

PSL QUARTERLY PROGRESS REPORT

Project Title: Process Specification and Simulation Access Languages
Date: December 31, 2002
Principal Investigator: Kincho H. Law, Stanford University
Duration: September 1, 2002 – August 31, 2005

PROJECT OBJECTIVES
The objective of the proposed study is to evaluate the process specification language
(PSL) and to design and implement a simulation access language (SimQL) with
application to project and workflow management. This proposed joint research effort
with NIST includes:

• To analyze the concepts of PSL for process information exchange with
selected project management applications

• To investigate the reasoning power of PSL for consistency checking and
conflict resolution of project information from various sources

• To design and implement a simulation access language for integration of
engineering services

• To integrate PSL with SimQL, and develop a demonstration prototype for
reusing and integrating results from a variety of application services

Our long-term goal is to develop a distributed network-based framework to integrate
process modeling, process specification and virtual simulations of project activities. In
the following, we briefly summarize our previous accomplishments on the evaluation of
PSL for project management applications. We then discuss our proposed research
utilizing PSL and SimQL.

PROGRESS AND RESULTS
A shift to distributed computing is underway. Rapid proliferation of Internet protocols,
fast expanding computing power, coupled with broadband and mobile communication
technologies make ubiquitous computing possible. We will soon have an interconnected
web of small devices that provide valuable information to people regardless of their
locations. However, ubiquitous computing is more than simply tying many wired or
wireless gadgets together. Everything from client devices, communication networks to
software applications needs to work together to enable two main characteristics of
ubiquitous computing: (1) universal accessibility from devices to services, and (2)
effective coordination and interaction among the parties accessing the services.

Ubiquitous computing can find many applications in the design and construction
industries. Such applications range from field inspection, to site procurement of
materials, to interactive on-site project planning. For instance, with mobile devices, one
could readily compare the as-built site condition with the planned design information,
enquire availability of materials and receive immediate response to change orders, and
gain dynamic interactions with Internet-based services.

In order to provide a ubiquitous computing environment for engineers, project
managers, and on-site personnel to more effectively communicate with each other, the

first challenge is to provide project personnel easy access to the engineering software
services. The issue we are addressing lies in the software layer rather than the physical
access layer. Making the assumption that the communication channel and the network
protocol are in place for client devices to gain access to software services, we have to
construct the software services in such a way that a wide range of devices with drastically
different characteristics can be supported. For example, the output of a CAD design tool
on a high-speed graphics workstation would likely be different from the output display on
a handheld device. Information needs to be filtered and presented in different granularity
depending on the types of client devices. In this report, we investigate the design and
implementation of a mediation-based framework that would allow the incorporation of
computing devices, such as PDA and web-browsers, into a distributed engineering service
environment and support a wide range of clients. Secondly, coordination and interaction
are of significant importance when information is shared among different application
services. We demonstrate using a combination of information modeling standard
technologies, including relational database, XML and PSL, to build intermediary data
model for a variety of project management service applications.

MEDIATION-BASED FRAMEWORK FOR DISTRIBUTED SERVICE INTEGRATION

As software getting more complex and services becoming more powerful, it becomes
essential to define a framework by which software can be constructed to serve clients with
dramatically different computation and communication power. The key challenges are to
lower the complexity of software design and to minimize the software maintenance cost.
To cope with these issues in dynamic collaborative computing environments, mediators
are introduced (Wiederhold 1992, Wiederhold and Genesereth 1997). Mediators are
intelligent middleware that sit between information system clients and sources. They
provide integrated information, without the need to integrate the data sources.
Specifically, mediators perform functions such as accessing and integrating domain-
specific data from heterogeneous sources, restructuring the results into object structures,
and extracting appropriate information to be transmitted.

Mediation architecture is conceptually comprised of three layers, as shown in Figure
1. The mediation layer resides between the base resource access interface and the service
interface, incorporating value-added processing by applying domain-specific knowledge.
A major task for the mediation service is to reduce the data volume to be shipped to
information clients, while maintaining the desired information content. The principal tool
for data reduction is abstraction. Techniques differ, though, on how the abstraction is
obtained and on how the information granularity is controlled. Active mediation is a
variation of mediation technology, in which a mediator is designed to have the ability to
adapt its behavior to the client request or the source data stream, hence providing the
ability to dynamically change the granularity of information abstraction (Liu et.al. 2000).
We apply active mediation for constructing device-independent software services.

