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ABSTRACT 
 

This paper discusses a data-driven, cooperative strategy to maximize wind farm 
power production. By strategically coordinating the control actions of the wind 
turbines to actively mitigate the wake interference, the total wind farm power 
production can be improved for a given wind condition. To determine the optimum 
coordinated control actions of the wind turbines using only power measurements 
collected from the wind turbines, we employ the Bayesian Ascent (BA) method, a 
probabilistic data-driven optimization scheme. Wind tunnel experiments using 4 
scaled wind turbine models have been conducted to validate (1) the effectiveness of 
the cooperative control strategy and (2) the efficiency of the BA algorithm in 
determining the optimum control actions of the wind turbines using only the power 
measurement data. 
 
INTRODUCTION 

 
As modern wind turbines now allow adjusting the blade angle, the yaw angle and 

the generator torque, this study investigates control strategies to maximize the power 
production of a wind farm. Currently, every individual wind turbine operates to 
maximize its own power production without taking into consideration the power 
productions of other wind turbines. Under this greedy control strategy, the wake 
formed by the upstream wind turbine would potentially lower the power productions 
of the downstream wind turbines due to the reduced wind speed and increased 
turbulence intensity inside the wake. Realizing that the interactions among the wind 
turbines can have impact on their power production, cooperative control strategies can 
be devised to maximize the total power production of a wind farm by manipulating the 
wake interference pattern. 

 To determine the optimum coordinated control actions of wind turbines, various 
approaches have been proposed. Mathematical models are constructed using the 
induction factor and the yaw-offset angle of a wind turbine as control inputs to adjust 
the wake interference pattern and thereby to increase the total energy production of a 
wind farm [1-5]. Optimization schemes, such as sequential convex programing, can be   
applied to optimize the coordinated control actions of wind turbines that maximize the  
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wind farm power function [6]. As alternatives to constructing wind farm power 
function, model-free optimization algorithms also have been applied to determine the 
optimum control actions. For examples, game theoretic search algorithm [7, 8] and the 
maximum power point tracking method [9] have been proposed to determine the 
optimum control actions using only the wind farm output data. For model-free 
methods, the strategy is to iteratively find better control actions by executing trial 
actions and observing the consequent power output. In this study, we have developed 
Bayesian Ascent (BA) method to expedite the iterative process in locating the 
optimum control actions. The method was tested previously through wind tunnel 
experiments with two scaled wind turbines by controlling the actions of the (single) 
upstream wind turbine [11]. In this work, we generalize the methodology to determine 
control actions for 4 scaled wind turbines. The objective is to study the effectiveness 
of the cooperative control approach and the scalability of the BA algorithm for 
optimizing wind farm power production with a number of wind turbines and varying 
wind directions.  
 
BAYESAN ASCENT METHOD 
 

For real-time, data-driven control, it is imperative that the control algorithm is able 
to improve the target value rapidly using a few measurement data. To achieve this 
goal, the Bayesian Ascent (BA) method is developed by incorporating into the 
Bayesian Optimization (BO) framework [11] strategies to regulate the search domain, 
analogues to a trust region in mathematical optimization [12]. The following briefly 
describe the BO framework and the sampling strategy for the BA method. 
 
Bayesian Optimization 
 

BO seeks to solve !∗ != !argmax! !(!)  by iteratively choosing the input 
! = !!,… , !! ,… !! , where ! denotes the dimension of input !, and observing the 
corresponding noisy response ! = ! ! + !, where  ! represents the noise that is 
assumed to follow a Gaussian distribution [13]. The function !(!), whose analytical 
expression is unknown, represents the model of the target system. To construct the 
unknown target function ! !  in terms of its mean and variance, the BO process 
consists of two iterative phases, namely learning and optimization. 

In the !th iteration of the learning phase, using the collected input data !!:! =
{!!,… ,!!} and the observed output data !!:! = {!!,… ,!!}, the unknown objective 
function !(!) is modelled as a Gaussian Process (GP). In GP, the output value !!!! 
of the target function for the unseen input !!!! and the observed outputs !!:! =
{!!,… ,!!} are assumed to follow a multivariate Gaussian distribution [14]: 

 

!!:!
!!!! ~! !, ! !

