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ABSTRACT 
 
This paper describes a decision analysis approach to TMDL implementation decisions for 
mercury using a hypothetical mine-impacted tributary in the San Francisco Bay as an 
example.  Decision analysis is a theoretically sound approach for making significant 
decisions under uncertainty (see, e.g., Howard, 1968; 1988; Keeney and Raiffa, 1976; 
Clemen, 1996; Merkhofer, 1999).  The Bayesian probabilistic nature of decision analysis 
makes it ideal for integrating diverse information, including the results from scientific 
and engineering models, cost and benefit models, empirical data, and expert judgment.  
One significant advantage of a decision analysis approach is its explicit separation of a 
decision problem into alternatives, information, and preferences.  This, in theory, allows 
decision makers and stakeholders to separate “what we know” from “what we want”.  It 
is hypothesized that a more explicit separation of information and values/preferences will 
focus the debate.  While traditional decision analysis assumes a single rational decision 
maker (where “single” may also denote a group that agrees on information and 
preferences), it can be extended to multiple decision maker situations in a variety of 
ways.  Evaluating various extensions of decision analysis in a TMDL implementation 
stakeholder context is one of the primary goals of this on-going study.  It is hypothesized 
that, in general, decision analysis provides a helpful decision framework for a TMDL 
implementation planning/stakeholder process in many circumstances. 
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INTRODUCTION 
 
Background 
 
There are a number of examples of the use of decision analysis for environmental 
decision making in the literature, often in the area of site selection or choosing between 
remediation, restoration, or technology alternatives (e.g., Keeney, 1980; Merkhofer and 



Keeney, 1987; Maguire and Boiney, 1994; Reckhow, 1994a; Merkhofer et al., 1997; 
Perdek, 1997; Kruber and Schoene, 1998; Freeze and Gorelick, 1999; Merkhofer, 1999; 
Bonano et al., 2000; Anderson and Hobbs, 2001).  Environmental decision situations are 
often rife with uncertainty and controversy, requiring the integration of diverse kinds of 
information and compromises between diverse interests.  TMDL load allocation 
decisions are typical in this regard (NRC, 2001; Boese, 2002).  Common TMDL decision 
issues include dealing with appreciable scientific uncertainty and information gaps in 
understanding the relationships between loadings, mitigation, and effects, determining 
whether to make allocation decisions based on what is currently known or whether to 
collect new data and perform new analyses before making those decisions, and 
prioritizing pre- and post-implementation monitoring activities.  Decision analysis 
provides a normative (as opposed to descriptive) framework for providing decision 
clarity for these kinds of decision problems.  The theory behind decision analysis does 
not attempt to predict decision strategies that people will choose, but rather, it attempts to 
predict decision strategies people should choose, given a set of beliefs, alternatives, and 
preferences (the decision basis).  In a group decision situation, if consensus is achieved 
on the decision basis, decision analysis can be used to determine optimal decisions.  If 
consensus is not achievable, decision analysis may be used to highlight areas of 
agreement and disagreement, allowing insights into potential compromises and/or 
defining positions for negotiation.  
 
Decision analysis makes use of the Bayesian (subjective) definition of probability, which 
treats uncertainty as a probability and allows the decision maker to combine various 
kinds of information into a unified probabilistic framework.  For decisions that involve 
perturbations to natural systems, Bayesian (probabilistic) networks that are built up from 
the best available scientific models, data, and expert judgments can be used to predict the 
consequences of those decisions (Borsuk et al., 2001, 2002; Stow et al., 2003; Reckhow 
et al, 1999).  In practice, empirical models and expert judgment are the most 
straightforward means to creating the needed probabilistic relationships.  While 
uncertainty analyses of mechanistic models can be used for this purpose, the 
computational burden can be excessive (Reckhow, 1999).  
 
Bayesian (probabilistic) networks are by design “as simple as they need to be, but no 
simpler”.  This approach allows the modeler to focus on predictive accuracy for the time 
and spatial scales desired for the variables of interest to the decision makers, removing 
details that are determined to be extraneous to the decision problem.  As pointed out by 
Reckhow (1999), this approach often leads to superior predictive accuracy compared to 
deterministic scientific models of water quality impacts.  The loss of mechanistic 
descriptive power is compensated by the ability to perform sensitivity analyses, explore 
scenarios probabilistically, and estimate credibility of compliance predictions.  Recent 
work has demonstrated that water quality management effects can be effectively modeled 
using Bayesian (probabilistic) networks (e.g., Reckhow, 1999; Borsuk et al., 2001; 
Borsuk et al., 2002; Stow et al., 2003).  Since compliance is predicted probabilistically, a 
margin of safety (MOS) can be explicitly considered in terms of credibility of compliance 
predictions. 
 



From a decision analysis perspective, the Bayesian network model of interest is the 
influence diagram, which combines decisions (“what you can do”) with a model of key 
uncertainties (“what you know”), subject to a valuation model (“what you care about”) 
(Howard and Matheson, 1984; Shachter, 1986; 1988).  If consensus is achieved on 
preferences, influence diagrams allow determinations of optimal decisions, sensitivity of 
the optimal decision to key uncertainties and assumptions, and value of information on 
uncertainties, which may be used to plan future information gathering activities.  Value 
of information refers to the fact that improvements in the state of information before a 
decision is made can lead to a change in the predicted optimal policy.  It is the potential 
for changing the optimal policy that generates economic value (see Howard, 1968; 
Lawrence, 1999). 
 
Even without consensus on preferences, sensitivity analysis can be performed to explore 
relationships between key uncertainties and variables of interest (e.g., water quality 
endpoints), allowing the decision makers to explore “what-if” scenarios of interest.  
When preferences are ignored (i.e., the value model is removed), the underlying Bayesian 
network may be referred to as a “belief network”.  In the context of water quality 
management decisions, belief networks can be thought of as modeling the response of the 
natural system to management strategies.  For example, one could use a belief network to 
probabilistically explore the relationship between mercury load reductions and mercury 
fish tissue levels under a variety of scenarios, in essence demonstrating how beliefs about 
future mercury fish tissue levels change with load reductions.  This research project 
makes extensive use of influence diagrams and belief networks as tools for performing 
TMDL decision analysis.  However, the emphasis is on the use of these tools for 
supporting decisions, not as water quality models per se. 
 
This paper demonstrates an influence diagram model of mitigation/load allocation 
decisions for a simple mercury TMDL example.  Such a model can be used throughout 
the TMDL decision process, including initial information gathering decisions, load 
allocation/mitigation decisions, and post-implementation monitoring decisions.  The 
essential insight is that information gathering/monitoring decisions, whether made before 
or after allocation decisions, draw their value from making better load 
allocation/mitigation decisions.  For this reason, information gathering decision models 
build on load allocation/mitigation decision models.  Our load allocation/mitigation 
decision model integrates a Bayesian (probabilistic) network model of environmental 
system response to mitigation decisions with a valuation model, allowing insights into the 
credibility of compliance with multiple numerical standards, insights into sensitivity of 
conclusions to small changes in model parameters, and, if a value model can be defined, 
the determination of optimal strategies.   
 
