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ABSTRACT

This paper demonstrates the possibility of incorporating
load-dependent Ritz vectors, as an alternative to modal
parameters, into a Bayesian probabilistic framework for
detecting damages in a structure. Recent research has
shown that it is possible to extract load-dependent Ritz
vectors from vibration tests [2]. This paper shows that
load-dependent Ritz vectors have the following potential
advantages for damage detection over modal vectors: (1)
In general, load-dependent Ritz vectors are more sensi-
tive to damage than the corresponding modal vectors,
and (2) substructures of interest can be made more ob-
servable using the load-dependent Ritz vectors generated
from particular load patterns. An eight-bay truss example
is presented to illustrate the applicability of the proposed
approach.

1 INTRODUCTION

One common approach for global damage detection is to
employ the vibration characteristics of a structure such as
frequencies, modal vectors, and modal damping to pre-
dict the damage locations and to estimate the amount
of damage. However, it has been shown that changes
in the modal parameters might not be apparent at an
early stage of damage. Also, the uncertainties caused by
measurement noise, modeling error involved in an ana-
lytical model, and environmental changes such as varia-
tions in temperature and load conditions can impede the
reliable identi�cation of damage. Therefore, for reliable
damage detection, the damage would need to cause sig-
ni�cant changes in the modal parameters that are beyond
the natural variability caused by the e�ects other than
the damage.

Recent research has shown that it is possible to extract
Ritz vectors from vibration tests [2]. The �rst Ritz vector
is the static deformation of a structure due to a partic-
ular load applied to the structure. The subsequent vec-
tors account for the inertial e�ects of the loading and are
generated by iterative matrix multiplication and orthog-
onalization. Ritz vectors (or Lanczos vectors) have been
shown very e�ective for dynamic and earthquake analy-
ses, eigenvalue problems and model reductions. In this
paper, we demonstrate the possibility of incorporating
load-dependent Ritz vectors, as an alternative to modal

parameters, into the previously proposed Bayesian prob-
abilistic framework for damage detection [5]. This study
is motivated by the following potential advantages of Ritz
vectors over modal vectors: (1) In general, Ritz vectors are
more sensitive to damage than the corresponding modal
vectors, (2) substructures of interest can be made more
observable using the Ritz vectors generated from partic-
ular load patterns, (3) the computation of Ritz vectors is
less expensive than that of modal vectors (eigenvectors)
and (4) while the practical diÆculties of modal testing
impede the extraction of a large number of meaningful
modes, a larger number of Ritz vectors can be extracted
by imposing di�erent load patterns on a structure.

This paper is organized as follows: The next sec-
tion reviews the theoretical formulation of the previously
proposed Bayesian probabilistic approach [5]. Section 3
presents numerical examples to illustrate the e�ectiveness
of the proposed method. Section 4 summarizes this paper.

2 THEORETICAL FORMULATION

Bayesian probabilistic approaches, which use modal pa-
rameters, have been applied to damage detection by re-
searchers [1, 5]. The idea is to search for the most proba-
ble damage event by comparing the relative probabilities
for di�erent damage scenarios, where the relative prob-
ability of a damage event is expressed in terms of the
posterior probability of the damage event, given the esti-
mated modal data sets from a structure. In this paper, the
formulation of the relative posterior probability is based
on an output error, which is de�ned as the di�erence be-
tween the estimated Ritz vectors and the theoretical Ritz
vectors from the analytical model.

2.1 Notations and Assumptions

For an analytical model of a structure, we represent
the system sti�ness matrix K as an assembly of substruc-
ture sti�ness matrices. For a model with Nsub substruc-
tures, the overall sti�ness matrix can be expressed as:

K(�) =

NsubX
i=1

�iKsi (1)

where Ksi is the sti�ness matrix of the ith substruc-
ture and �i (0 � �i � 1) is a nondimensional parameter
which represents the contribution of the ith substructure
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sti�ness to the system sti�ness matrix. The nondimen-
sional parameter �i is introduced to allow the modeling
of damage in the ith substructure. A substructure is de-
�ned as damaged when the � value is less than a spec-
i�ed threshold. As damage locations and amount are
determined according to the � values, the system sti�-
ness matrix in Equation (1) is expressed as a function of
� =

�
�i; i = 1; :::; Nsub

	
.