!! !(!!!!,!!!!)  
 
(1) 
 

 

where !! != ! ! !!,!!!! , . . . , ! !!,!!!!  and K is the covariance matrix (kernel 
matrix) whose (!, !)th entry is !!" != !! !! ,!! . The value of the covariance function 
! !! ,!!  quantifies the similarity between the two input vectors !! and !!; the more 
the two vectors differ, the closer the value of the covariance becomes zero, meaning 
that they are not correlated in terms of their function values.  



We use a squared exponential covariance function whose evaluation between two 
input vectors !! and !! is expressed as [15]: 

 

! !! ,!! = !!!exp − 12 !! − !! !diag ! !! !! − !! + !!!!!" 
 
(2) 
 

 

which is described by the hyper-parameters !!,!! ,! . The term !!! is referred to as 
the signal variance that quantifies the overall magnitude of the covariance value; !!! is 
referred to as the noise variance that quantifies the level of noise assumed to exist in 
the observed output response; and ! = !!,… , !! ,… !! is referred to as the 
characteristic length scales to quantify the relevancy of the input features in ! for 
predicting the response !. A large length scale !! indicates weak relevance, while a 
small length scale !! implies strong relevance of the corresponding input feature !!. 

In GP, the posterior distribution on the hidden function value !!!! = ! !!!!  for 
the unseen input !!!! given the historical data !! = !! ,!! |! = 1,… ,!  can be 
expressed as an 1-D Gaussian distribution !!!!~! ! !!!!|!! , ! !!!!|!!  with 
the mean and variance functions expressed, respectively, as [15] 
 

!! !!!!|!! = !!(!)!!!!:! (3) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!|!! = ! !!!!,!!!! − !! ! !!!− !!! (4) 

 

Here, ! !!!!|!!  and !!! !!!!|!!  are used as the functions for evaluating, 
respectively, the mean and the variance of the function value !!!! corresponding to 
the unseen input data !!!!. (!!!!!is the predicted true function value for unseen 
!!!!, which is not observable during BA simulation.)       

In the !th iteration of the optimization phase, the mean function ! !!!!|!!  and 
the variance function !!! !!!!|!! , that probabilistically represent the unknown 
target function ! ! , are used to select the next optimum input !!!! in order to learn 
more about the target function as well as to improve the target value. One popular 
approach to determine the next optimum input !!!! is to maximize the expected 
improvement function EI !  expressed as  [16]:  
 

!!!! != !argmax
!
EI ! ≜ Ε[max 0, ! ! − !!"# |!!] (5) 

 

where max 0, ! ! − !!"#  is the improvement toward the maximum output 
compared with the maximum output !!"#  observed so far. By selecting !  that 
maximizes EI ! , we can obtain either the improved target function value !!!! or the 
updated target function with reduced uncertainty at the selected input point !!!!. 
 

Bayesian Ascent (BA) method 
 

The Bayesian Ascent (BA) method imposes a proximity constraint to Eq. (5) 
such that the next solution !!!! is chosen near the best solution observed so far. 
The strategy that we employ is similar to imposing a trust region constraint in 
mathematical optimization [12]. Additionally, we strategically adjust the size of the 
trust region to expedite the rate of convergence to an optimum. In other words, the 
optimization phase of BO using the BA method is posed as a constrained optimization 
problem described as [11]: 

 

maximize!!!
!

E[max 0, ! ! − !!!" |!!]!!!!!!!!!!!!!!!!!!!!!!!!!!! 
         subject to     ! ∈ ! ≜ !|! !! − !!!"# ! < !! !!for!!! = 1,… ,!  

(6) 



  

The trust region ! is defined as a hypercube with its center being !!"# that produces 
the maximum target value !!"# within the historical data !!; the !th component !! of 
! = (!!,… , !! ,… , !!)  determines the range where the ! th component !!  of 
! = (!!,… , !! ,… , !!) is being sampled next. Thus, the vector ! controls the overall 
size of the hypercube trust region where the exploration takes place. Furthermore, the 
size of the trust region is adjusted by scaling ! during the iterations of BA. Imposing 
trust region and adjusting its size are to ensure a monotonic increase in a target value 
and gradual convergence to an optimum. Details of the procedure have been described 
previously in [11]. 
 
