication bandwidth
λ: message header size
δ: data distribution coefficient

f: invocation frequency
SI: input data size
SP: processing load
SO: output data size

iijij SOdd=δ

10

Aggregated CostAggregated Cost

Aggregated cost = Amount of system resource consumed
by a megaservice

• Centralized data-flow model incurs more data traffic
• Distributed data-flow model incurs more message overheads

()∑
=

+×=−
n

i
messagedatadc iDiDMCOSTMCOST

1
)()()()(β

where

×−−××=

−××=

∑
=

n

j
jimessage

iiidata

jimfimfiD

SOfiD

1

0

),())0,(1()(

)1()(

λ

δ

≠
=

=
01
00

),(
ij

ij

if
if

jim
δ
δ

Output data from service

Portion returned to megaservice

Weight of communication cost

Data messages among services

Data messages returned
to megaservice Data message overhead

11

Messaging Cost for a Service InvocationMessaging Cost for a Service Invocation

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8λ d/λ c

In
vo

ca
tio

n
M

es
sa

gi
ng

 C
os

t (
λ

c)

1C1D 1CnD

1CnD performs better, when
data messages are much larger

than control messages

(Data Message Size / Control Message Size)

12

Response TimeResponse Time

Response time = Time consumed to execute a megaservice

• Distributed data-flow model performs better if
CMki ≥ CM0i for all k ≠ 0 and i ≠ 0

MP_c SI3_d SP3_d SO3_d

MP_f

SI2_b SP2_b SO2_b

SI1_a SP1_a SO1_a

SI4_e SP4_e SO4_e

Access links of megaservice

Communication network
among services

Time Marked Graph
Representation
of a Megaservice

13

Computing Networks and Integration ModelsComputing Networks and Integration Models

Service
1

Service
3

Mega
Service

(a) Internet and Corporate Intranet
(Fit for distributed data-flow model)

Service
2

Communication Backbone

Service
1

Service
3

Mega
Service

(b) Dedicated Service Environment
(Fit for centralized data-flow model)

Service
2

14

Summary of FindingsSummary of Findings

Distributed data-flow model is suited for coarse grain
service integration

Performance optimization for megaservice
• Establish direct data exchanges among services
• Distribute computations to where data is located

System architecture
• Improve the communication network among the services

for distributed data-flow model
• Improve the access links of the megaservices for

centralized data-flow model

15

FICAS

16

FICASFICAS

Flow-based Infrastructure for Composing Autonomous Services

• Autonomous Services
– Wrap legacy software applications
– Provide an access protocol

• Buildtime Environment
– Specify composition logic

• Runtime Environment
– Coordinate service execution
– Conduct performance optimization

17

Autonomous Services

18

Autonomous Service MetamodelAutonomous Service Metamodel

Data-flow

Control-flow

Input Data Container

Output Data Container

Input Event Q
ueue

O
utput Event Q

ueue

Service Core
(ASAP Support)

M
egaservice C

ontroller

Encapsulated
Software

Application

Autonomous
Service
Wrapper

Service Core
• Provide service functionalities
• Wrap software applications

Two Data Containers
• Handle I/O data
• Enable distributed data-flows

Two Event Queues
• Handle inqueries and issue requests
• Support asynchronous invocations
• Form control-flows

Megaservice Controller
• Coordinate megaservice execution

19

Autonomous Service Access ProtocolAutonomous Service Access Protocol

ASAP
• Light-weight, asynchronous and event-based
• Define how autonomous services respond to events
• Use XML as transport medium for both control and data

Events
• SETUP: Initialize a service
• TERMINATE: Terminate a service
• INVOKE: Start execution of a service
• MAPDATA: Establish a data-flow between two services
• CONTROLFILE: Execute a megaservice

20

Autonomous Service WrapperAutonomous Service Wrapper

public interface ServiceCore
{

public boolean setup (
Container inc,
Container outc,
FlowId fid);

public boolean execute (
Container inc,
Container outc,
FlowId fid);

public boolean terminate (
Container inc,
Container outc,
FlowId fid);

}

Autonomous
Service
Wrapper

initialize invoke terminate

Encapsulated
Software

Application

21

Buildtime Environment

22

Architecture of Buildtime EnvironmentArchitecture of Buildtime Environment

Executable

Compilation
CLAS

Compiler

FICAS
Control

Sequences

Java
Compiler

CLAS
Programs

Mobile
Class

Source
Codes

Mobile
Classes

Source

Compositional
Specification

Computational
Specification

Composition
• Invocation of services
• Dependencies among services
• Process flow of services