It is emphasized that decision analysis applied to group decision situations should be 
thought of as a process by which groups may discover useful insights that highlight 
where consensus may be achieved and where obstacles requiring clarification, 
negotiation, mediation, or litigation may lay.  There are many competing versions of 
decision analysis with variations on how alternatives are generated, uncertainty is 
represented, preferences are elicted, etc.  In this paper we describe a decision analytic 



approach that is based on small group elicitation of goals, objectives, and alternatives, a 
probabilistic model of natural system response, and several potential methods for eliciting 
and representing preferences.  Other related approaches may be just as appropriate, 
depending on circumstances.  One of the focuses of this paper is dealing with the problem 
of competing preferences between stakeholders, both from the perspectives of making 
decisions and representing preferences. 
 
At the highest level, decision analysis divides the decision problem into alternatives, 
information, and preferences.   In the context of public environmental decision making, 
these could be cast as:  1) decision framing/strategy generation; 2) information 
modeling/synthesis/forecasting; and 3) multiattribute utility analysis, negotiation among 
interest groups, or other methods of eliciting and representing preferences.  Each of these 
aspects of decision analysis will be described further through examples, with the goal of 
showing how decision analysis can create clarity in a complex decision problem.  
But first, we discuss the importance of considering uncertainty in the TMDL decision-
making process. 
 
Uncertainty in TMDL Decisions 
 
Models play and will continue to play a central role in the TMDL development and 
implementation process (Reckhow, 1999; NRC, 2001; Lung, 2001; USEPA, 2002).  
Whether the models are empirical (statistical) or mechanistic, they represent the best 
scientific understanding of how contaminant loadings relate to water body impairment of 
designated beneficial uses (NRC, 2001).  Once a waterbody is listed as impaired, 
predictive models are used to assess the relative contributions of various pollution 
sources, to predict the total load reduction required to meet ambient water quality 
standards, and to predict the relationships between specific control measures (e.g., point 
source load reductions) and water quality targets (e.g., ambient water concentration of a 
particular pollutant) in the load allocation process. 
   
Decision-making related to TMDL development and implementation requires one to 
answer questions related to determining the reasons for non-attainment of beneficial use 
and evaluating strategies for mitigating those determined causes.  Neither of these 
questions can be answered with certainty.  Uncertainty, whether the source is incomplete 
knowledge about the natural system, analytical error, or the stochastic variability inherent 
in natural systems, is a reality that any water quality management decision framework 
must recognize, assess, and, when possible, reduce (NRC, 2001).  The decision analytic 
framework proposed in this paper specifically addresses model uncertainty in the context 
of decision making, using Bayesian network models to integrate predictive uncertainty 
about the response of the natural system to proposed mitigation strategies with 
stakeholder valuations of the strategies being considered. 
 
Uncertainty in model predictions can be large and, when explicitly considered, can 
confound interpretation of results in terms of the decisions that need to be made 
(Reckhow, 1994b).  Uncertainty has been, however, often treated superficially in water 
quality management decisions, which can be a major source of contention between 



stakeholders and regulatory agencies (Ortolano, 1997; NRC, 2001).  Historically, this 
occurred because the ability to analyze uncertainty was limited by computing power and, 
in some cases, by a lack of understanding of how to feasibly model and propagate 
uncertainty in large mechanistic water quality models.  Besides the technical aspects, 
even when uncertainty analysis is performed well, the political reality is that discussions 
of the estimated uncertainty often get bogged down with arguments that have more to do 
with preferences than information.  In fact, the use of decision analysis is an attempt to 
incorporate uncertainty directly into TMDL modeling and decision-making in a manner 
that separates information and preferences.  In effect, this attempts to separate the 
estimation of uncertainty from the interpretation of uncertainty.  Disagreements about 
particular beliefs and preferences can be expected to remain, but decision analysis may be 
able to focus the argument on those sources of disagreement, reducing confusion about 
the impact of uncertainty on decisions.  Downplaying uncertainty to avoid these 
confrontations may make for an easier stakeholder process in the short term, but that 
strategy runs of the risk of resulting in poorly informed decisions.  The National Research 
Council (ibid.) suggests the use of adaptive management to deal with the significant 
uncertainty involved in TMDL decisions, an approach that is being employed in many 
TMDLs.  As discussed by Reckhow et al. (2002), an adaptive management approach may 
be modeled with Bayesian networks, but further discussion of adaptive management is 
beyond the scope of this paper. 
 
Preferences 
 
If decision outcomes can be valued in terms of a single attribute (e.g., an exchangeable 
resource like dollars), and consensus can be reached regarding those values and attitudes 
toward risk, decision analysis can be applied straightforwardly to determine an optimal 
decision policy, sensitivity analysis can be used to determine the value of information, 
etc. (e.g., Howard, 1968; 1988; Marshall and Oliver, 1995; Clemen, 1996;  Merkhofer, 
1999).  The optimal decision policy for an uncertain decision situation is the policy that 
maximizes expected utility, a measure of value.  By making maximum expected utility 
the decision criterion, the utility of a particular outcome is weighted by its probability of 
occurrence, so that the strategy that yields the highest expected utility can be thought of 
as promising the “highest probability of achieving the best outcome”.  
 
When a group agrees to cooperate and work towards consensus on information beliefs 
and preferences, the single decision maker decision analysis approach may be used.  
Single decision maker problems involving utility over uncertain monetary outcomes are 
solved in terms of expected utilities, incorporating risk attitudes.  Non-monetary 
outcomes can be accommodated in decision analysis using the “preference probability” 
interpretation of utility, in which the utility of an outcome is interpreted as the probability 
of obtaining the best outcome instead of the worst outcome.  The approach we explore in 
this paper is the use of multiattribute utility analysis to directly define a mapping from 
either monetary or non-monetary outcomes to utilities (Howard, 1984b; Marshall and 
Oliver, 1995; Clemen, 1996; Lawrence, 1999).   
 



However, the assumptions applying in single decision maker situation obviously would 
not describe many TMDL decision situations, which instead can be expected to have 
multiple goals with multiple associated attributes with perhaps no obvious consensus on 
valuing the various possible outcomes.  Note that there are two important issues at stake 
here: 1) TMDL goals have multiple attributes that may not be expressible in terms of a 
single measure like dollars; and 2) based on experience, we can expect disagreements 
between work group/stakeholder group members about valuing outcomes even within an 
agreed-upon multiattribute framework.  Each of these issues can be dealt with, if the 
TMDL decision-making group is willing to cooperate.  This does not require that 
consensus in preferences is achieved, but it does require that group members agree to 
faithfully participate in the decision analysis process. 
 