EXPERIMENTAL WIND TUNNEL STUDY 

 

This section describes an experimental study to validate (1) the effectiveness of the 
cooperative wind farm control strategy for improving the total wind farm power and 
(2) the efficiency of the BA algorithm for finding the optimum coordinated control 
actions using only the power measurement data. 
 

Wind turbine model  
 

The scaled wind turbine model, shown in Figure 1, is made of three aluminum 
blades with a length of 70 cm. The rotor diameter is 150 cm. The tower is made of a 
steel tube with a height of 100 cm. The blade pitch angles are controlled by a 
servomotor (Dynamixel-64T). As shown in Figure 1(b), the rotation of the servomotor 
is transformed into a linear motion to rotate the blade angles through a mechanical 
linkage. The rotation angles of the servomotor range from 0° to 70° which convert the 
blade pitch angles varying from 0° to 20° (albeit they are not related in a linear 
fashion). We use the rotation of the servomotor, instead of the actual blade pitch angle, 
as the control variable for optimization. The rotational change of the servomotor is 
easy to track using the encoder in the servomotor, which is also used to acknowledge 
the executed control actions. As shown in Figure 1(b), the yaw angle is controlled by 
the same type of servomotor through a mechanical gear system. With an one-to-one 
gear ratio, the rotational angle of the servomotor is the same as the actual rotation of 
the yaw of the wind turbine. An AC generator, shown in Figure 1(b), is used to 
convert the mechanical energy into electrical energy.  

 

Control board 
 

Figure 2 shows the circuit board designed to measure the electrical power output 
from the wind turbine and to execute the control actions to adjust the blade and yaw 
angles of the wind turbine. The AC voltage output from the generator is converted into 
DC voltage by the rectifier. The rectified voltage and the associated current flowing 
through the load resistance are then measured using voltage and current sensors, from 
which the instantaneous power is computed. The microcontroller (Arbotix-M) 
continuously samples the instantaneous power and compute the average power (using 
a moving average technique). The microcontroller then transmits the computed 
average power to the central node (laptop computer) through the XBee radio module 
every 2 minutes. The BA method processes the average power collected from the 
wind turbines in the central node and determines the next control actions. The 
determined control actions are then wirelessly transmitted to the microcontroller to 
change the blade pitch and the yaw angle in the wind turbine. 



! !
Figure!1.!Scaled!wind!turbine!model! Figure!2.!Control!board!

 
Configurations of wind tunnel experiments  
 

Figure 3 shows the layout of the wind turbines in the wind tunnel experiments. 
The wind turbines are arranged in a linear pattern and separated by an inter distance of 
7D (= 10.5!m). Using the linear wind farm layout, we study the effectiveness of the 
BA control algorithm and the effects of (1) the number of wind turbines (i.e., 
dimension of control variables) and (2) the wind direction on the cooperative control. 
Since the wind flow direction is fixed in the wind tunnel, the wind direction is 
emulated by changing the relative locations of the wind turbines. After changing the 
locations, the yaw angles of the wind turbines are set to be perpendicular to the wind 
direction. The constant wind speed of 3 m/s is used throughout the experiments. To 
evaluate the performance of the cooperative control approach and the BA algorithm, 
two reference wind turbine powers are measured for each experiment scenario:  

 

• !!!: Freestream maximum power of wind turbine ! that can be produced at a 
given location when there is no wake interference. The measured power !! 
normalized by !!! then represents the power efficiency for wind turbine !. The 
total wind farm power efficiency is computed as !!!

!!! !!!!
!!! , where ! is 

the number of wind turbines considered. 
 

• !!!: Greedy maximum power of wind turbine ! that can be produced at a given 
location when the upstream wind turbines are producing their maximum 
powers. The wind farm power efficiency for the greedy control strategy is then 
computed as !!!!

!!! !!!!
!!! .  

 

For cooperative control, the control actions for the greedy optimum are experimentally 
determined first, from which the BA proceeds to find the optimum coordinated control 
actions.    
 

!
Figure 3. Layout of the wind turbines in the wind tunnel (KOCED Wind Tunnel Center in Chonbuk 
National University). 