Computation
• Processing of service data

23

CLASCLAS

Compositional Language for Autonomous Services
• High-level and declarative
• Based on CLAM developed in CHAIMS
• Simple (for domain experts, NOT technical experts)
• Separation between composition and computation

Features
• Decomposition of a CALL statement into 4 primitives

– SETUP, INVOKE, EXTRACT, TERMINATE

• Control primitives
– IF … THEN … ELSE
– WHILE

24

Sample CLAS ProgramSample CLAS Program

SchedulingDemo http://ficas.stanford.edu/Megaprogram
{

/* Setup Services */
psl_svc = SETUP("SIPsl")
p3_svc = SETUP("SIP3")
notification_svc = SETUP("SINotification")

/* Invoke services */
psl = psl_svc.INVOKE("to-psl", "CEIL")
ceil = psl.EXTRACT()
p3 = p3_svc.INVOKE("reschedule", ceil)
ceil2 = p3.EXTRACT()
oracle = psl_svc.INVOKE("to-oracle", ceil2)
status = oracle.EXTRACT()
IF (status == “SUCCESS”)
THEN {

notif = notification_svc.INVOKE("171.64.55.32", 8250, status)
}
…

}

25

Mobile ClassMobile Class

Mobile Class
• Java-based and reusable
• Perform complex computations

Usage of Mobile Class
• Arithmetic operation
• Relational operation
• Data aggregation and

abstraction
• Type conversion

/* A mobile class for type conversion */

public class int2float implements MobileClass

{

public DataElement execute(Vector params) {

DataElement arg =

(DataElement) params.firstElement();

int val = arg.getIntValue();

return new DataElement().setValue(

new Double(val).doubleValue());

}

}

/* Using mobile class in a CLAS program */

floatnum = MCLASS("int2float", num)

26

Mobile Class for Type MediationMobile Class for Type Mediation

M

S1

(a) Type Brokers

T1

T2T1_T2 T2_T3

S2

T3

M

S1

(b) Type Mediation Mobile Classes

T3 S2

mobile class
T1_T2

mobile class
T2_T3

Control-flow

Data-flow

27

Runtime Environment

28

Architecture of Runtime EnvironmentArchitecture of Runtime Environment

Megaservice Controller

Service
Core

Megaservice Controller

Service
Core

Communication
Network

Autonomous
Service

Directory

FICAS
Control

Sequence

Mobile
Classes

Megaservice Controller

Service
Core

Autonomous Service Wrapper

From
 FICAS

 Buildtime

29

Megaservice ControllerMegaservice Controller

ASAP Event Receiver

Outgoing Event Pool

FICAS
Control Sequence

Control Manager

Flow
Dependency

Table

Variable
Cache

Megaservice Controller

Autonomous Service Wrapper

From
Autonomous

Services

Input Event Q
ueue

O
utput Event Q

ueue

Input Data Container

Output Data Container

Service
Core

Active Mediator

To
Autonomous

Services

FICAS Control Sequence

...

<INVOKE>
<INVOCATIONHANDLE>Invocation1</INVOCATIONHANDLE>
<SERVICEHANDLE>Service1</SERVICEHANDLE>

</INVOKE>
<INVOKE>
<INVOCATIONHANDLE>Invocation2</INVOCATIONHANDLE>
<SERVICEHANDLE>Service2</SERVICEHANDLE>

</INVOKE>
<EXTRACT>
<VARIABLE>A</VARIABLE>
<INVOCATIONHANDLE>Invocation1</INVOCATIONHANDLE>

</EXTRACT>
<EXTRACT>
<VARIABLE>B</VARIABLE>
<INVOCATIONHANDLE>Invocation2</INVOCATIONHANDLE>

</EXTRACT>
<INVOKE>
<INVOCATIONHANDLE>Invocation3</INVOCATIONHANDLE>
<SERVICEHANDLE>Service3</SERVICEHANDLE>
<VALUELIST>
<VARIABLE>A</VARIABLE>
<VARIABLE>B</VARIABLE>

</VALUELIST>
</INVOKE>

...

