
INTEGRATING ENGINEERING WEB SERVICES
WITH DISTRIBUTED DATA FLOWS AND

MOBILE CLASSES

David Liu1, Jun Peng2, and Kincho H. Law3

ABSTRACT

This paper describes a software paradigm for composing engineering web services. Software
modules have been designed and implemented to facilitate the construction and integration of
web services. The paradigm employs a distributed data flow approach that supports direct
data exchanges among web services, and thus avoid many performance bottlenecks attending
centralized processing. The performance and flexibility are further improved by using mobile
classes to distribute computations within the service framework and to reduce the amount of
data traffic by moving computations closer to the data. A system has been prototyped to
integrate several project management and scheduling software applications. It is shown that
distributed data flow, combining with the utilization of mobile classes, is an effective
approach for integrating large engineering software services.

KEY WORDS

Engineering web services; service integration; distributed data flow; mobile class; project
management.

INTRODUCTION

The emergence of computer networks enables the integration of remote software services
over the web to form composed applications. Two issues that need to be addressed in
developing a service composition framework are interface incompatibility and performance.
Web services are typically heterogeneous and consist of a variety of conventions for control
and data. Even when data and communication protocol standards are promulgated, the
precise meaning and scope of the output of a service will not necessarily match the
expectations of another service. In a typical composed application, the results from one web
service are transported to the application site, handled there, and then re-routed to the next
web service. Since data are exchanged between distributed web services and central server,
this centralized data-flow approach is inefficient for integrating large-scale software services,
especially for engineering applications where large volume of data needs to be exchanged.

1 Graduate Student, Electrical Engrg. Department, Stanford University, Stanford, CA 94305, Phone +1

650/725-1886, FAX 650/723-4806, davidliu@stanfordalumni.org
2 Research Associate, Civil and Envir. Engrg. Department, Stanford University, Stanford, CA 94305, Phone

+1 650/725-1886, FAX 650/723-4806, junpeng@stanford.edu
3 Professor, Civil and Envir. Engrg. Department, Stanford University, Stanford, CA 94305, Phone +1

650/725-3154, FAX 650/723-7514, law@stanford.edu

 2

This paper describes a Flow-based Infrastructure for Composing Autonomous Services
(FICAS), which is designed and implemented to facilitate the construction and the
integration of distributed web services (Liu 2003). FICAS addresses three design issues: (1)
scalability – integration and management of large number of web services in the service
composition infrastructure; (2) performance – high efficiency in the execution of composed
applications; and (3) ease of composition – effective and convenient specification of service
compositions by the application programmers. FICAS uses distributed data-flows to achieve
better scalability and performance without sacrificing ease of composition. In addition, active
mediation, supported by the utilization of mobile classes, is used in applications employing
multiple web services that are not fully compatible in terms of data formats and contents.
Active mediation increases the applicability of the services, reduces data communication
among the services, and enables the application to control complex computations.

SERVICE INTEGRATION FRAMEWORK

Web services execute processes that involve one or more software applications along with
their domain data. Web services are composed in a loosely-coupled fashion to allow flexible
integration of heterogeneous applications and systems. There has been many research and
development works in service composition, particularly in defining unified standards for
describing, deploying, and accessing applications (Curbera et al. 2003). FICAS contributes a
software composition paradigm that supports distributed data flow with active mediation and
addresses the performance implications of service composition.

SOFTWARE SERVICE MODEL

To compose multiple web services into an integrated application consists of three basic steps.
First, services that provide composable functionalities are catalogued. Existing services that
decide to participate will expose their interfaces, and missing services are constructed.
Second, the composed “mega” application is specified so that it will employ the most
suitable combination of web services. Issues to be considered when composing web services
include scalability of the services, robustness of the services, security of the service
interaction, effective and convenient specification of the compositions, and performance of
the composed applications. Third, the composed application is executed as needed and the
autonomous services employed are often transparent to the users.