Test data sets are assumed to be collected from re-
peated vibration tests. When vibration tests are repeated
Ns times, the total collection of Ns data sets is denoted
as:

	̂Ns
=
�
 ̂(n) : n = 1; :::; Ns

	
(2)

A data set  ̂(n) in Equation (2) is composed of Ritz vec-
tors estimated from the nth vibration test:

 ̂(n) =
�
r̂nT1 ; :::; r̂nTNr

�T
2 RNt (3)

where r̂ni denotes the ith estimated Ritz vector in the nth
data set. The Ritz vector r̂ni (r̂ni 2 RNd) has compo-
nents corresponding to the instrumented degrees of free-
dom (DOFs). The variables Nt; Nd and Nr represent

the total number of components in a data set  ̂(n), the
number of the measured DOFs and the number of the
estimated Ritz vectors, respectively.

Let Hj denote a hypothesis for a damage event which
can contain any number of substructures as damaged, and
the initial degree of belief about the hypothesis Hj is rep-
resented with a prior probability P (Hj). Using Baye's

theorem, the posterior probability P (Hj j	̂Ns
), after ob-

serving the estimated data sets 	̂Ns
, is given as:

P (Hj j	̂Ns
) =

P (	̂Ns
jHj)

P (	̂Ns
)
P (Hj) (4)

The most likely damaged substructures are the ones in-
cluded in the hypothesis Hmax which has the largest pos-
terior probability, i.e.

P (Hmaxj	̂Ns
) = max

8Hj

P (Hj j	̂Ns
) (5)

Since the objective is to determine the most probable
damage hypothesis (event), only the relative posterior
probabilities of alternative hypotheses are of interest. We
attempt to avoid the explicit expression of a posterior
probability P (Hj j	̂Ns

) since the precise calculation of

P (	̂Ns
jHj) is a diÆcult task. To overcome these diÆ-

culties, we focus on the relative comparisons of posterior
probabilities.

2.2 Determination of the Most Probable Damage Event

When applying Equation (4) to calculate the poste-
rior probability P (Hj j	̂Ns

), the only unde�ned term is

P (	̂Ns
jHj). The prior probability of a hypothesis P (Hj)

is the prior information given by users and the probabil-
ity of estimated test data P (	̂Ns

) is simply a normalizing
constant.

As shown in Equation (1), less than a unity value for �i
reects the sti�ness decrease in the ith substructure. As
noted earlier, damage is characterized by sti�ness reduc-
tion. When �i is less than a speci�ed threshold ��i (< 1),
the ith substructure is de�ned as damaged. If we de�ne
�1
Hj

as a set of �i's corresponding to the damaged sub-

structures in a hypothesis Hj and �2
Hj

as the remaining

�i's, the conditional probability P (	̂Ns
jHj) can be inter-

preted as the probability of obtaining 	̂Ns
when the �i's

in �1
Hj

are less than or equal to their threshold ��i 's and
the remaining �i's stay within ��i < �i � 1. Denoting

�Hj

as the range of �Hj
such that 0 � �1

Hj
� �1;�

Hj
and

�2;�
Hj

< �2
Hj

� 1, the conditional probability P (	̂Hj
jHj)

becomes:

P (	̂Ns
jHj) = P (	̂Ns

j�Hj
< 
�Hj

)

=
P (�Hj

< 
�Hj
j	̂Ns

) P (	̂Ns
)

P (�Hj
< 
�Hj

)

=
P (	̂Ns

)

P (�Hj
< 
�Hj

)

Z
�Hj

<
�
Hj

f(�Hj
j	̂Ns

)d�Hj
(6)

where �1;�
Hj

and �2;�
Hj

are the sets of damage thresholds for

�1
Hj

and �2
Hj
, respectively, and f(�Hj

j	̂Ns
) is a condi-

tional probability density function (PDF) of �Hj
given

	̂Ns
. Furthermore, �Hj

< 
�Hj
indicates that �Hj

are

within the range of 
�Hj
such that 0 � �1

Hj
� �1;�

Hj
and

�2;�
Hj

< �2
Hj

� 1.