30

Extract Data Dependencies from MegaserviceExtract Data Dependencies from Megaservice

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

Invocation1 = Service1.INVOKE();

Invocation2 = Service2.INVOKE();

A = Invocation1.EXTRACT();

B = Invocation2.EXTRACT();

Invocation3 = Service3.INVOKE(A, B);

C = Invocation3.EXTRACT();

Invocation4 = Service4.INVOKE(C)

D = Invocation4.EXTRACT();

31

Event Dependency Graph (1C1D)Event Dependency Graph (1C1D)

INVOKE
(Service1)

INVOKE
(Service2)

MAPDATA
 (A, Service1,
Megaservice)

INVOKE
(Service3)

MAPDATA
(C, Service3,
Megaservice)

MAPDATA
(B, Service2,
Megaservice)

INVOKE
(Service4)

MAPDATA
(D, Service4,
Megaservice)

MAPDATA
 (A, Megaservice,

Service3)

MAPDATA
 (B, Megaservice,

Service3)

MAPDATA
(C, Megaservice,

Service4)

Service 1

Service 2

Service 3

MegaService

Service 4

32

Event Dependency Graph (1CnD)Event Dependency Graph (1CnD)

INVOKE
(Service1)

INVOKE
(Service2)

MAPDATA
 (A, Service1,

Service3)

INVOKE
(Service3)

MAPDATA
(C, Service3,

Service4)

MAPDATA
(B, Service2,

Service3)

INVOKE
(Service4)

MAPDATA
(D, Service4,
Megaservice)

Service 1

Service 2

Service 3

MegaService

Service 4

33

Performance Evaluation Performance Evaluation –– SOAP vs. FICASSOAP vs. FICAS

SwitchMege
Service

S1
produces
a string

10mbps

S2
consumes

a string

out
10mbps

in

 (LAN) in = 10 mbps; out = 10 mbps
 (Wireless) in = 2 mbps; out = 0.5 mbps

MultiService
 {
 a = S1(size)
 S2(a)
 }

SingleService
 {
 a = S1(size)
 }

34

Performance in LAN SettingPerformance in LAN Setting

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

SOAP (SingleService) SOAP (MultiService) FICAS (MultiService)

FICAS incurs higher
control-flow cost

SOAP incurs higher
data-flow cost

35

Performance in Wireless SettingPerformance in Wireless Setting

0

10000

20000

30000

40000

50000

60000

70000

80000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

SOAP (LAN) SOAP (802.11b) FICAS (LAN) FICAS (802.11b)

SOAP creates bottleneck on
the megaservice

communication link

FICAS is little affected since
data-flows are distributed

36

Active MediatorActive Mediator

Autonomous
Service
Wrapper

Mobile
Class

Fetcher

Mobile
Class

Runtime

Exception
Handling

Mobile Class
Cache

Mobile Class
Repository

Input Data Container

Output Data Container

Mobile
Class
API

Library

Active Mediator

37

Example Megaservice Utilizing a Mobile ClassExample Megaservice Utilizing a Mobile Class

SwitchMege
Service

S1
produces
a string

10mbps

S2
consumes

a string

10mbps

Mobile Class
FILTER

10mbps

 Invocation1 = S1.INVOKE(size)
 A = Invocation1.EXTRACT()

 B = MCLASS ("FILTER", A)

 Invocation2 = S2.INVOKE(B)

38

Placement of Mobile ClassPlacement of Mobile Class

S1

Mega
service

S2

S1

Mega
service

S2

mobile class
FILTER S1

Mega
service

S2mobile class
FILTER

(c) Using an autonomous service(a) Placing FILTER at S1 (b) Placing FILTER at S2

1

3

1

2

1

2

Data-flowService
Invocation

A

B

B A FILTER2

39

Performance Comparison for Mobile ClassPerformance Comparison for Mobile Class

0

2000

4000

6000

8000

10000

12000

100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

Mobile Class on S1 Mobile Class on S2 Utility Autonomous Service

Mobile class placement affects
megaservice performance

Mobile class is more efficient
than autonomous service

40

Infrastructure for
Engineering Services

41

An Integrated Service EnvironmentAn Integrated Service Environment

Designers

Project Managers

On Site Personnel

Communication
Network

Spread
sheets

Autonomous Service
Wrapper

Project
Planning

Tools

Autonomous Service
Wrapper

Modeiling
Tools

Autonomous Service
Wrapper

Mobile Classes for
Data Integration

Integrated
Work Processes

42

Data Mediation Among the ToolsData Mediation Among the Tools

PSLXML

4D
Viewer

Active
Mediator

Palm Desktop
Browser

Primavera
P3

Microsoft
Project

Relational
Data

Microsoft
Excel

Related work by Jim Cheng at Engineering Informatics Group, Stanford University

43

Review Design in 4D ViewerReview Design in 4D Viewer

44

Review Schedule in PrimaveraReview Schedule in Primavera

45

Review Schedule in Microsoft ProjectReview Schedule in Microsoft Project

46

View Schedule on SiteView Schedule on Site

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
1.….………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
1..…………………….. Update