Work groups and stakeholder groups may use decision analysis in a number of ways, 
including a “competing models” approach in which the work group/stakeholder group 
partitions into sub-groups that agree to act cooperatively in determining mutual 
preferences and preferred alternatives for the purpose of arriving at negotiating positions 
for each sub-group (Chechile, 1991).  In other words, the sub-groups agree to effectively 
behave as a “single decision maker” to determine recommended strategies according to 
the sub-group’s viewpoint.  While major differences may be found between the various 
recommended approaches, numerous points of agreement are expected.  At this point, 
decision analysis may be used further with mediated compromises on preferences and 
information that allows a group “best compromise strategy” to be formulated, but it may 
be necessary to resort to a purely negotiated or political compromise at this point.  The 
advantage of applying decision analysis in this latter case is that the sources of 
disagreement can be more easily identified and that potential compromises may become 
more apparent.  However, if a sub-group is non-cooperative and misrepresents their 
beliefs and preferences in the analysis, decision analysis may not be a useful tool for the 
TMDL decision-making process.  Note that other analytical approaches are similarly 
hobbled by deliberate attempts to misrepresent positions (e.g., cost-benefit analysis).  In 
such cases, political solutions may be inevitable.  In cases in which group members are 
willing to cooperatively state their beliefs and preferences, decision analysis is a robust 
process that should be considered.  
 
Decision Analysis Process 
 
Figure 1 shows a flow diagram representing the decision analysis cycle (Howard, 1984a).  
In a real application of decision analysis, individual steps may be emphasized or de-
emphasized, depending on the particular situation.  Also, a particular step may be 
accomplished using very different tools and some tools may be used in more than one 
step.  So, from a “tools perspective”, two different decision analysis applications may 
appear to be very different, so much so that it may be difficult to see the relationships 
between the two approaches.  However, taking a decision analysis cycle perspective, one 
can see how the seemingly different approaches accomplish the basic steps in decision 
analysis.  For the purposes of this paper, an influence diagram approach to TMDL 
decisions, we will focus on 1)  decision framing/structuring; 2) probabilistic modeling of  
 



Figure 1 - a) Decision Analysis Cycle 
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the natural system response; 3) sensitivity analyses; and 4) dealing with preferences and 
potentially determining optimal strategies and value of information.  In particular, we will 
explore the application of decision analysis to load allocation/mitigation decisions and 
information gathering decisions. 
 
The initial step in the decision analysis cycle is preliminary framing and structuring of the 
decision situation in such a way that decision analysis may be used to evaluate the 
various alternatives.  In particular, framing involves identifying and discussing decision 
performance measures, e.g., decision objectives and their associated measurable/ 
predictable attributes.  Performance measures (attributes) can be thought of as gauging 
the consequences that the decision maker cares about, so that the range of possible 
outcomes may be represented in a meaningful way (Keeney, 1992). 
 
The influence diagram (as a Bayesian network) is a powerful tool that allows the decision 
analyst to perform the deterministic analysis phase, the probabilistic analysis phase, and, 
if a value model can be determined, to estimate the value of information on key 
uncertainties and assumptions.  In brief, the deterministic analysis phase translates the 
results of the framing analysis into a mathematical model for the purpose of determining 



which uncertainties are important enough to warrant probabilistic modeling in the 
subsequent probabilistic analysis phase.  The probabilistic analysis phase assigns 
probabilities to the identified key uncertain variables.  Input variables that have little 
effect on the value model output are assigned nominal (base) values and, thus, are treated 
deterministically.  The required probability distributions are either modeled empirically 
from data or assessed from experts and/or decision makers.  In some cases, it may be 
advantageous to probabilistically combine empirical models with expert opinion.  In the 
probabilistic analysis phase, optimal decisions may be determined if a value model can be 
constructed.  The influence diagram may be further manipulated to perform probabilistic 
sensitivity analysis to determine how sensitive the optimal policy is to current beliefs 
about key uncertainties.  The decision analyst may find that the optimal policy may 
change given small changes in probability distributions for a key uncertainty, in which 
case further analysis may be recommended.  Performing and reporting the results of 
sensitivity analysis may be critical in achieving the degree of “decision transparency” that 
promotes buy-in from stakeholders.  
 
Value of information analysis may also be performed as this stage to determine if 
additional information may have the potential to change the optimal policy.  From a 
decision analysis perspective, new information only has value when the optimal policy 
may change in response to the new information (Howard, 1968; Lawrence, 1999).  Since 
value of information analysis requires consensus in preferences, it may not resolve 
disagreements about information gathering or technical review activities between sub-
groups.  However, it can provide the basis for positions on information gathering and 
technical review activities within sub-groups and can shed light on the sources of 
agreement and disagreement regarding these activities. 
 
Influence Diagrams (Bayesian Networks) for Environmental Decision Analysis:  
Graphical Tools for Decision Problem Framing 
 
Influence diagrams are often used as framing tools for graphically representing the 
decision problem in terms of the relationships between decisions, uncertainties, and 
performance measures (Howard and Matheson, 1984; Shachter, 1988; Howard, 1990; 
Merkhofer, 1990; Marshall and Oliver, 1995).  The influence diagram can be constructed 
as a group exercise in decision framing, focusing attention on the relationships between 
the important variables in the decision situation, including decision strategies, uncertain 
variables describing the state and response of the natural system, and variables related to 
valuing outcomes.  In addition to graphically representing important aspects of the 
decision problem, the influence diagram can be used to determine information/ 
forecasting requirements, probability assessment order, and, if decision trees are to be 
used, decision tree structure.  Deterministic sensitivity analysis may later determine that 
one or more uncertainties can be treated deterministically and hence the influence 
diagram may evolve during the decision analysis problem.  The role of the influence 
diagram in determining information and modeling/forecasting needs is very important: 
this approach helps decision makers and technical experts/scientists communicate about 
what information is important in terms of the decisions to be made.   
 



Influence Diagrams as Bayesian Networks for Solving Decision Problems 
 
In addition to decision framing, influence diagrams can also be used directly as Bayesian 
network models by adding to the graph the requisite probability structures needed for 
modeling consequences and value.  In this use, an influence diagram is a class of 
Bayesian networks that may include nodes representing uncertain system variables, 
deterministic system variables, decision variables, and a value variable.  Optimal 
decisions are those that maximize expected utility through relationships between the 
value variable and the other variables.  Thus, influence diagrams can be used in lieu of or 
in parallel with decision trees to solve for optimal decisions, to evaluate sensitivity of the 
optimal decision to information and model assumptions, to estimate the value of 
information and control, and to make inferences from the available data important to the 
decision situation (Howard and Matheson, 1984; Shachter, 1986; Oliver and Smith, 1990; 
Pearl et al., 1990).  In the approach described in this paper, decision trees (Chechile, 
1991; Marshall and Oliver, 1995) are avoided altogether and the Bayesian network is 
used as the primary analytical tool. 
 