In FICAS, web services are specified as a homogeneous model that promotes communication
and cooperation with each other. The service model in FICAS consists of a service core, an
input event queue, an output event queue, an input data container, and an output data
container:

• The service core represents the core functionality of the web service. It is responsible
for performing computation on the input data elements and generating resultant data
elements. Existing software applications can be wrapped into a service core.

• Events (messages) are exchanged between services to control the flow of web service
executions. Asynchronous execution of web services is achieved by using queues for

 3

event processing. The default queuing protocol in FICAS is FIFO (first in and first
out), so event messages are processed in the order they arrive.

• The data containers are groupings of input and output data elements for the web
service. Input data elements are fetched from the input data container and processed
by the service core. The generated data elements are put into the output data
container. The data containers enable web services to look up generated data
elements.

MEDIATION

Services are usually built by leveraging existing software capabilities and information
resources. These resources have had incompatibilities in many e-commerce and e-business
applications. Mediators are intelligent middleware that sit between the information sources
and the clients (Wiederhold 1992). Mediators reduce the complexity of information
integration and minimize the cost of system maintenance. They provide integrated
information, without the need to integrate the actual information sources. Mediators perform
functions such as accessing and integrating domain-specific data from heterogeneous
sources, restructuring the results into objects, and extracting appropriate information.

Figure 1(a) illustrates the mediation architecture which conceptually consists of three
layers. The information source provides raw data through its source access interface. The
mediation layer performs value-added processing by applying domain-specific knowledge
processing. The information client accesses the integrated information via the client access
interface. The architecture of the information-oriented service can be mapped to a
processing-oriented architecture, as shown in Figure 1(b). The software is accessed through
the application-specific interface. The service wrapper obtains specifications from the
services and exposes its capabilities through the access protocol.

Client Access
Interface

Source Access
Interface

(a) Mediation (b) Web Service

Application Specific
Interface

Autonomous Service
Access Protocol

Information
Client

Autonomous
Service
Wrapper

Mediator

Composed
Application

Software
Application

Information
Source

Figure 1: Conceptual Layers in Mediation and in Service Integration

 4

In traditional mediators, code is written to handle information processing tasks at the time the
mediators are constructed. Such mediators are static, and only modified when the application
sources change their interfaces or behavior. Static mediators are appropriate when resource
behavior is known at construction time. In contrast, the active mediators introduced in this
paper allow clients to dynamically adapt to the services, in particular their interfaces.

DISTRIBUTED DATA-FLOW

In FICAS, the composed application controller has the responsibility for managing the
execution of application services or the control-flows. Based on an execution plan, the
controller executes and schedules web services by managing and coordinating the choice,
timing, sequence, and dependencies of the events. Data communications among web services
are handled separated from the control messages. One objective of the FICAS model is to
minimize the aggregate data-communication cost among services.

SEPARATING CONTROL AND DATA FLOWS

A distinguishing characteristic of FICAS is its distributed data-flow model, which allows
direct data-flow to occur among remote services. Commonly, in a web services management
scheme, the site of the composed application is the central hub for handling all the control
and data traffic. By distributing data and exploiting the network capacity among the web
services, bottlenecks at the central hub where composed application resides can be avoided.
Especially when the composed application resides on a mobile device, relying on centralized
data-flow would severely stress its limited bandwidth. Due to the technical challenges in
constructing and managing distributed operational code segments, control (i.e., the
invocation of a remote service) remains centralized in the FICAS model.

The separation of control-flow and data-flow has been considered in several emerging
service composition standards, such as BPEL4WS (Andrews et al. 2003), WSCL (Banerji et
al. 2002), and DAML-S (Ankolekar et al. 2001), demonstrating that the importance of
separating control-flow and data-flow is being recognized. The idea of separating data-flow
from control-flow can also be seen in some distributed workflow environments. For instance,
Exotica/FMQM adopts distributed workflow execution and data management for distributed
workflow applications (Mohan et al. 1995). However, data flow in those environments is
typically supported by a set of loosely synchronized replicated databases instead of managed
direct data transfers.