18T1-33241
02-01-2001

47

Modifying Schedule OnModifying Schedule On--sitesite

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

Change duration of activity
18T1-33201 (“Erect Roof Element 1”)
From 1 day to 40 days

48

Invoke Rescheduling Megaservice Invoke Rescheduling Megaservice

Network

Rescheduling
MegaService

 RescheduleService {
 model = PSLModel(modelname, 'oracle-to-psl')
 new_model = P3Scheduling(model, 'reschedule')
 PSLModel(new_model, 'psl-to-oracle')
 excel_data = MCLASS("psltoexcel", new_model)
 ExcelService(excel_data, 'show')
 ChangeNotify(modelname)
 }

PSL
PSL

Model
Service

P3
Scheduling

Service

Change
Notify

Service

Excel
Service

Primavera

49

Review Modified Schedule in ExcelReview Modified Schedule in Excel

Actual
Change

Affected activity 18T1-33201

50

Review Changed Activities in BrowserReview Changed Activities in Browser

Actual change

Affected Activities

51

Review Modified Schedule in PrimaveraReview Modified Schedule in Primavera

Updated activity

52

Review Modified Design in 4D ViewerReview Modified Design in 4D Viewer

Roof construction
is delayed

53

Review Modified Schedule in ProjectReview Modified Schedule in Project

Actual change

Affected activities

54

Summary

55

ContributionsContributions

• Data-flow distribution improves megaservice performance

• Distributed data-flow model is supported in service composition

– Separate data from controls in services

– Separate computation from composition

– Establish direct data communications among services

• Distribution of computations facilities service composition

– Mobile class allows performance optimization

– Active mediation enhances the flexibility of services

• FICAS provides comprehensive support for service composition

56

PublicationsPublications

D. Liu, J. Cheng, K. H. Law, G. Wiederhold, and R. D. Sriram. "An Engineering Information
Service Infrastructure for Ubiquitous Computing", Journal of Computing in Civil
Engineering, 2003.

D. Liu, J. Cheng, K. H. Law, and G. Wiederhold. "Ubiquitous Computing Environment for
Project Management Services", Proceedings of the Civil Engineering Conference and
Exposition, Washington DC, 2002.

D. Liu, K. H. Law, and G. Wiederhold. "Data-flow Distribution in FICAS Service Composition
Infrastructure", Proceedings of the 15th International Conference on Parallel and
Distributed Computing Systems, Louisville, KY, 2002.

D. Liu, K. H. Law, and G. Wiederhold. "Analysis of Integration Models for Service
Composition", Proceedings of the 3rd International Workshop on Software and
Performance, Rome, Italy, 2002.

D. Liu, K. H. Law, and G. Wiederhold. "CHAOS: An Active Security Mediation System",
Proceedings of the International Conference on Advanced Information Systems
Engineering, pp. 232-246, 2000.

D. Liu, J. Peng, K. H. Law, G. Wiederhold, and R. D. Sriram. “Composition of Autonomous
Services with Distributed Data Flows and Computations", Submitted to ACM
Transactions on Internet Technology, 2003.

J. Peng, D. Liu, and K. H. Law. "An Engineering Data Access System for a Finite Element
Program", Journal of Advances in Engineering Software, vol. 34(3), pp. 163-181, 2003.

57

AcknowledgementsAcknowledgements

• Defense committee

• Members of Engineering Informatics Group

• Research support
– Dr. Ram D. Sriram, NIST
– Dr. Charles S. Han, Autodesk
– Mr. Jim Cheng, Stanford University
– Prof. Martin Fisher and his research group, Stanford University

• This work is supported in part by
– Air Force (Grant F49620-97-1-0339, Grant F30602-00-2-0594)
– CIFE, Stanford University
– Product Engineering Program at NIST
– Technology for Education 2000 Equipment Grant, Intel Corporation

58

End of PresentationEnd of Presentation