To emphasize the point, the Bayesian network version of the influence diagram may be 
used to make predictions about the response of the natural system to changes in those 
variables over which the decision maker has some control.  Bayesian networks without 
decision or value nodes (“belief networks”) can be also used to model reasoning under 
uncertainty and may be used as predictive tools in decision situations, e.g., water quality 
management decision situations (Reckhow, 1999; Borsuk et al., 2001).  One of the 
advantages of using a Bayesian network approach is that the model evolves as new 
information is collected, yielding an updated model that reflects the current state of 
knowledge about the system of interest, synthesizing prior information and new evidence 
using theoretically sound probabilistic calculus (Jensen, 2001; Shachter 1986, 1988; 
Reckhow, 1999; Pearl et al., 1990; Varis, 1995). 

 
Figure 2 shows an example of a Bayesian (belief) network representing causal 
relationships between precipitation, creek flow, river flow, mine mercury load, creek 
mercury load, and total mercury in water (HgT).  The belief network consists of a graph 
and probabilistic data associated with the nodes in the graph.  The graph consists of nodes 
(ovals) connected by arrows.  Ovals represent chance (uncertain) nodes and associated 
with each chance node is a random variable.  The random variables in the Bayesian 
network represent the attributes of interest to decision makers.  Arrows represent 
potential conditional probabilistic dependence between the various random variables and 
can be drawn in a causal direction.  Graphically, the arrow points from the “parent node” 
to the “child node”, which intuitively indicates that the child node somehow “depends” 
on the parent node.  More precisely, an arrow from a parent node to an uncertain variable 
(child) means that the probability distribution in the uncertain variable (child) is 
conditioned on the state of the parent node.  The absence of an arrow between two 
variables indicates that the variables are conditionally independent.  If there is a directed 
path between two variables (i.e., there exists a set of arcs between them which can be 
traversed in the direction of the arcs) which do not have a direct parent/child relationship, 
those variables may or may not be relevant to one another, depending on the state of 



information.  For example, Figure 2 asserts that precipitation may be relevant to total 
mercury in water (HgT) if at least one of the values for “Mine Hg Load”, “Creek Hg 
Load”, and “River Flow” has not been observed.  But, it also asserts that, given 
observations for “Mine Hg Load”, “Creek Hg Load”, and “River Flow”, precipitation and 
total mercury in water are conditionally independent of each other.  These assertions of 
conditional independence are very important in terms of understanding information needs 
and performing decision analysis. 
 
The variables included in a network may be included for a variety of reasons, including 
the decision makers’ direct interest in the state of a variable (e.g., HgT) or because the 
variable helps to interpret or predict those variables of direct interest (e.g., precipitation).  
It is important to understand that variables needed from a technical perspective for 
modeling a particular complex system do not need to be shown in the version of the 
Bayesian network used for decision analysis, communicating with decision makers or 
stakeholders, etc.  Variables needed only for modeling reasons can be probabilistically 
absorbed into the network, which yields the same results as before the nodes were 
removed.  The local representation is changed, but the global probabilistic relationships 
are not affected (Shachter, 1988; Pearl et al., 1990).  As there may indeed be variables of 
interest to scientists about the natural system being modeled that are not important to 
decision makers, this is an important point to understand. 
 
The conditional probabilistic relationships between conditionally dependent variables can 
be quantified in a modular fashion using an approach suitable to the kind and amount of 
information available, where this modularity follows from the conditional independence 
relationships in the model (Reckhow, 1999; 2002).  This allows various kinds of 
statistical and subjective probabilistic information (from data, models, and expert 
judgment) to be integrated into a single probabilistic network model that can be used for 
predictions and inferences of use in decision-making situations.  Prediction refers to 
following an arrow in the forward direction, i.e., predicting the probability distribution of  
 
Figure 2 - Bayesian Network Example 
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a child node based on the values or distributions of its parent nodes.  Inference refers to 
following an arrow in the reverse direction, i.e., inferring the probability distribution of 
the parent nodes based on evidence about the value of the child node(s) (Jensen, 2001).  
The ability of a Bayesian network to make predictions is useful, for example, when trying 
to model the effects of particular mitigation strategies on water quality attributes of 
interest.  Learning what new evidence about a predicted variable means in terms of 
hypotheses about cause and effect between parent and child nodes is an example where 
the ability of Bayesian networks to perform inference may be useful. 
 
A point that needs to be emphasized here is that while such an influence diagram model 
(or any other model) is an imperfect representation of the real system, it should faithfully 
represent how the decision maker believes the real system will behave, given the 
available data and current scientific understanding.  The decision maker can do no better 
than this when making a decision.  In particular, if the optimal strategy is sensitive to 
slight changes in the underlying probability distributions, then a value of information 
analysis may determine that re-framing the load allocation/mitigation decision problem as 
an information gathering decision problem may be the best course of action.  If there are 
regulatory constraints that prevent this re-framing, using the existing model to suggest 
optimal strategies is the best course of action, from the decision analytical perspective. 
 
METHODOLOGY AND DISCUSSION 
 
Framing the Decision:  Objectives Hierarchy 
 
Decision framing tools are used to represent the decision situation in a way that enables 
the evaluation and comparison of alternatives according to criteria that are meaningful to 
the decision maker.  The objectives hierarchy is a common framing tool that identifies 
and organizes decision outcome performance measures (attributes), which are used as 
evaluation criteria (Keeney, 1992) and can be used as variables in an influence diagram 
representation of the decision problem.  Keeney (ibid.) organizes the objectives hierarchy 
with:  1) an overarching decision goal at the top of the hierarchy; 2) a set of issue-specific 
objectives consistent with and subject to this top goal; and 3) a set of attributes consistent 
with and subject to the specific objectives.  There may be more than one level of 
objectives between the top decision goal and the decision attributes, depending on the 
framing desired by the decision makers.  Attributes are ideally the performance measures 
that the decision makers care about, and they should be chosen to be well-defined, 
measurable (at least in theory) and predictable.  When the objectives hierarchy is 
complete, the attribute set formed should be comprehensive (capture all of the aspects of 
value at stake), minimal (as small in number as possible), independent of one another, 
and operationally feasible (Keeney and Raiffa, 1976; Reckhow, 1994a).  These 
requirements ensure that there are no “holes” or “double-counting” in the analysis and 
that a suitable value model can be constructed (Merkhofer, 1999). 
 