If we de�ne the most probable parameter values �max
Hj

,
given a hypothesis Hj , such that:

f(�max
Hj

j	̂Ns
) = max

�Hj
<
�

Hj

f(�Hj
j	̂Ns

) (7)

then the upper bound of P (	̂Ns
jHj) in Equation (6) be-

comes:

PU (	̂Ns
jHj) (8)

=
P (	̂Ns

)

P (�Hj
< 
�Hj

)

Z
�Hj

<
�
Hj

f(�max
Hj

j	̂Ns
)d�Hj

=
P (	̂Ns

)

P (�Hj
< 
�Hj

)
f(�max

Hj
j	̂Ns

)

Z
�Hj

<
�
Hj

1 d�Hj

For simpli�cation, we assume that if damage occurs, it can
have any arbitrary amount with equal probability. That
is, we assign a uniform probability density function to �i
such that:

f(�i) =

�
1 if 0 � �i � 1
0 otherwise

(9)



Furthermore, if �i's are assumed to be independent, the
following two equations hold:

f(�Hj
) =

Y
8 �i2�Hj

f(�i) = 1 (10)

1

P (�Hj
< 
�Hj

)
=

1R
�Hj

<
�
Hj

f(�Hj
)d�Hj

=
1R

�Hj
<
�

Hj

1 d�Hj

(11)

Substituting Equation (11) into Equation (8),
PU (	̂Ns

jHj) can be simpli�ed as:

PU (	̂Ns
jHj) = f(�max

Hj
j	̂Ns

) P (	̂Ns
) (12)

The next step is to compute the conditional PDF,
f(�max

Hj
j	̂Ns

). First, let's de�ne an output error

e(n;�Hj
) as:

e(n;�Hj
) =  ̂(n)�  (�Hj

); n = 1; :::; Ns (13)

where  ̂(n) is de�ned in Equation (3). Given �Hj
, an ana-

lytical data set  (�Hj
) is de�ned similar to Equation (3):

 (�Hj
) =

�
rT1 (�Hj

); :::; rTNr
(�Hj

)
�T

2 RNt (14)

It should be noted that a Ritz vector ri(�Hj
) in Equa-

tion (14) has only the components associated with the
measured DOFs.

Assuming each component of the output error
fei(n;�Hj

);n = 1; :::; Nsg to be a multivariate normal
distribution with zero mean and variance �i, the condi-
tional joint PDF of �Hj

becomes:

f(�Hj
j	̂Ns

) = f(e(n;�Hj
)j	̂Ns

)

= k � exp
�
� J(	̂Ns

;�Hj
)
	

(15)

where k = 1

[2�]
Ns
2

1

kC
	̂
k
1

2

, kC	̂k = detjdiag[�21 ; :::; �
2
Nt
]j=

QNt

i=1 �
2
i , and the variance �i can be evaluated from obser-

vations of the estimated Ritz vector sets. When a large
number of experimental data sets are available, sample
standard deviations (or variances) can be extracted from
the data sets. When modal data sets available are not
suÆcient to estimate the variances, we assign uniform co-
eÆcient of variance (COV) to all components of e(n;�Hj

).

Furthermore, the error function J(	̂Ns
;�Hj

) is:

J(	̂Ns
;�Hj

) = (16)

1

2

NsX
n=1

�
 ̂(n)�  (�Hj

)
�T
C�1

	̂

�
 ̂(n)�  (�Hj

)
�

From Equations (4), (12) and (15), the upper bound of
P (Hj j	̂Ns

) becomes:

PU (Hj j	̂Ns
) = f(�max

Hj
j	̂Ns

)P (Hj)

= exp
�
� J(	̂Ns

;�max
Hj

)
	
� P (Hj) � k (17)

From Equation (17) and the fact that the relative com-
parison of PU (Hj j	̂Ns

) is independent of the constant k,
the following relationships hold:

max
�
PU (Hij	̂Ns

); PU (Hj j	̂Ns
)
�
= (18)

max
�
ln PU (Hij	̂Ns

); ln PU (Hj j	̂Ns
)
�
=

min
�
J(	̂Ns

;�max
Hi

)� lnP (Hi); J(	̂Ns
;�max

Hj
)� lnP (Hj)

�

where ln denotes a natural logarithm. Therefore, the most
probable hypothesis Hmax in Equation (5) satis�es:

J(	̂Ns
;�max

Hmax
)� lnP (Hmax)

= min
8Hj

�
J(	̂Ns

;�max
Hj

)� lnP (Hj)
�

(19)

Now, the comparison of posterior probabilities can
be conducted by examining only the error function
J(	̂Ns

;�max
Hj

) and the prior probability P (Hj).