Figure 2 shows a schematic composed application in FICAS where the data are directly
exchanged among web services. By distributing data-flows, FICAS eliminates the focused,
redundant, and heavy-duty data traffic caused by the forwarding of everything through the
central, composed application. The distributed data-flow model utilizes the communication
network among web services, and thus alleviates communication loads on the composed
application. Furthermore, FICAS allows computations to be distributed efficiently to where
data resides, so that the data can be processed without incurring communication traffic.

 5

C om po sed

Ap plica tion

S e rv ice
W rap pe r

C o ntro l flow s

S e rv ice
W rap pe r

S e rv ice
W rap pe r

S erv ic e
W rapp er

S ervic e
W ra pp er

S o ftw are

S e rvice

S o ftw are

S e rvice

S oftw are

S ervic e

S oftw are

S erv ic e

S oftw are

S ervice

D a ta flo w s

Request

Result

Figure 2: Sample Control Flows and Data Flows in FICAS

MOBILE CLASSES AND ACTIVE MEDIATION

While FICAS gains substantial performance from direct data communication among the
services, it still requires the capability provided in mediator nodes to map incompatible
sources or to integrate information from diverse sources. In the semantic web setting, where
there are many and diverse providers, each service is not expected to deliver results that will
be fully compatible and useful to further services. Active mediation applies the notion of
mobile code (Fuggetta et al. 1998) to support unforeseen remote information processing.
Specifically, matching, reformatting, rearranging, and mapping of data being sent or received
among services can be embodied in mobile code, and shipped by the composed application to
the remote service as needed. Remote services that can accept active mediation have the
ability to adapt their behavior to the client requests. For instance, an information client can
forward a compression routine to a service so that queried information is compressed before
returned. In general, with active mediation to provide client-specific functionalities, services
can be viewed as if they were intended for the specific needs of the client.

MOBILE CLASSES

A mobile class is an information-processing module that can be dynamically loaded and
executed. Conceptually, a mobile class is a function that takes some input data elements,
performs certain operations, and then outputs new data elements. The underlying
programming support of mobile class in FICAS is similar to that of the mobile agent
technology (Brewington et al. 1999; White 1997). They both utilize executable programs
that can migrate during execution from machine to machine in a heterogeneous network.
However, the mobile agents are self-governing in that they decide when and where to
migrate on their own. On the other hand, the mobile class in FICAS is an integral part of the
service composition framework. Since mobile classes are controlled by the composed
application, their management and deployment becomes easier.

 6

Mobile classes can be implemented in many general-purpose programming languages. In
current implementation, Java is chosen as the specification language for mobile classes.
First, Java is suitable for specifying computational intensive tasks. There are many available
standard libraries that provide a wide range of computational functionalities. Second, Java
has extensive support for portability. Java programs can be executed on any platform that
incorporates a Java virtual machine. Third, Java supports dynamic linking and loading. Java
class files are object files rather than executables in the traditional sense. Linking is
performed when the Java class files are loaded onto the Java virtual machine. Compiled into
a Java class, the mobile class can be dynamically loaded at runtime.

ACTIVE MEDIATION

To enable active mediation in FICAS, a composed application needs to be able to invoke
mobile classes on a service, and the service needs to support the execution of the mobile
classes. A service supports the execution of mobile classes through the incorporation of an
active mediator.

Figure 3 illustrates the architecture of the active mediator. The Mobile Class Fetcher is
responsible for loading the mobile class. The loaded Java class is stored into the Mobile
Class Cache. The Mobile Class Cache is a temporary storage for mobile classes. The Mobile
Class Cache is used to avoid the duplicate loading of a mobile class. It is looked up every
time before any mobile class is loaded. The Mobile Class Fetcher is used to load the Java
byte code only when the cache miss occurs. The Mobile Class Runtime is the execution
engine for the mobile classes. To execute a mobile class, the Mobile Class Runtime loads the
Java class from the Mobile Class Cache and invokes the execution of the mobile class. The
Mobile Class API Library stores the utility classes that make the construction of mobile
classes more convenient. For instance, the Java Development Kit (JDK) library is provided
as part of the Mobile Class API Library. The Exception Handling module provides error
handling for the loading and the execution of the mobile class.