Figure 3 shows a hypothetical objectives hierarchy for a mercury TMDL for a tributary to 
the south San Francisco Bay.  In practice, the objectives hierarchy would be developed by 
the TMDL work group and/or stakeholder group, with the help of the decision analyst.   



The top goal in this example objectives hierarchy is to manage mercury contamination in 
the watershed, with objectives pertaining to protecting human health and wildlife (sub-
objectives of reducing mercury methylation potential and methylmercury levels), meeting 
Basin Plan water quality objectives for total mercury, maintaining adequate flood control, 
meeting the ten and twenty year total mercury load reductions under the San Francisco 
Bay mercury TMDL, and controlling compliance costs.  Each objective is translated into 
one or more attributes, and this is shown graphically by arrows pointing from a given 
objective to its attributes (performance measures).  Attributes serve multiple roles in 
decision analysis.  They form the basis of the value model, since they are the 
performance measures that matter to decision makers, and they define information needs 
for decision modeling.  In this latter role, TMDL decision situation attributes help define 
which natural system variables need to be modeled for relating management strategies to 
value, as will be demonstrated below. 
 
For example, the “mercury fish tissue levels” attribute might be defined as the average 
mercury fish tissue burden of a particular fish species (with perhaps specified weight 
range, sex, etc.) within the watershed over some time scale.  An attribute that might be 
less obvious in the context of mercury mitigation, but that may be very important to some 
stakeholders is flood capacity.  The use of flood capacity as an attribute allows decision 
makers to keep track of the impact of mitigation strategies on flood capacity, while  
 
Figure 3 - Hypothetical Objectives Hierarchy for Managing Mercury in a Small 
Mine-Impacted Tributary to the South Bay. 
 

Manage Mercury Contamination in the Watershed in Terms of Objectives for Water Quality, Flood
Control, and Human and Ecological Health

Control Costs

Mitigation
Costs

Cost
Distribution

Information
Gathering

Costs

Protect Human Health and
Wildlife

MeHg
Potential

MeHgT

Control Hg
Loads to South

SF Bay

MeHgT Load
to South Bay

HgT Load
to South

Bay
Shading

Areal
Extent

Maintain
Flood Control

Flood Control
Modification

Costs

Flood
Capacity

Meet Basin Plan Objectives
and Attain Federal Water

Quality Standards

HgT

Hg Fish
Tissue
Levels

Flood
Control
Benefits

Reduce
MeHg
Levels

Dissolved
Oxygen
Levels

Reduce MeHg
Potential

Sulfate

 



simultaneously evaluating those strategies in terms of other attributes.  While establishing 
TMDL performance measures is an explicit activity in the TMDL process, it is important 
to identify a list attributes that capture all stakeholder values that may be significantly 
affected.  To emphasize the point, it is important to frame the problem not just in terms of 
“technical TMDL endpoints”, but also in terms of attributes that characterize objectives 
that matter to stakeholders in terms of idiosyncratic preferences.  In fact, capturing this 
latter class of attributes may make the difference between understanding why stakeholder 
values lead to disagreements about acceptable strategies later in the decision process and 
finding a situation in which there are arguments that are seemingly about “technical 
information”, but that really reflect unstated preferences. 
 
It is common, but often unheeded, advice in the decision analysis literature to 
appropriately focus attention at this step since careless framing can lead to “solving the 
wrong problem”, leading to inappropriate or incomplete consideration of alternatives, a 
short-sighted understanding of the decision situation, and a misappropriation of resources 
(Howard, 1968; 1988; Reckhow, 1994a; Clemen, 1996; Merkhofer, 1999).  Nevertheless, 
decision makers often treat this stage cursorily and plunge quickly into more familiar 
territory:  technical problem framing, information gathering, modeling, and analysis.  
Decision makers often have a good understanding of many aspects of the decision 
problem “going in” to a particular decision situation, which can sometimes lead to the 
misapprehension that detailed decision framing exercises are unneeded.  However, 
extensive decision framing can lead to better planning and resource allocation and to 
evaluating the “right alternatives” in terms of the “right attributes” for making good 
TMDL decisions.  To a significant degree, TMDL guidance documents already promote 
this activity from the technical perspective. 
 
Identifying Alternatives and Generating Strategies 
 
Keeney (1992) describes a number of methods for using the attributes and objectives 
from the objectives hierarchy to explore and generate decision alternatives.  Clemen 
(1996) provides a basic and useful summary of various techniques, including some of the 
methods discussed in Keeney (ibid).  The methods build on the identified goals, 
objectives, and attributes, stressing the importance of flexibility and creativity.  One tool 
in particular may be useful for generating TMDL strategies: the strategy table.  Figure 4 
shows a simple example of a strategy table with two strategies.  Strategy tables are fairly 
intuitive and the tool can be used in a group setting without much introductory material 
required.  The basic idea is to capture the possibilities, then to select a manageable 
number of strategies as alternatives for further decision analysis.  A strategy consists of a 
set of single elements from each column in which the combination of those elements 
makes sense as an approach.  There will, of course, be combinations that are incoherent 
and these combinations would not represent a viable strategy.  In a real TMDL allocation 
decision situation, the strategy table would be expected to have more elements (columns), 
making such an approach useful for brainstorming and organizing complexity.  In Figure 
4, two strategies are shown for illustration:  1) a methylmercury potential mitigation 
strategy that includes “medium reductions” for mine site and creek mercury loads and an 
aggressive reduction of mercury methylation potential and 2) a mine site mercury load 



reduction strategy that includes a large reduction requirement for mine site mercury 
loading and minimal reductions for creek mercury loading and mercury methylation 
potential. 
 
Once an objectives hierarchy has been created and alternatives have been generated, the 
decision analyst will work with the group to create an influence diagram from the chosen 
attributes, alternatives, and variables representing identified important uncertainties.  
Attributes may become variables in an influence diagram or may become part of the 
value model, depending the nature of the attribute.  It may be worthwhile to revisit the 
objectives hierarchy and strategy table after the influence diagram has been created to see 
if revisions are necessary.  
 
Multiattribute Utility Analysis 
 
Multiattribute utility analysis (MUA) is designed to deal with the complexity of eliciting 
and representing the values at stake in complex decision problems like environmental 
decision situations (Keeney and Raiffa, 1976; Gregory, 1999; Merkhofer, 1999; Prato, 
2003).  In particular, multiattribute utility analysis (MUA) or other approaches (e.g, the 
analytic hierarchy process) may be used to elicit and represent preferences when multiple 
decision attributes/criteria are important (Chechile, 1991; Marshall and Oliver, 1995; 
Merkhofer, 1999).  In general, MUA is conceptually simple, but may become 
operationally complex with details that should burden the decision analyst and not the  
 

Figure 4 - Strategy Table Example. 
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decision makers/work group.  One problem is that lay people may see this apparent 
complexity as being suspect, so great care should be taken to ensure that decision 
makers/work group members sufficiently understand the concepts being used so that the 
preference representation approach is trusted (Morgan and Henrion, 1990).   
 