A branch-and-bound search scheme is proposed to ex-
pedite the search for the most likely damaged substructure
without exhaustively examining all the possible damage
cases. Furthermore, sensitivities of Ritz vectors with re-
spect to the sti�ness change of a member is derived to
measure the relative signi�cance of the Ritz vectors to
damages and a weighting scheme of Ritz vectors is pro-
posed based on the derived sensitivity. For a detailed
explanation of the branch-and-bound scheme and the sen-
sitivity analyses, readers are referred to Reference [5, 4].

3 NUMERICAL EXAMPLES

An eight-bay truss structure from the NASA dynamic
scale model technology (DSMT) program of Langley Re-
search Center is employed to demonstrate the proposed
approach (Figure 1). A detailed description of the ex-
ample structure can be found in Reference [3]. Figure 2
shows the classi�cation of the truss members into four
di�erent lacing patterns: longeron, batten, face diagonal
and side diagonal. First, the sensitivities of the Ritz vec-
tors are compared to those of modal vectors. Second, the
damage detection of the eight-bay truss structure is con-
ducted by changing damage locations, load patterns and
damage thresholds. Furthermore, the damage detection
using Ritz vectors are compared to the damage detection
using modal parameters.



3.1 Sensitivity Analyses of Ritz Vectors

In this subsection, the sensitivities of Ritz vectors are
compared with those of modal vectors. In the sensitivity
analysis, load pattern 1 shown in Figure 3 (a) is employed
for the generation of Ritz vectors. The sensitivity analy-
sis is conducted by comparing the changes of the Ritz and
modal vectors as the sti�ness of each substructure (mem-
ber) deteriorates. Selected results from the comparisons
are presented in Figures 4, 5 and 6. Figure 4 (a) shows
how the �rst �ve Ritz vectors change as the sti�ness loss
of the 33th member (a longeron in bay six) varies from
0% to 100%. For a simple graphical representation, the
ratio of krhr � rdrk

2 to krhrk
2 is computed to indicate the

change of a Ritz vector as damage progresses in the 33th
member. Here, k � k2 denotes the Euclidean norm and rh

and rd denote the Ritz vectors before and after damage
occurs, respectively. Figure 4 (b) shows similar quantities
for the �rst �ve modal vectors, where vh and vd present
the modal vectors before and after sti�ness changes, re-
spectively. The shaded portion of the plot indicates that
if each component of a modal vector has a 5% of uncer-
tainty level, no measurable change in any modal vector
will be apparent unless the sti�ness loss exceeds 75%. On
the other hand, 10% change of sti�ness results in perceiv-
able changes in the second and third Ritz vectors in the
presence of a 5% of uncertainty level. As a second exam-
ple, Figure 5 presents the sensitivity comparison for the
sti�ness change of the 94th member (a side diagonal in
bay six). While the fourth and �fth Ritz vectors are very
sensitive to the sti�ness change of the 94th member, the
change of modal vectors is not apparent until the sti�ness
loss reaches about 40%. Figure 6 shows that the sti�ness
change of the face diagonal member 71 does not change
the �rst �ve modal vectors at all and causes very little
change in the Ritz vectors. Similar sensitivity results are
observed for all face diagonal members.

From the sensitivity analyses conducted in this subsec-
tion, several observations can be made: (1) In most cases,
sti�ness changes in the model lead to larger changes in
the Ritz vectors than in the modal vectors, (2) face diag-
onals do not cause signi�cant changes to either the Ritz
or modal vectors, and (3) in many cases, Ritz and modal
vectors are more sensitive to the sti�ness losses of side
diagonals and longerons than those of battens.