W e b
S e rvic e
W ra p p e r

M o b ile
C la s s

F etc h e r

M o b ile
C la ss

R u n tim e

E x c ep tio n
H an d lin g

M o b ile C la s s
C a c h e

M o b ile C las s
R e p o s ito ry

In p u t D a ta C o n ta in e r

O u tp u t D a ta C o n ta in e r

M o b ile
C la ss

AP I
L ib ra ry

A c tive M ed ia to r

Figure 3: Architecture of the Active Mediation

 7

Upon receiving a Mobile Class event, a service directs the Mobile Class Fetcher to load the
mobile class into the Mobile Class Cache. The execution function of the mobile class is then
invoked to process data local to the service. Since the service wrapper handles the
interchange of data among services, the active mediator is only concerned with the data
processing that is local to the service.

EXAMPLE APPLICATION

An example is presented in this section to demonstrate that FICAS is well suited for
integrating web services that exchange large amount of data and for handling interface
incompatibility (Liu et al. 2003). For a typical construction project scenario, different
construction applications can reside at different locations. Some applications may reside on
the site offices, and others may reside in the company headquarter. Furthermore, these
applications may have different interfaces and require different data formats. Project
information is not shared and accessible among all project participants at all time. It is
difficult and time-consuming for project managers on the construction sites to get the latest
project information from the company headquarter and other places. If there are some
changes on the construction site, it is also hard for project managers to evaluate the impacts
of the changes on the whole project immediately. Project managers cannot reschedule the
project on the construction site right away using the latest information. To improve the
proficiency, a ubiquitous environment is highly desired, so that project participants can
access and manage the latest project information from various engineering services, using
different software applications and at different locations.

An infrastructure shown in Figure 4 has been developed using the FICAS model. There
are five types of clients and applications involved in the environment. PDA devices are used
to access project information via wireless modems, and web browsers provide project
information to users who have access to high-speed Internet connections and more powerful
computing devices. Three engineering software applications are included to manage the
design and scheduling aspects of the project. An Oracle 8i relational database serves as the
backbone information storage for this distributed service infrastructure. The active mediator
acts as an intelligent bridge that connects various applications and devices with the database.
It captures the client requests in the form of active objects from devices such as Palm and
desktop browsers. Source queries are constructed and sent to the Oracle 8i database. The
active mediator retrieves the information from the Oracle 8i database and conduct client-
specific information processing by invoking the mobile classes incorporated in the client
requests. The processed information with desired abstraction and suitable format is returned
to the clients for display. For example, the construction schedule can be reviewed by using
Microsoft Project (Figure 5), Primavera P3 (Figure 6), or a PDA device (Figure 7).

In this application, the engineering software applications all have different proprietary
data models for describing project schedule information. By applying a common data model
and utilizing FICAS, different applications are able to communicate with each other. The
data converters are implemented as mobile classes, which act as bridges to map between the
propriety data models and the relational data model, enabling the Oracle 8i database to serve
as the backbone information store.

 8

PSLXML

4D
Viewer

Active
Mediator

Palm
Desktop
Browser

Primavera
P3

Microsoft
Project

Oracle 8i
Relational
Database

Figure 4: Integration of Various Engineering Services

Figure 5: Reviewing Construction Schedule in Microsoft Project

Figure 6: Reviewing Construction Schedule in Primavera P3

 9

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

Change duration of activity
18T1-33201 (“Erect Roof Elem 1”)
From 1 day to 40 days

Figure 7: Reviewing the Project Schedule via a PDA Device

CONCLUSIONS

This paper investigates the integration of web services that communicate large volumes of
data. Traditionally, a composed application resides at the central hub that handles all the data
traffic, while each web service processes data supplied by the composed application. This
centralized data flow is shown to be inefficient when data are substantial. To improve
effective use, the distributed data flow approach is introduced which allows direct data
exchange among the web services.