Figure 1: Mediation Architecture

Active Object
Objects are used as the basic model to describe data. Most clients are best served by
information in object form that may integrate multiple heterogeneous sources. We choose
XML as the object representation format based on its extendibility, structure, and
validation as a language. XML is a meta-markup language that consists of a set of rules
for creating semantic tags used to describe data (Young 2001). An XML element is made
up of a start tag, an end tag, and content in between. The start and end tags describe the
content within the tags, which is considered the value of the element. In addition to tags
and values, attributes are provided to annotate elements.

Active object is a special type of XML object. In active objects, two types of elements
are defined: data elements and active elements. A data element describes the content of
an object and an active element contains code segment to filter the source information.
The code segment is called active node, a serialized byte code string of executables.
Figure 2 shows a sample active object and the Java source code for the contained active
element. The active object specifies a query request for activity information from a
software service. The active element, PalmTrimmer, contains a Java byte-code segment
that specifies how the result object should be filtered before returning to the client.
PalmTrimmer will be appended to the result XML object retrieved from the information
source, and interpreted by the active mediator run-time. All active nodes are derived
classes of ActiveNode, and they overload the execute function to provide specific
functionalities. The execute function takes three parameters: the current active element
handle, the root element handle, and the client environment information. The active
mediator runtime environment fills in these three parameters when the mediator loads the
active nodes. The example, PalmTrimmer, keeps only the activity identifiers and
activity descriptions as relevant components when enacted.

There are many methods in which active nodes can be created. We have developed
templates where active node source code can be generated to perform simple schema-
based information filtering. The Java source code can then be compiled and automatically
inserted into active object. The responsibility to provide client-agnostic information
content remains with source information service, while the responsibility to define client-
specific information abstraction and reduction are shifted to individual clients.

<REQUEST>
<QUERY>

ACTIVITY
</QUERY>
<PalmTrimmer active-node=“yes”>MROZZO@`#`"T`,P$`!$-O9&
4!``I3;W5R8V5&:6QE`0`)4V]U<F-E1&ER`0`-M0V]N<W1A;G1686Q
U90$`"D5X8V5P=&EO;G,!``],:6YE3G5M8F5R5&%B;&4!M`!),;V;%
9A<FEA8FQE5&%B;&4!``=4<FEM;65R!P`(`0`08VAA;W,O06-T
</PalmTrimmer>

</REQUEST>

public class PalmTrimmer extends ActiveNode
{

public String execute(Element current,
Element root,
ClientEnv env) {

Vector tags = new Vector();
tags.addElement(new String(“ACTIVITYID"));
tags.addElement(new String(“DESCRIPTION"));
keepOnlyNodes(root, tags);
return "Done";

}
}

Figure 2: A Sample Request Active Object and Active Node Source Code

Source
Information

Service

Active Mediator

Object
Constructor

Query
Formulator

Active
Node

Handler

Active
Node

Invocation
Runtime

Exception
Handling

Active Node
Cache

Active Node
API Library

Client

Figure 3: Active Mediation Architecture

Active Mediator Architecture
Mediators reside between source information service and client application interface.
They are used to mediate the queried content obtained from the source information
service. Figure 3 illustrates the architecture of an active mediator. The active mediator
conceptually consists of four functional units and two code segment repositories. Client
requests in the form of active objects are initially processed by the active node handler.
The active object will be divided, with source requests being forwarded to query
formulator and active nodes being stored in the active node cache. Query formulator will
form a source query and forward it to the information service. Upon completion of the
source information service, a result data object is returned to the active node invocation
runtime. The runtime environment loads relevant active nodes into the result data object,
during which code segments are dynamically loaded from the active node cache and the

active node API library. Active nodes are invoked by calling their “execute” function,
after which the active object is transformed and the content is filtered. The resulted
objects will then be returned back to the client.

It is also important for the system to have a comprehensive exception handling policy.
Our current implementation prohibits any results from getting through the mediator in the
case of exception. In addition, the conditions are logged for future maintenance. The
active mediation system can be deployed without changes to either the information client
or the source information service, enabling a smooth transition from legacy information
service infrastructure to one using active mediation infrastructure.