3.2 Damage Detection of An Eight-Bay Truss

This subsection presents the diagnosis results of an
eight-bay truss structure conducted under di�erent con-
ditions. For all examples, a uniform prior probability is
assigned to all hypotheses. Therefore, the determination
of the most probable hypothesis in Equation (19) depends
only on the error function J(	̂Ns

;�max
Hj

). The search

space �Hj
< 
�Hj

in Equation (7) is evaluated at the in-
tersection of grid lines which discretize the search domain
with an increment of ��. For all numerical examples,
we use an incremental step �� = 0.1. The branch-and-

bound search in the presented examples follows a depth-
�rst/best-�rst search strategy.

Ritz vectors are simulated following the generation
procedure described in Reference [4] and each Ritz vector
is normalized with respect to a reference point. The DOF
which has the absolute maximum magnitude in each Ritz
vector of the healthy structure, is assigned as a reference
point. All the other DOFs are normalized with respect
to this reference point. To simulate measurement uncer-
tainties in the estimated Ritz vectors, the estimated Ritz
vector set  ̂(n) in Equation (3) is constructed such that:

 ̂(n) =  (1 +
N

100
R) (20)

where  is the exact Ritz vector set obtained from the
analytical model, N is a speci�ed noise level in terms of
percentage, and R is a normally distributed random num-
ber with zero mean and a variance of 1.0. This process is
repeated Ns times to simulate the Ns data sets.

Excitation is assumed to be a swept sine excitation
generated from electrodynamics or hydraulic shakers. All
actuators are assumed to generate forces with the same
magnitude and phase. The spatial distribution of forces is
assumed not to vary with time. Load patterns are selected
to maximize the sensitivities of the �rst �ve Ritz vectors
over all substructures. However, a systematic scheme for
the selection of load patterns is not considered here. For
all examples, Ldam and Ddam denote the actual damage
locations and the associated damage amount, respectively.
L̂dam and D̂dam denote the most probable damage loca-
tions and the associated damage amount estimated by the
proposed method. In Section 3.2.1, twelve damage cases
with a single damage location are investigated using a uni-
form damage threshold for every substructure. Fourteen
damage cases including the previous twelve damage cases
are re-diagnosed in Section 3.2.2 using di�erent damage
threshold values for substructures. Finally, six damage
cases with either two or three damaged substructures are
examined in Section 3.2.3.

3.2.1 Using A Uniform Damage Threshold

In this subsection, twelve di�erent damage cases are
investigated employing Ritz vectors. For the purpose of
comparison, the diagnosis results using modal vectors are
also presented. Sensitivity analyses which are similar to
Figures 4, 5 and 6, are conducted for load patterns 1 and
2 to de�ne a minimum detectable damage. The mini-
mum detectable damage of each substructure is de�ned as
the minimum damage amount which the estimated Ritz
vectors from a given load pattern can detect when each
component of a Ritz vector is contaminated by a certain
level of noise. The minimum detectable damage of each
substructure is computed assuming that, because of noise,
each component of a Ritz vectors is perturbed by 5% of its
magnitude. Since it is shown that the detection of sti�ness
losses in most face diagonals and battens seems diÆcult
from the assumed load patterns, the face diagonals and



battens are precluded from the branch-and-bound search
in this subsection.

In Table 4, twelve damage cases with a single dam-
aged substructure are simulated by assuming a 10% sti�-
ness loss, a 5% noise level and one data set (Ns=1). The
damaged substructures used in the examples are shown
in Figure 1 by solid lines. Furthermore, all DOFs are as-
sumed to be measured and a value of 0.9 is used for the
damage threshold �� of each substructure.

For all damage cases, the most probable damage events
computed by the proposed method include the actually
damaged substructure. In some cases, however, undam-
aged substructures are also included in the most probable
damage event. For example, the 7th substructure is in-
cluded as a potentially damaged substructure in case A.
This is due to the fact that the Ritz vectors employed in
this diagnosis set (the Ritz vectors generated from load
pattern 2) are insensitive to the sti�ness changes of the
7th substructure. Therefore, a small sti�ness change of
the 7th substructure may not result in a noticeable change
of the error function value in Equation (16) or actually
can reduce the error function value when Ritz vectors are
noise contaminated. For similar reasons, the 5th substruc-
ture is also included in the most probable damage event
for other damage cases. The rank of the actual damage
event, estimated using the �rst �ve modal vectors, is pre-
sented in parenthesis of the third column of Table 4. The
table shows that the �rst �ve modal vectors fail to locate
the actual damage locations in most cases.