While there may be consensus that one alternative appears superior to the others in terms 
of one particular attribute, it may appear inferior in terms other attributes.  Trade-offs 
between attributes is thus usually necessary and this idea is at the core of multiattribute 
decision making (Keeney and Raiffa, 1976; MacCrimmon and Wehrung, 1977; 
Merkhofer et al., 1997).  MUA can be used directly to rank alternatives in terms of 
weighted utilities (Prato, 2003), ignoring probabilities of outcomes in the decision 
making process.  However, it can also be used in a decision analysis framework that 
includes a probabilistic treatment of uncertainty and that determines best policies based 
on expected utility.  
 
Once the decision analyst elicits preferences between outcomes among the various 
decision attributes for each decision maker sub-group, the consensus preferences for each 
sub-group can be aggregated into a multiple-attribute utility function and maximum 
expected utility can be determined.  Note that MUA does not require monetization of 
preferences, one of the appeals of the technique.  Other approaches like probabilistic 
cost-benefit analysis, cost-effectiveness analysis, minimization of chance of worst 
possible outcome, etc. could also be used, depending on the situation (Morgan and 
Henrion, 1990). 
 
To illustrate the MUA process, Table 1 shows an example multiattribute utility analysis 
(MUA) for a few outcomes for the two strategies from Figure 4, MeHg Potential 
mitigation focus (Strategy 1) and mine site Hg load reduction focus (Strategy 2), as 
evaluated by a hypothetical decision maker sub-group.  Other sub-groups could be 
expected to have different results.  This analysis assumes that the decision problem is 
being modeled with discrete probabilities and that there are a finite number of possible 
outcomes.  MUA can then be used to define a utility function over those outcomes, as 
suggested by this example.  Here the sub-group chose a weighting scheme of 0.3 for cost, 
0.6 for credibility of compliance with total mercury load to the south bay target, and 1.0 
for credibility of compliance with mercury fish tissue level target.  Composite utilities are 
shown in the rightmost column.  Other approaches to defining a multiattribute utility 
function or analogous scoring functions could be used, depending on the wishes of the 
subgroup.    
 
Credibility of compliance refers to the conditional probability (not “confidence” in the 
statistical sense) that a particular attribute has a value that meets a particular target 
(threshold) value, as computed within the network.  The threshold could itself be 
uncertain, but need not be.  The credibility of compliance in essence becomes a node in 
the Bayesian network conditioned on the attribute (target) of interest.  The concept is 
similar to the “confidence of compliance” described in the literature, but is referred to  



Table 1.  Multiattribute Utility Analysis for Several Outcomes for Strategies 1 and 2 
for a Particular Sub-Group 
 
Possible Outcomes Utility 

on Cost1 
Utility on 
COC Load2 

Utility on 
COC fish3 

Composite Utility 
Using Weighting 
Scheme 

Strategy 1, Cost = 15, 
COC Load = 30%, 
COC fish = %20 

10 2 1 5.2 

Strategy 1, Cost = 30, 
COC Load = 35%, 
COC fish = 50% 

6 3 9 12.6 

Strategy 2, Cost = 30, 
COC Load = 40%, 
COC fish = 30% 

6 4 4 8.2 

Strategy 2, Cost = 50, 
COC Load = 60%, 
COC fish = 45% 

2 8 6 11.4 

 .... other outcomes ... ... ... ... 
 
1 Mitigation cost 
2 Credibility of compliance with total mercury load to the south bay target 
3 Credibility of compliance with mercury fish tissue level target 
 
here as a “credibility” since it is not statistical confidence to which we are referring.  The 
concept may prove to be useful for evaluating mitigation/allocation strategies since 
strategies that yield higher probabilities of success would naturally be more appealing.  
 
While the sub-groups may well arrive at different conclusions, their respective positions 
should be well-defined in terms of beliefs about probabilities of outcomes and their 
preferences.  Consensus building exercises that attempt to arrive at compromises may be 
performed or negotiation between the various sub-groups may follow.  Again, the 
advantage of using decision analysis is that the positions of each sub-group should be 
clear and the various sources of differences in positions should be apparent.  The price 
that must be paid to get to this point is that the work group members must agree to  
accurately state their beliefs and preferences.  If trust is lacking, then appropriate 
measures may be required (e.g., allowing sub-groups to develop their positions privately 
without sharing analyses) or non-analytical approaches may be required.  Exploring the 
possibilities and determining “what works and why” is an active area of research.   
 
Such a multiattribute utility function could be used in an influence diagram model of 
TMDL decisions to determine optimal decisions, perform sensitivity analysis for 
expected utility, and estimate the value of information in terms of utility.  If preferences 
can be expressed in monetary terms, a monetary value of information can be estimated 
for the uncertainties.  One could argue whether or not this appropriate, but the choice 



reflects the wishes of the sub-group cooperating in the analysis.  Whether the scale is 
dollars or utility, value of information provides a useful signal for prioritizing 
information gathering activities and technical review needs. 
 
Influence Diagrams for Forecasting Allocation Decision Consequences 
  
Designing and implementing a Bayesian network model occurs in three stages:  1) 
development of the graphical model linking the identified variables in terms of 
conditional independence relationships; 2) assessment of the required conditional or 
marginal probability distributions for each variable; 3) entering evidence/observed data 
(if applicable) on observable nodes in the compiled model to see how beliefs in 
unobserved nodes are affected (Jensen, 2001).  In the example that follows, the Netica™ 
Application for Belief Networks and Influence Diagrams (Norwys Software Corp, 1996) 
was used to implement the model.  Other Bayesian network development environments 
include the MatLab Bayes Net Toolbox (Murphy, 2002), Microsoft® Bayes Networks 
(MSBN), and Analytica® (Lumina Decision Systems, Inc.).  Russell Almond at the 
University of Washington maintains a website listing and reviewing Bayesian network 
software: http://www.stat.washington.edu/bayes/almond/belief.html#MSBN.  Morgan 
and Henrion (1990) discuss considerations and issues in choosing a computing 
environment for probabilistic analysis.  
 