Device Independent Software Services
Information services are responsible for providing information content and normally lack
the ability to provide client-specific granularity for the content. Retrofitting existing
services to be device-aware is an expensive exercise and does not follow the good
software design principle of separating client specification and server functionality.
Moreover, it is infeasible to cover all existing and future client device types. The key in
constructing device-independent software services, thus, lies in separating the content
from the abstraction of the information that a service provides. Different granularity of
information content can be acquired by applying different level of abstractions.

Active mediation is a natural solution for such problem by giving the information
client the ability to specify how information should be abstracted and filtered. As shown
in Figure 4, the source information service maintains its responsibility of providing
information content to clients based on the query of a client, regardless of the device type
of the client. The content of information is composed of its presentation style and its data.
The active mediator, situating between the source information service and the information
clients, has the responsibility of reducing information volume through abstraction. As
described earlier, the active mediation architecture requires the information clients to
provide the specific filtering routines that are called upon to conduct information
abstraction. The active mediator itself is not aware of the client types, hence client-
independent.

Given the active mediation infrastructure, we can divide the process of constructing
device-independent information services into two inter-related components. The first
component focuses on constructing source services to provide modular and object-
oriented information content. The second component focuses on developing information
filtering routines for the information content, also known as active node routines, for each
client device type. One benefit of active mediation infrastructure is the separation of
information clients and information services. New client device types can be added into
the existing computing environment by developing new information filtering routines.
No modifications are necessary in either the source information service, the active
mediator, or the other client devices.

Messaging Bus / Internet

PDALaptopWorkstation

XML
Objects

XML
Style
Sheet

Source
Information

Service

Object
Constructor

Active
Mediation

Information Content

Information Abstraction

Information Client

Active
Object
Query

Source
Query

Source
Content

Client-Specific
Content

Figure 4: Active Mediation in Software Service Construction

INFORMATION MODELING
Information modeling plays an important role in ubiquitos computing and distributed
service integration. Information in different applications usually has different
representations. Even for the same type of application, the internal representations of the
information are also different. To cope with the issue of different representations among
applications, we need an ontology standard to model information. There have been many
efforts to develop product data standards for data exchange, such as STEP (ISO 1994),
IFC (IAI 1997), ifcXML (Liebich 2001), aecXML (IAI 2002), etc.. Most of the current
ontology standards however focus mainly on product data and do not provide extensive
information about process and task specifications which are important data attributes for
project management applications.

PSL (Process Specification Language) was initiated by NIST (National Institute of
Standards and Technology) and is emerging as an international standard for the
manufacturing industry (Schlenoff et.al. 2000). The goal is to create a language for the
exchange of process information among different applications. The development of PSL
is motivated by two basic reasons. First, there are not many existing standards for process
information exchange. Second, current ontology standards lack a formal logic to define
relationships and constraints. PSL is based on first order logic and focus on process
information, which make it an ideal candidate standard for representation of process
information and for project and workflow management.

Process Specification Language
PSL is based on KIF (Knowledge Interchange Format), which is designed for knowledge
interchange among disparate computer systems. KIF has declarative semantics, and is
logically comprehensive (Genesereth and Fikes 1992). Figure 5 shows the overall
organization of PSL, which includes the PSL core, the PSL outer core and PSL
Extensions (Schlenoff et al. 2000).

Activity
Occurrences

Complex Activities

Atomic Activities

Subactivity Occurrence Trees

PSL-Core

Discrete State

Figure 5: PSL Ontology

• The PSL core is a set of axioms based on KIF. The PSL core includes four basics
classes: Object, Activity, Activity_Occurrence and Timepoint. Relations are
defined among the classes, for example:

(occurrence-of activity-occurrence activity)
(before timepoint timepoint)

• PSL outer core consists of a small set of extensions, which are generic and
pervasive in their applicability. The extensions in the PSL outer core include
Subactivity Extension, Activity-Occurrence Extension and States Extension.
Relations can be defined using the PSL outer core extensions, for example:

(subactivity-occurrence activity-occurrence activity-occurrence)
(subactivity activity activity)

• PSL extensions include ontology modules such as generic activities, ordering
relations and schedules. Each module is motivated by a set of applications and
covers concepts in a specific application domain. Below are some example
relations in the PSL extensions:

(before-start activity-occurrence activity-occurrence activity-occurrence)
(before-start-delay activity-occurrence activity-occurrence activity-occurrence
duration)

We have extended the PSL core by including extensions that model the essential
information related to project management applications (Cheng and Law 2002).