3.2.2 Using Di�erent Damage Thresholds

In this subsection, fourteen damage cases (including
the previous twelve cases) are diagnosed using a di�erent
threshold value for each substructure. The other condi-
tions are unchanged (Noise=5%, Ns=1 and all DOFs are
measured). We prevent unnecessary extensions of the pro-
posed branch-and-bound search by employing preliminary
sensitivity analyses. The branch-and-bound search is con-
ducted including only substructures with damage larger
or equal to the pre-assigned minimum detectable damage.
The diagnoses in previous subsection show that Ritz vec-
tors have di�erent sensitivities for di�erent substructures.
This observation motivates the use of a di�erent thresh-
old for each substructure. The damage thresholds in this
subsection are assigned based on the minimum detectable
damage. For example, when the minimum detectable
damage amount assigned to a substructure is 20%, the
corresponding damage threshold is set to 0.8. It should
be noted that when the total removal of a substructure
does not cause a perceivable change in Ritz vectors, the
substructures are de�ned as undetectable and excluded
from the diagnosis. For example, the 67th member (face
diagonal in bay one) is de�ned as undetectable since the
total removal of the member (100% sti�ness loss) does
not yield signi�cant changes in Ritz vectors beyond the

assumed variation cause by uncertainties. Therefore, the
67th member is excluded from the diagnosis.

Table 5 shows that the rede�ned damage threshold
improves the diagnoses. Comparing the most probable
events (hypothesis) of case A in Tables 4 and 5, one
can observe that the undamaged 7th substructure is re-
moved from the most probable hypothesis, making the
actual damage case the most probable one. In case E, the
proposed method indicates that most likely there is no
damage. Considering the fact that the damage threshold
of the 36th substructure is set to 0.2, the 10% sti�ness
loss in the 36th substructure is not detectable. The pro-
posed method ranks the 36th substructure as the 17th
most probable damage location with 80% damage. Simi-
lar results are observed for cases F and M. A sensitivity
analysis shows that the sti�ness deterioration of the 71th
substructure, which is a face diagonal in the 7th bay, does
not yield any noticeable changes to the estimated Ritz vec-
tors. Therefore the 71th substructure is precluded from
the diagnosis and the proposed method provides a false-
negative indication of damage. For case M, the damage
threshold of the 17th substructure is set to 0.8. Again the
proposed method indicates that most likely there is no
damage and ranks the event of 20% damage in the 17th
substructure as the 9th most probable damage case.

3.2.3 Diagnoses of Damage in Multiple Locations

In this subsection, we focus on the detection of damage
in multiple locations. Table 6 presents diagnosis results of
six di�erent damage cases. In cases O � R, 10% sti�ness
decrease is simulated in two substructures. Cases S and T
introduce 10% sti�ness reduction in three substructures.
The six damage cases are repeatedly diagnosed under dif-
ferent conditions. In the third column of Table 6, the �rst
�ve Ritz vectors are generated from load pattern 1 and
employed for damage detection. In the fourth column,
load pattern 2 is employed instead of load pattern 1. In
the last column of the table, a total of ten Ritz vectors
are generated from load patterns 1 and 2 (the �rst �ve
Ritz vectors are generated from each load pattern). For
all cases in Table 6, all DOFs are measured and one set of
Ritz vectors is simulated assuming a 5% noise level (Ns=1
and Noise=5%).

When the �rst �ve Ritz vectors are generated from
load pattern 1, the proposed method identi�es the actual
damage event of cases O, P, Q and T. However, the ac-
tual damage locations are not detected for cases R and S.
While the use of load pattern 2 yields the detection of ac-
tual damage locations in cases P, Q and R, load pattern 2
fails to identify damage of cases O, S and T. Finally, when
a total of ten Ritz vectors are generated from load pat-
terns 1 and 2, the proposed method identi�es the actual
damage locations for all cases. It is shown that each dam-
age case has di�erent sensitivity to di�erent load patterns
and by including more Ritz vectors from di�erent load



patterns, diagnosis results can be improved.