RESULTS 
 

First, we study the application of cooperative control for 2, 3 and 4 wind turbines 
(i.e., ! = 2, 3 and 4) when the wind turbines are initially directly facing the wind 
direction WD = 0°. Figure 4 shows the trajectories of individual power efficiency 
!!/!!!and the associated control actions of the wind turbines with the iterations of the 
BA algorithm. For cooperative control, the wind turbines collectively adjust their 
control actions determined by the BA algorithm to increase the total wind farm power 
production. As shown in Figure 4, cooperative control actions lower the power 
production for the first upstream wind turbine but significantly increase the power 
productions of the downstream wind turbines. For each case, the last downstream 
wind turbine operates at its greedy control actions since the deviation from the greedy 
control actions only decrease its own power production. 

Figure 5 shows the improvement in the total wind farm power efficiency by the 
BA algorithm compared to the greedy wind farm power efficiency. As shown in the 
figure, BA increases the wind farm power efficiency almost monotonically. As shown 
in Figure 5, the initial wind farm power efficiency for the greedy control decreases as 
the number of wind turbine increases since a larger number of wind turbines are 
affected by wake influence. Furthermore, as the number of wind turbines increases, 
the relative improvement by the cooperative control actions increases but the number 
of iterations needed to reach the optimum also increases.  

! ! !
(a) No. of WTs = 2 (b) No. of WTs = 3! (c) No. of WTs = 4!

Figure 4. Control!actions!and!power!efficiencies!for!different!number!of!WTs. 

! ! !
(a) No. of WTs = 2! (b) No. of WTs = 3! (c) No. of WTs = 4!

Figure 5. Improvement on power production using cooperative control for!different!number!of!WTs.!



Second, we study the effect of wind direction on the effectiveness of the 
cooperative control strategy using the BA algorithm. By varying the wind directions, 
WD = 0°,!WD = 3° and WD = 6°, the BA algorithm is employed to optimize the 
coordinated control actions of 4 wind turbines. Figure 6 shows the trajectories of the 
control actions and the power efficiencies of the 4 wind turbines with the iterations of 
the BA algorithm. As shown in Figure 6(a), when the wind direction is 0° where the 
wake is perfectly aligned with the wind turbine array, the downstream wind turbines, 
WT 2, WT 3 and WT 4, initially produce only a small fraction of the power produced 
by the upstream wind turbine in the front. As the wind direction deviates from 0°, the 
downstream wind turbines are affected less by the wakes formed by the upstream 
wind turbines and, thus, produce more powers compared to the powers produced when 
WD = 0°. 

As shown in Figure 7, the greedy wind farm power efficiency increases as the 
wind direction deviates from 0°. For example, when WD = 6°, the wind farm power 
efficiency is higher than 80% even before executing the cooperative control strategy. 
When the cooperative control strategy is employed, the wind farm power efficiency 
further increases. Note that the differences between the optimum power output and the 
initial (greedy) power production of the four wind turbines became smaller as the 
deviation of the wind direction from 0° increases.  

! ! !
(a) WD = 0° (b) WD = 3°! (c) WD = 6°!

Figure 6. Control!actions!and!power!efficiencies!for!different!wind!directions. 

! ! !
(a) WD = 0°! (b) WD = 3°! (c) WD = 6°!

Figure 7. Improvement on power production using cooperative control for different wind directions.!



DISCUSSIONS 
 

The effectiveness of the cooperative control using the Bayesian Ascent method 
have been validated by conducting wind tunnel experiments with 4 scaled wind 
turbines. Results show that, for different number of wind turbines and wind 
directions, using the cooperative control approach, the total wind farm power 
production improves significantly as comparing to power production using the 
conventional control greedy control approach. By measuring the power outputs and 
executing the trial control actions, BA method is able to find optimum coordinated 
control actions of the wind turbines using a small number of iterations. The 
proximity constraint imposed on the BA algorithm ensures that the total wind farm 
power efficiency increases monotonically by gradually changing the control actions, 
i.e., the yaw and the blade pitch angles. It should be emphasised that in general the 
amount of power improvement that can be achieved through the optimization 
depends on the types of wind turbines (e.g., blade shape and generator) and the 
wind flow conditions, e.g., turbulence level.  
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