Implementation of PSL Wrappers
Once the PSL ontology for a specific application domain is defined, software wrappers,
which act as a bridge between common (PSL) representation and proprietary
representations (for each application), need to be built. PSL wrappers are used to retrieve
project information from the applications, and are also used to update project information
in those applications. The basic process of using PSL for project information exchange
can be illustrated in Figure 6 and consists of three major steps -- ontology mapping,

communicating with applications, outputting or parsing PSL files. It is not unusual that
the same term is often associated with different meanings in different applications. To
exchange project information, first we need to map the concepts in different applications
into PSL ontology, so that they are PSL compliant.

Different wrappers are developed to transfer and retrieve information to and from
different applications. The application software considered in our current prototype
infrastructure includes Primavera P3TM, MS ProjectTM, ViteTM and 4D Viewer (McKinney
and Fischer 1998). The applications can exchange information using PSL as the ontology
standard. To enhance the accessibility of the project information from those applications,
we also build a translator between PSL and database. We have designed a database
schema according to the PSL ontology and developed a translator in Java to convert
information from database to PSL file and vice versa.

AN EXAMPLE ENGINEERING SCENARIO
An infrastructure shown in Figure 7 has been developed to illustrate the ubiquitous
computing environment developed for distributed project management services. In this
distributed service infrastructure, the active mediator acts as an intelligent bridge that
connects various devices with the Oracle 8i database, while PSL acts as a common data
model through which various engineering services can communicate with each other. The
active mediator captures the inquiry request from any device, constructs XML object and
sends the request to the Oracle 8i database. The active mediator can also respond to the
user query by retrieving the latest information from the Oracle 8i database and converting
the information to suitable format for displaying at users’ devices. PSL wrappers are used
to retrieve information from various project management applications. Project
information can also be translated between PSL files and the Oracle 8i database.

PSL

Convert To PSL Format PSL Parser

MAP PSL Ontology back to individual
software

Retrieve Information From Applications
P3: Primavera Automation Engine
Vite: JDBC
MS Project: VBA
4D Viewer: Plain Text

Map Concepts into formal PSL ontology Transfer Information to applications
P3: Primavera Automation Engine
Vite: JDBC
MS Project: VBA
4D Viewer: Plain Text

P3 MS Project Vite 4D Viewer

Figure 6: PSL Wrappers

PSLXML

4D
Viewer

Active
Mediator

Palm Desktop
Browser

Primavera
P3

Microsoft
Project

Oracle 8i
Relational
Database

Figure 7: A Ubiquitous Computing Environment for Engineering Services

Figure 8: Reviewing Sample Project on 4D Viewer

Figure 9: Reviewing Sample Project on Primavera

Let’s look at an example scenario and demonstrate how the ubiquitous computing
environment may help facilitate personnel from different functional groups conduct
collaborations. We use the project model of the Disney Concert Hall as the test case
example. Figure 8 shows a snapshot of construction progress using the 4D Viewer which
is a very effective tool for analyzing and visualizing 3D architectural designs and their
relationships to project schedules (Koo and Fischer 2000). Figure 9 is the view of the
scheduling information using Primavera P3, a specialized tool that focuses on the
scheduling aspect of the project. Using PSL as the intermediate data model, the
information is shared between the relational data model and the proprietary Primavera
data model. The scheduling information can also be reviewed using a handheld Palm
device, for example by an on site personnel, as shown in Figure 10. The information is

first converted into XML model, and then the active mediator filters the information and
adapts the content for the handheld device that is reviewing the information.

Suppose, as a hypothetical example, that the duration for the activity, 18T1-33201, for
erecting a roof element is to be changed from 1 day to 40 days. The change can be made
using the Palm device by on-site personnel. The update will be stored into the relational
database and trigger Primavera P3 to reschedule the project. The revised schedule can be
viewed using MS Project, as shown in Figure 11, and the project model can be displayed
and viewed using the 4D Viewer, as shown in Figure 12. The project status can also be
viewed using a simple web browser as shown in Figure 13. The web browser adopts the
same information path as in the case of the Palm device. An XML model constructor and
an active mediation are used to generate appropriate information content for different
information clients. Compared to the Palm device, the web browser can display much
more detailed scheduling information, for example, with the altered activity and the
affected activities highlighted -- the information that project managers may find helpful to
diagnose the impact of the updated schedule.