4 CONCLUSIONS

This study incorporates load-dependent Ritz vectors, as
an alternative to modal vectors, into a Bayesian proba-
bilistic framework for damage detection. Load-dependent
Ritz vectors have potential superiority over modal vectors
in that (1) in general, load-dependent Ritz vectors are
more sensitive to damage than the corresponding modal
vectors, (2) by a careful selection of load patterns, sub-
structures of interest can be made more observable us-
ing the Ritz vectors generated from the particular load
patterns, and (3) while the extraction of higher modes is
diÆcult, a larger set of Ritz vectors can be estimated by
imposing di�erent load patterns.
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Table 4: Comparison of Diagnoses Using Ritz or Modal Vectors

Actual Damage Most Prob. Dam.

Case Ldam Rank1 L̂dam D̂dam

A f46g 3=313(350=434)2 f7,46g f80%,10%g
B f102g 1/251(30/434) f102g f10%g
C f39g 3/313(350/434) f7,39g f80%,10%g
D f97g 3/313(55/434) f5,97g f80%,10%g
G f33g 2/313(372/434) f5,33g f30%,10%g
H f35g 3/313(219/434) f5,35g f80%,10%g
I f94g 3/313(356/434) f5,94g f70%,10%g
J f28g 3/313(382/434) f5,28g f80%,10%g
K f87g 1/251(405/434) f87g f10%g
L f22g 3/313(320/434) f5,22g f80%,10%g
M f17g 3/313(428/494) f5,17g f70%,10%g
N f3g 3/313(213/494) f3,5g f10%,70%g

1. The �rst number is the rank of the actual damage event and the second is the total number of the examined hypotheses.
2. The rank in the parenthesis is estimated using the �rst �ve modal vectors.
3. Ns=1, Noise=5%, all DOFs are measured, and 10% sti�ness reduction is assumed for all damage locations. The �rst �ve Ritz vectors

are estimated from load pattern 2.



Table 5: Diagnoses Using Di�erent Threshold Values

Actual Damage Most Prob. Damage

Case Ldam Ddam Rank1 L̂dam D̂dam

A f46g f10%g 1/371 f46g f10%g
B f102g f10%g 1/552 f102g f10%g
C f39g f10%g 1/371 f39g f10%g
D f97g f10%g 1/461 f97g f10%g
E f36g f10%g 17/95 No Damage
F f71g f10%g -/95 No Damage
G f33g f10%g 1/371 f33g f10%g
H f35g f10%g 1/461 f35g f10%g
I f94g f10%g 1/462 f94g f10%g
J f28g f10%g 1/371 f28g f10%g
K f87g f10%g 1/371 f87g f10%g
L f22g f10%g 1/461 f22g f10%g
M f17g f10%g 9/95 No Damage
N f3g f10%g 1/461 f3g f10%g

1. The �rst number is the rank of the actual damage event and the second is the total number of the examined hypotheses. \-" denotes
that actual damage is not detected.

2. The �rst �ve Ritz vectors are estimated from load pattern 2.
3. Ns=1, Noise=5%, and all DOFs are measured.
4. Di�erent damage threshold is assigned to each substructure.

Table 6: Diagnoses of Multiple Damage Locations

Ldam Rank
Case F11 F22 F1, F23

O f35,94g 1/672 -/371 1/686
P f39,46g 1/483 1/644 1/686
Q f28,102g 1/861 2/914 1/974
R f39,87g -/672 1/644 1/679
S f22,35,97g -/672 -/644 1/686
T f17,35,97g 1/577 -/554 1/986

1. The �rst �ve Ritz vectors are estimated from load pattern 1.
2. The �rst �ve Ritz vectors are estimated from load pattern 2.
3. Load Patterns 1 and 2 are employed and the �rst �ve Ritz vectors are estimated from each load pattern.
4. Ns=1, Noise=5%, and all DOFs are measured.
5. Di�erent damage threshold value is assigned to each substructure.
6. 10% of sti�ness reduction is assumed for all damaged substructures.
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Figure 1: An Eight-Bay Truss Structure
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Figure 2: Lacing Patterns of An Eight-Bay Truss Structure
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Figure 3: Load Patterns Applied to An Eight-Bay Truss Structure
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Figure 4: Sensitivity Comparison of Ritz and Modal Vectors for Progressive Damage in Member 33
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