
 1

PSL Quarterly Progress Report

Project Title: Process Specification and Simulation
Date: September 30, 2001
Principal Investigator: Kincho H. Law, Stanford University
Period Covered: July 1, 2001 – September 30, 2001

Project Objectives

The proposed project is intended to be a feasibility study to evaluate the process
specification language (PSL) and a simulation query language (SimQL) with application
to project and workflow management. This proposed joint research effort includes:

o to evaluate the potential of the Process Specification Language (PSL) for the
planning and modeling activities in a project

o to evaluate the adequacy of the Process Specification Language (PSL) as an
interchange definition language to support process-oriented simulation

o to evaluate the applicability of SimQL, a simulation query language, for practical
engineering problems

o to develop an integration framework using PSL and SimQL for process-oriented
simulation

Our long-term goal is to develop a distributed network-based framework to integrate
process specification and modeling and virtual simulations of project activities. To
facilitate this research, we use Vite, which is originally developed at Stanford’s Center
for Integrated Facility Engineering as a benchmarking application for the evaluation of
PSL and SimQL.

Progress and Results

Our first goal in this project is to evaluate PSL as process specification interchange
standard using Vite as a benchmark application. Vite is a project and organization
modeling system designed to assist in developing organizational structures and
identifying potential problems with project cost, time, or quality. It takes traditionally
qualitative organizational management theory and builds a model that incorporates rough
quantitative measures. As for this investigation, we have built a sample demonstration
using PSL as an interchange format to exchange information among Primavera’s P3,
Microsoft Project 2000, 4DViewer and Vite. Primavera’s P3 and Microsoft Project 2000
are project scheduling software widely used in the construction industry. 4D Viewer is an
application developed by 4D research group at Stanford University, which could
dynamically display the construction progress. The translation process among Primavera
P3, Microsoft Project and Vite using PSL is summarized as shown in Figure 1.

 2

Figure 1: PSL in the Information Exchange

As shown in figure 1, we have also built translator between PSL and Oracle Database, so
that project information could be viewed and updated on any web browser and palm.
Beyond that, we link PSL file with logic reasoning tool so that we can reason on PSL
knowledge. In summary, three basic tasks have been performed during this report period.

• We select some widely used applications in construction industry, and build PSL
wrapper for each of those applications. So that those applications are PSL
compliant and could interoperate with each other.

• We also build translator between PSL and oracle database. So that project

manager could view and update project information on site using web browser or
palm. Here we test our prototype system on Mortenson Ceiling Project, which is a
portion of the construction of Walt Disney Concert Hall.

• We have begun an initial investigation on the reasoning power of PSL.

PSL

Wrapper

Logic Reasoning Tool
(Otter)

Web
Browser

Palm

Primavera
P3

Microsoft
Project 2000

Vite 4D
Viewer

Wrapper Wrapper Wrapper

Oracle 8i
Database

Translator

 3

PSL Wrapper

To exchange project information among different construction applications, we need to
build a wrapper for each application, which could retrieve the information out from
application and convert it into PSL format, and could also parse the information out from
PSL file and feed it back into application.

To exchange project information, first we need to map the concepts in different
applications into PSL ontology. The table below (Table 1) shows some terms in P3 and
PSL, which are related with activity relationship.

Table 1: Terms in P3 and PSL about activity relationship

Concepts in P3 PSL Ontology
Successor
Predecessor

Successor
Follows
after-start
after-start-delay
…………..

For example, activity B is the successor of activity A in construction project P in P3. The
time lag is 3 days, and relationship type is FinishToStart, which is illustrated in figure 8.

Figure 2. Successor relationship in P3

If we translate the successor concepts into PSL ontology, we will have:
 (activity-occurrence A)
 (activity-occurrence B)
 (subactivity-occurrence A P)
 (subactivity-occurrence B P)
 (after-start A B P)
 (after-start-delay A B 3)

The basic process of PSL based project information exchange could be illustrated in
picture 3.

 4

Informat

We select
Project is
Mortenson
ceiling for
shown in

Map Concepts into formal PSL
ontology

Map PSL ontology back to
individual software

P3 Project Vite 4D
Viewer
Retrieve Information From
Applications
• P3: Primavera Automation
Engine
• Vite: JDBC
• Project: VBA
• 4Dvierwe: Plain Text

Figure 3: PSL Wrapper

ion Exchange Among Vite, P3 and MS Project

 Mortenson Ceiling Project to demonstrate the tran
a portion of the construction of the Walt Disney Co
 Construction, and designed by Frank O.Gehry &
 a major concert hall is designed as light gage stee
figure 4.

PSL

Convert To PSL Format
Feed Project Information back
to applications
• P3: Primavera
Automation Engine
• Vite: JDBC
• Project: VBA
• 4Dvierwe: Plain Text
slation. Mortenson Ceiling
ncert Hall, built by

Associates. The curvilinear
l, hung from the trusses, as

PSL Parser

JDBC: Java Database
Connectivity
VBA: Visual Basic
For Application

 5

Figure 4. Mortenson Ceiling Project in 4DViewer

In our prototype system, we use oracle database as our backbone system. Through oracle
database, on-site personnel can view and update project information using a PDA or a
desktop browser (Figure 9). Applications such as P3, Project, 4DViewer and Vite could
also interoperate with each other through a process interchange standard (PSL).