http://171...!! History

SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

Change duration of activity
18T1-33201 (“Erect Roof Elem 1”)
From 1 day to 40 days

Figure 10: Revising Project Schedule Via a Palm Device

Figure 11: Regenerated Gantt Chart in Microsoft Project

Figure 12: Reviewing Updated Project on 4D Viewer

A c tu a l
C h a n g e

A ffe c te d

A c tiv itie s

Figure 13: Reviewing Updated Schedule on Web Browser

SUMMARY
In this report, we have presented a mediation-based framework, which enhances
information accessibility and user interactivity, for ubiquitous computing and distributed
engineering services. Specifically, active mediation is introduced as a value-added
service layer that resides between source information service and information client. Its
main functionality is to provide universally accessible service to any information client
according to its characteristics, hence making source information service device-
independent. We have shown that PSL, XML and relational models can be used together
to effectively model data required by the various engineering service tools. Data can be
exchanged by transforming different data models. We have also demonstrated that PSL
can potentially be an effective ontology standard for project management applications. By
building a PSL wrapper for each application, we have successfully exchanged project
information using PSL. By building a translator between PSL and Oracle database, we
greatly improve the accessibility of the project information by various engineering
services.

In addition to effective data integration among different software tools, ubiquitous
computing requires truly integrated engineering services. Our current investigation is to
automate such process by developing a service composition environment (Liu et.al. 2002).

REFERENCE

Cheng, J. and Law, K.H (2002), “Using Process Specification Language for Project
Information Exchange,” 3rd International Conference on Concurrent Engineering in
Construction, Berkeley, CA, pp. 63-74.

Genesereth, M.R. and Fikes, R. (1992), “Knowledge Interchange Format Version 3.0
Reference Manual,” Computer Science Department, Stanford University.

IAI (1997), “Industry Foundation Classes,” Specification Volumes 1-4, International
Alliance for Interoperability, Washington, DC.

IAI (2002), “AecXML,” International Alliance for Interoperability,
http://www.aecxml.org.

ISO (1994), “Product Data Representation and Exchange: Part 1: Overview and
Fundamental principles,” 10303-1:1994, ISO.

Koo, B. and Fischer, M. (2000), “Feasibility Study of 4D CAD in Commercial
Construction,” Journal of Construction Engineering and Management, ASCE,
126(4):251-260.

Liebich T. (2001), “XML Schema Language Binding of EXPRESS for ifcXML,” MSG-
01-001(Rev 4), International Alliance of Interoperability.

Liu, D., Law, K.H. and Wiederhold, G. (2000), “CHAOS: An Active Security Mediation
System,” Proceedings of International Conference on Advanced Information Systems
Engineering, LNCS, Vol.1789, B. Wangler and L. Bergman (eds.), Springer-Verlag,
pp. 232-246.

Liu, D., Law, K.H. and Wiederhold, G. (2002), “Analysis of Integration Models for
Service Composition,” To appear in Third International Workshop on Software and
Performance, Rome, Italy.

McKinney, K. and Fischer, M. (1998) “Generating, Evaluating and Visualizing
Construction Schedules with 4D-CAD Tools,” Automation in Construction, 7(6): 433-
447.

Schlenoff, C., Gruninger M., Tissot, F., Valois, J., Lubell, J., and Lee, J. (2000), “The
Process Specification Language (PSL): Overview and Version 1.0 Specification.”
NISTIR 6459, National Institute of Standards and Technology.

Wiederhold, G. (1992), “Mediators in the Architecture of Future Information Systems,”
IEEE Computer, 25(3):38-49.

Wiederhold, G. and Genesereth, M. (1997), “The Conceptual Basis for Mediation
Services,” IEEE Expert, Intelligent Systems and Their Applications, 12(5):38-47.

Young, M.J. (2001), Step by Step XML, Microsoft Press.

	PROJECT OBJECTIVES
	PROGRESS AND RESULTS
	Mediation-Based Framework for Distributed Service Integration
	Active Object
	Active Mediator Architecture
	Device Independent Software Services

	Information Modeling
	Process Specification Language
	Implementation of PSL Wrappers

	An Example Engineering Scenario

	SUMMARY
	REFERENCE