Figure 5 shows an influence diagram that describes a decision situation building on the 
belief network from Figure 2.  This influence diagram includes a decision variable (Load 
Allocation/Mitigation Decisions), new chance variables for mercury methylation 
potential, total mercury in water (MeHgT), mercury fish tissue levels, annual total 
mercury load to the bay, mitigation cost, credibility of compliance (discussed below) for 
methyl mercury levels in fish, and, credibility of compliance for total mercury load to the 
bay.  It also includes a multiattribute utility node (value node) defined in terms of 
mitigation cost, credibility of compliance with a mercury fish tissue target, and credibility 
of compliance with the annual total load to the bay target.  By eliciting decision maker 
(sub-group) preferences over outcomes in terms of these three attributes with 
multiattribute utility analysis, optimal load allocation/mitigation decisions can be 
determined for the sub-group using this model.   
 
The influence diagram in Figure 5 states that given total mercury concentration in water 
and the river flow, the annual total mercury load to the south bay is independent of the 
mine and creek loads.  Precipitation and creek flow are modeled with marginal 
(unconditional) distributions based on the available historical data.  The mine mercury 
load is modeled as being conditional upon precipitation and the mine site mercury load 
allocation.  The creek mercury load is modeled as being conditional upon creek flow and 
the creek mercury load allocation.  To further illustrate the concept of conditional 
independence, note that given observations for HgT in water and river flow (e.g., annual 
average values over the waterbody), the annual total mercury load to the south bay is 
conditionally independent of the creek Hg load and mine site Hg load.  This does not 
mean that creek Hg load and mine site Hg load do not impact the total annual Hg load to 
the bay, but rather that the influence is through the HgT in water variable.  From a causal  



Figure 5 - Influence Diagram for Mercury Load Allocation/Mitigation Decisions for 
a Small Watershed Impacted by a Mercury Mine Site and Mine Wastes.  
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perspective, the observed HgT in water value would “reflect” any influence from the mine 
site and creek Hg loadings, which is why the loadings become irrelevant upon 
observation of HgT.  When HgT in water is not observed, the mine site Hg load and creek 
Hg load variables are relevant to the annual total Hg load to the bay through their 
collective influence on the HgT in water variable. 
 
Assumptions about spatial and temporal averaging are built into the Bayesian network, as 
appropriate to the particular decision problem.  For this simple example, precipitation and 
creek flow probability distributions represent the available data over annual cycles and 
total mercury in water (HgT in water) refers to annual average concentration over the  
waterbody.  These assumptions were made to keep the number of variables manageable 
for illustration.   
 



The model in Figure 5 represents that fact that decision makers have influence over the 
natural system, even though the decision outcomes are uncertain.  Control is represented 
in the graph by arrows from the decision node to the Mine Hg Load, Creek Hg Node, and 
Hg Methylation Potential nodes.  In an influence diagram, if the parent node is a decision 
variable, the probability distribution for the uncertain variable child is conditioned on the 
decision made.  This control can be thought of in causal terms as the ability of the 
decision maker to require mitigation actions that reduce mercury loadings or alter 
environmental factors such that mercury methylation potential should be reduced (e.g., 
river or creek shading, reservoir aeration). 
 
To understand how that influence over loading and methylation potential propagates 
through the other variables in the network, ultimately influencing value (multiattribute 
utility), we must understand how information “flows through” the network.  For example, 
the Creek Hg Load node is the parent of HgT in water node.  When the parent of a chance 
node is another chance node, the child’s probability distribution is conditioned on the 
state of the parent chance node, which may either have an observed value or may itself be 
represented by a conditional probability distribution.  In this example, the load 
allocation/mitigation decision alters the Creek Hg Load conditional probability 
distribution, which in turn alters the HgT in water conditional probability distribution.  In 
this manner, the uncertain impacts from the chosen allocation/mitigation strategy 
propagate through the network, influencing the conditional probability distributions for 
the attributes of interest to decision makers.  A chance node with no parents is described 
by an unconditional (or marginal) probability distribution, typically created from 
historical data (e.g., precipitation).   
 
Bayesian networks can accommodate a mixture of continuous and discrete probability 
distributions for uncertain variables.  In special cases decision variables can be 
continuous (e.g., Gaussian influence diagrams), but in general decision variables are 
discrete.  In the implementation for the influence diagram shown in Figure 5, 
precipitation, creek flow, mine and creek loads, total mercury concentration in water, 
annual mercury load to the south bay, and mitigation costs are continuous.  Mercury fish 
tissue levels are modeled as discrete, given the high uncertainty. 
 
Optimal Decisions and Sensitivity Analysis Using Influence Diagrams Without a 
Value Model 
 
To illustrate how influence diagrams can be used to perform decision analysis without a 
value model, Figure 6 simulates predictions for the hypothetical strategy focusing on 
reducing mercury methylation potential (“MeHg Potential Mitigation Focus”) from the 
strategy table shown in Figure 4.  For this strategy, “medium reductions” are chosen for 
mine site and creek Hg load reductions and a “high reduction” is chosen for MeHg 
potential reduction.  This simplified hypothetical model predicts mine Hg load, creek Hg 
load, HgT in water, MeHgT in water, Hg fish tissue levels, the annual total mercury load 
to the south bay, and credibility of compliance measures for fish tissue levels and the load 
to the bay.  For this strategy, the predicted credibility of compliance with mercury fish  



Figure 6 – Example Predictions for “MeHg Potential Mitigation Focus” Strategy. 
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tissue targets is around 60% and the predicted credibility of compliance with the annual 
Hg load to the south bay is around 42%.  The average predicted cost for this strategy is  
28 with a standard error of 19, where the units are arbitrary (e.g., $10,000).  
 
For a comparison, Figure 7 simulates predictions for the other hypothetical strategy from 
the strategy table, “Mine Site Load Reduction Focus”, in which a “high reduction” is 
chosen for the mine site Hg load and “low reductions” are chosen for the creek Hg load 
and MeHg potential.  For this strategy, the predicted credibility of compliance with 
mercury fish tissue targets is around 50% and the predicted credibility of compliance 
with the annual Hg load to the south bay is around 40%.  The average predicted cost for 
this strategy is 48 with a standard error of 20 in the same arbitrary units.  In this simple 
example, the “MeHg Potential Mitigation Focus” strategy is clearly superior in terms of 
predicted credibility of compliance for both endpoints (fish tissue levels and annual load 
to the bay) and mitigation cost.  The first question that arises at this point is how robust is 
this conclusion?  Another question that arises is, what would happen if the results were 
“mixed”, in the sense that one strategy was superior in terms of one attribute and the 
another was superior in terms of another attribute?  In most real world cases, “mixed 
results” would be anticipated.  The first question may be addressed with sensitivity 
analysis and the second with multiattribute utility analysis, which will be explored next.  
 