Figure 5. Architecture of the prototype system

PSLXML

Microsoft
Project

Oracle 8i
Relational
Database

Primavera
P3

Active Mediator

Palm Desktop
Browser 4DViewer Vite

 6

Figure 6 is the 4D Model of Mortenson Ceiling Project taken on 3/25/2001 from 4D
Viewer. Figure 7 and 8 show the Original Gantt Chart of Mortenson Ceiling Project in
Primavera P3 and Microsoft Project. On site personnel can view and update project
information through palm or web browser, as shown in Figure 9. Figure 10 and 12 show
the modified Gantt Chart in Primavera P3 and Microsoft Project 2000. Figure 11 show
the modified 4D Model of Mortenson Ceiling Project taken on 3/25/2001 from 4D
Viewer. As shown in Figure 13, project manager can view the updated project
information on web browser or any other e-machine.

Figure 6. 4D Model Taken on 3/25/2001 From 4Dviewer

 7

Figure 7. Original Gantt chart in Primavera P3

Figure 8. Original Gantt Chart in MS Project (Generated from PSL file)

 8

http://med...!!
History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update
Figure 9. View and Update Project Inf

Figure 10. Modified Gantt Chart in
http://171...!! History

SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
ormation on Palm

 Primavera P3

 9

Figure 11. Modified 4D Model Taken on 3/25/2001 From 4Dviewer

Figure 12. Modified Gantt Chart in MS Project (Generated from PSL file)

 10

Figure 13. View Modified Project Information on Web Browser

PSL Reasoning

The underlying grammar used for PSL is based on KIF (Knowledge Interchange Format).
KIF is a formal language based on first-order logic. All the knowledge about one project
could be stored in PSL file, regarding whether it is from P3, Microsoft Project, Vite or
4D Viewer. Since all the terms in PSL are formally defined using first order logic, we
can use some reasoning tool to reasoning on the knowledge base. From the reasoning,
we can:

• Detect conflict in the knowledge database. It could be some simple conflict that
could be easily detected by human being or some software. It could also be some
deep logic conflict in the knowledge database that is hard to detect, since the
project knowledge could come from heterogeneous resources.

 11

• Identify the source of conflict and maintain the consistency of knowledge
database. After we detected the conflict, we can trace back to the source of
conflict and even solve the confliction.

• Infer some interesting conclusions, which might be not obvious. When project

information comes from heterogeneous sources, some important project
characteristics might not be obvious. However, reasoning tool can infer
interesting conclusions from existing project information and help project
manager to understand the project better.

The picture below (Figure 14) illustrates the basic reasoning process. First we infer some
new conclusions from existing knowledge base. For the new knowledge, we will rewrite
it and check whether it is subsumed by existing knowledge. If not, we could add the new
knowledge to the knowledge base. Otherwise, we just delete it. Usually, the reasoning
will stop either it find some conflict or no more conclusion could be inferred.

Figure 14. Reasoning on PSL knowledge

Infer new
knowledge

Project Knowledge Database
(PSL core, PSL outer core, PSL
Extensions,
Vite Extensions, Project Specific
Knowledge)

Knowledge to be
added

Knowledge to be
deleted

Back
Subsume

Update
database

Rewrite
knowledge

 12

The knowledge base where the reasoning tool is going to reason on includes two main
parts:

• Axioms and definitions from PSL Core, PSL outer core, PSL Extensions and Vite
Extensions

• Facts of individual project form heterogeneous resources

The reasoning among the axioms and definitions is not our interest. That reasoning not
only produces a lot of uninteresting results but also significantly slows the reasoning
process. Instead, we focus on the reasoning among the knowledge of specific project, and
the reasoning between specific project knowledge and those axioms and definitions.

At the first step, we use Otter to reason on some sample project. Otter (Organized
Techniques for Theorem-proving and Effective Research) is a resolution-style theorem-
proving program for first order logic with equality. Otter includes the inference rules such
as binary resolution, hyperresolution, UR_resolution, and binary paramodulation. It takes
two types of input: logic clause or first order logic sentences. Since PSL is based on first
order logic, it is very easy to convert PSL file into first order logic sentences, which Otter
could read. Here is an example that we use Otter to detect inconsistency of PSL
knowledge:

16 [] -activity_occurrence(x11)|occurrence_of(x11,$f1(x11)).
19 [] -occurrence_of(x19,x20)| -duration(x19,x21)| -
beginof(x19,x22)|endof(x19,x21+x22).
39 [] -after_start(x71,x72,x73)| -occurrence_of(x71,x74)| -occurrence_of(x72,x75)| -
endof(x71,x76)| -beginof(x72,x77)|x76<=x77.
51 [] activity_occurrence(AssembleverifyRTL).
52 [] beginof(AssembleverifyRTL,42300).
53 [] duration(AssembleverifyRTL,8640).
54 [] after_start(AssembleverifyRTL,FullChipSynth,Tutorial).
76 [] activity_occurrence(FullChipSynth).
77 [] beginof(FullChipSynth,30940).
115 [hyper,51,16] occurrence_of(AssembleverifyRTL,$f1(AssembleverifyRTL)).
125 [hyper,76,16] occurrence_of(FullChipSynth,$f1(FullChipSynth)).
139 [hyper,115,19,53,52,demod] endof(AssembleverifyRTL,50940).
144 [hyper,125,39,54,115,139,77,demod,propositional] $F.

 From the example above, we can see that there are some conflictions in the project
knowledge base. Following the proof process, we can trace back to the root of
confliction, identify and solve the inconsistency problem in the project.

	Progress and Results
	PSL Wrapper
	Information Exchange Among Vite, P3 and MS Project
	PSL Reasoning