The FICAS architecture is defined to enable smooth adoption of distributed data-flow and
active mediation in services composition. Active mediation increases the customizability and
flexibility of web services. Specifically, it enables interoperation of web services without
requiring that heterogeneous data be transmitted via central nodes. It utilizes code mobility
to facilitate dynamic information processing in service composition. Delegating the
maintenance of software is an important benefit of the services model (Wiederhold 2003).
Active mediation allows data-processing tasks to be specified for composed applications, at
the same time separating computation from composition.

Used appropriately, active mediation will greatly facilitate service composition, both in
functionality and in performance. An application scenario is presented to demonstrate that
distributed data flow, combining with mobile classes, is effective and more efficient than
centralized processing when integrating large engineering software services. In the example
engineering application, the controlling node can run on a low bandwidth device and thus has
tremendous effects on performance. Typically, mobile devices are attractive to manage
complex scenarios in dealing with governmental regulation (Lau et al. 2004), engineering
(Liu et al. 2003), healthcare (Berners-Lee et al. 2001), and military situations (Sheng et al.
1992). These cases can be benefited significantly by distributed dataflow and active
mediation model, such as FICAS.

 10

ACKNOWLEDGMENTS

This work is partially sponsored by the Center for Integrated Facility Engineering at Stanford
University, and the Product Engineering Program headed by Dr. Ram D. Sriram at NIST
(National Institute of Standards and Technology). The authors would also like to
acknowledge an equipment grant from Intel Corporation for the support of this research.

REFERENCES

Andrews, T., et al. (2003). "BPEL4WS Specification: Business Process Execution Language
for Web Services." (available at http://www-106.ibm.com/developerworks/library/ws-
bpel/)

Ankolekar, A., et al. (2001). "DAML-S: Semantic Markup for Web Services." The
International Semantic Web Working Symposium, Stanford, CA, 411-430.

Banerji, A., et al. (2002). "Web Services Conversation Language (WSCL) 1.0." (available at
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/)

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). "The Semantic Web." Scientific
American 284 (5) 34-43.

Brewington, B., Gray, R., Moizumi, K., Kotz, D., Cybenko, G. and Rus, D. (1999). "Mobile
Agents in Distributed Information Retrieval." Intelligent Information Agents, M. Klusch,
ed., Springer-Verlag, 355-395.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S. and Weerawarana, S. (2003). "The Next Step in
Web Services." Communications of the ACM, 46 (10) 29-34.

Fuggetta, A., Picco, G. P. and Vigna, G. (1998). "Understanding Code Mobility." IEEE
Transactions on Software Engineering, 24 (5) 342-361.

Lau, G. T., Kerrigan, S., Law, K. H. and Wiederhold, G. (2004). "An E-Government
Information Architecture for Regulation Analysis and Compliance Assistance." ICEC'04:
Sixth International Conference on Electronic Commerce, Delft, The Netherlands.

Liu, D. (2003). A Distributed Data Flow Model for Composing Software Services. Ph.D.
Thesis, Stanford University, Stanford, CA.

Liu, D., Cheng, J., Law, K. H., Wiederhold, G. and Sriram, R. D. (2003). "Engineering
Information Service Infrastructure for Ubiquitous Computing." Journal of Computing in
Civil Engineering, 17 (4) 219-229.

Mohan, C., Alonso, G., Gunthor, R. and Kamath, M. (1995). "Exotica: A Research
Perspective on Workflow Management Systems." Data Engineering, 18 (1) 19-26.

Sheng, S., Chandrakasan, A. and Brodersen, R. W. (1992). "A Portable Multimedia
Terminal." IEEE Communications Magazine, 30 (12) 64-75.

White, J. E. (1997). "Mobile Agents." Software Agent, J. M. Bradshaw, ed., MIT Press, 437-
472.

Wiederhold, G. (1992). "Mediators in the Architecture of Future Information Systems." IEEE
Computer, 25 (3) 38-49.

Wiederhold, G. (2003). "The Product Flow Model." 15th Conference on Software
Engineering and Knowledge Engineering (SEKE), Skokie, IL, 183-186.