 
 
Figure 7 – Example Predictions for “Mine Site Load Reduction Focus” Strategy. 
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Sensitivity Analysis in Decision Analysis Using Bayesian Networks 
 
Sensitivity analysis within the framework of influence diagrams and decision analysis has 
several meanings and purposes.  In general, the idea is to analyze how sensitive 
conclusions are to the various pieces that make up the model.  In the context of influence 
diagrams, sensitivity analysis refers to analyzing how sensitive conclusions (probabilities 
of interest or expected utility) are to small changes in the conditional probabilities that 
influence those conclusions (Jensen, 2001).  Sensitivity analysis may be used, for 
example, to “tweak” the probability distributions within the network to meet constraints 
imposed by expert judgment or observations.  In this paper, we will focus on some 
aspects of sensitivity analysis dealing with the robustness of conclusions in the context of 
influence diagrams describing decision situations.  For more details, see Nielsen and 
Jensen (2003), Laskey (1995), Jensen (2002), and Castillo et al. (1997). 
 
Table 2 illustrates an analysis of the sensitivity of credibility of compliance for the total 
mercury load to the bay to small changes in the conditional distributions for mine Hg 
load for the “Mine Site Load Reduction Focus” strategy.  Note that while the numbers are 
based on actual output from the model in Figure 7 implemented in Netica, the underlying 
distributions are fictitious.  The sensitivity analysis output shows that the credibility of 
compliance for total mercury to the bay ranges from around 9% to 44% for changes to 
mine Hg load, where the current value is around 40%.  “Quadratic scoring” and “Entropy  



Table 2.  Sensitivity of “Credibility of Compliance for Total Mercury Load to Bay” 
to Changes to Mine Hg Load for the Mine Site Load Reduction Focus Strategy 
 
Example Output from Netica 
Probability 
ranges 

Min Value Current Value Max Value RMS1 Change 

In Compliance 0.09365 0.4028 0.4394 0.09382 
Out of  
Compliance 

0.5606 0.5972 0.9064 0.09382 

Quadratic scoring  = 0.008803 
Entropy reduction  = 0.005048  (0.519 %) 
 
1 Root Mean Square 
 
reduction” refer to scoring rules that summarize how sensitive credibility of compliance 
is to mine site load (Jensen, 2001).  These scorings can be used to rank sensitivity of a 
particular attribute to the variables in the model, allowing the work group to focus 
attention on those variables that contribute the most uncertainty to conclusions.  This 
information could be used to support, for example, information gathering activities and 
prioritization of technical review.   
 
The above represents “one-way” sensitivity analysis, in which sensitivity to individual 
attributes can be explored.  “Two-way” analysis can also be performed, in which the 
sensitivity of an attribute of interest is computed by varying two variables 
simultaneously.  “Three-way”, etc., sensitivity analysis can be performed, but the 
computational burden grows exponentially and quickly becomes burdensome.  Other 
methods of sensitivity analysis can be performed, including the conversion of the 
influence diagram into a decision tree by discretizing (if necessary) the probability 
distributions in the network, then performing probabilistic sensitivity analysis using the 
decision tree.  There are many possibilities (see, e.g., Morgan and Henrion, 1990 and 
Clemen, 1996) and a lot can be learned about the decision problem using relatively 
simple methods. 
 
Optimal Decisions and Sensitivity Analysis Using Influence Diagrams With a 
Multiattribute Utility Value Model 
 
Figure 8 shows an influence diagram model with a multiattribute utility function used to 
determine optimal decisions, using utility values similar to those in Table 1 for some 
hypothetical sub-group.  For this simple example, a strategy with a “high reduction” for 
the mine site Hg load, a “medium reduction” for creek Hg load, and a “medium 
reduction” for mercury methylation potential is optimal in terms of maximizing expected 
utility.  All of the other strategies yield lower expected utilities.  Sensitivity analysis 
similar to that presented in the previous section could be used to determine the sensitivity 
of this conclusion to the various uncertainties (e.g., mine site Hg load and creek Hg load).  
Value of information could then be determined from this sensitivity analysis, enabling a  



Figure 8 – Example Optimal Load Allocation/Mitigation Strategy Using an 
Influence Diagram with a Multiattribute Utility Model. 
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ranking of the uncertainties in terms of importance from the point of view of the 
preferences of the sub-group.  
 
 
CONCLUSIONS  
 
This paper describes a decision analysis approach to TMDL load allocation decisions 
using the Guadalupe River mercury TMDL as an example.  Decision analysis is a 
rigorous and robust common sense approach that, in many circumstances, is an attractive 
alternative to other decision analytical tools like cost/benefit analysis and what-if 
analysis.  Decision analysis makes use of approaches for eliciting and representing 



preferences that makes it capable of accounting for non-monetary concerns, which is an 
appealing characteristic in environmental decision making.  While decision analysis does 
require active involvement of decision makers relative to many other decision making 
approaches, one could argue that this fact is responsible for much of the power of the 
decision analysis process.  When decision analysis is properly performed, decision 
makers (or sub-groups) should believe the insights, given that the expertise and 
knowledge represented in the model should reflect trusted information and that the 
preferences expressed should be their own.  While the application of decision analysis in 
group decision making situations can be problematic, since individual group members 
may have significantly different beliefs and preferences that cannot be simultaneously 
modeled, decision analysis can be used to generate sub-group negotiating positions and 
can shed light on the sources of disagreement (Merkhofer, 1999). 
 
The various decision analysis tools, including objectives hierarchies, strategy tables, 
influence diagrams, and decision trees, can be very useful aids for communicating, 
eliciting knowledge and preferences, organizing a complex decision situation, and 
generating insights that can highlight sources of disagreement and areas of agreement.  
When properly applied, decision analysis can help decision makers make better decisions 
in terms of the consideration of uncertainty and value. 
 
The approach highlighted in this paper makes extensive use of Bayesian networks for 
forecasting the response of the natural system to TMDL load allocations.  As shown by 
Borsuk et al. (2001, 2002), Reckhow (1999),  and Stow et al. (2003), Bayesian network 
models of water quality and ecological response are competitive with complex 
mechanistic models in terms of goodness-of-fit statistics and other indications of 
forecasting ability.  They are superior in terms of model updating, since the Bayesian 
nature of the network allows new monitoring information to be incorporated directly into 
the existing network, generating an updated model that integrates the old and new 
information using robust probability calculus.  By using a Bayesian network as the basis 
of the decision analysis (i.e., for more than forecasting water quality and ecological 
response), the potential for consensus on allocation decisions can be explored, sources of 
differences can be analyzed for potential compromise, and, at the very least, negotiating 
positions for sub-groups of stakeholders can be rigorously defined in terms of 
information and preferences.  In addition, sensitivity analysis can be performed using the 
Bayesian network to inform information gathering priorities and peer review activities. 
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