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ABSTRACT 
 
As the state of structural control technology advances 
towards smaller, more power efficient and less expensive 
control devices, future structural control systems are likely 
to be deployed with large numbers of control devices and 
sensors.  The result is a large-scale control problem 
characterized by having high sensor and actuator density.  
Such systems are better suited for decentralized control.  
Decentralized control techniques decompose the global 
system to a set of local sub-systems for which local 
controllers are designed.  This paper discusses three 
decentralized control techniques: modified LQR control, 
decentralized optimal control, and market-based control.  
A 20-story analytical structure, employing semi-active 
control devices, is used as the benchmark structure for 
comparing the performance and power consumption 
characteristics of the various control techniques 
considered.           
 
 
NOMENCLATURE 
 
{x}  state-space response of the structure 
{u}  actuation control forces 
{f}  external disturbance vector 
{y}  measured system output 
[A]  state-space system matrix 
[B] actuator location matrix 
[C] sensor location matrix 
[Q] positive definite state weighting matrix  
[R] positive definite control weighting matrix 
[P] Ricatti matrix 
[G] feedback control gain 
J controller cost function 
ΦΦΦΦ(t) state trajectory transformation matrix  
P marketplace power 
p price of power 
 
 
 

 
1.  INTRODUCTION 
 
The incorporation of technology in the design of civil 
structures that enhances the lateral integrity of the 
structure during natural excitations is not new to the field 
of structural engineering.  To combat the tremendous 
forces placed upon civil structures during earthquakes and 
winds, various types of control systems have been 
designed since the inception of the concept of structural 
control by Yao in 1972 [1].  Since that time, significant 
interest in the approach has resulted in the use of various 
types of control systems differing in performance, cost and 
power usage specifications.  Early efforts concentrated 
upon the design of active control systems that are 
characterized by one or two large actuators, such as the 
active mass damper system, applying forces directly to a 
structure [2].  However, active-control systems suffer from 
high costs and limited performance especially during large 
seismic disturbances.   
 
A new control paradigm, termed semi-active control, has 
emerged as a viable alternative to active-control.  In this 
new type of control system, forces are not applied directly, 
but rather indirectly to the structure through the use of 
system control devices that can change the stiffness 
and/or damping properties of the overall structural system.  
With small energy consumption characteristics, compact 
sizes and greater degree of reliability, semi-active control 
devices represent a cost effective solution for limiting 
structural deflections during large earthquakes [3].  
Various types of semi-active control devices have been 
proposed with the semi-active variable damper being the 
most popular.  Using a semi-active variable damper, a 
control force of nearly 1,000 kN can be generated using 
less than 100 watts of power [4].    
 
The evolutionary trend of semi-active devices suggest that 
in time, the shape factor of the devices will continue to 
become significantly smaller, their capital cost will be 
reduced and their energy consumption characteristics will 



be improved.  The deployment of large numbers of semi-
active control devices will result in a system of high 
actuator density.     
 
An important component of any control solution is the 
sensing system.  Control systems depend heavily upon 
sensors to relay real time information regarding the state 
of the system, to a centralized controller.    In practice, 
only a few sensors are installed at strategic locations in a 
structure for state feedback because of their high 
installation and maintenance costs.  Significant advances 
are being made in the structural health monitoring 
research community towards making low cost and highly 
reliable sensors for dense senor array deployment [5].   
Two enabling technologies are making this possible: 
microprocessors and wireless communications.   
 
New sensing units are incorporating microprocessors at 
their core because of their low cost and small size.  Some 
of the responsibilities microprocessors have include 
overall unit operation, interrogation of the measurement 
data and communication of the interrogated data.   
Traditional monitoring systems for structures are based 
upon a centralized data logging architecture with sensors 
wired directly to a single logging computer.  Such an 
approach is vulnerable to a single point of failure of the 
data logger, but also suffers from high installation costs 
associated with the installation of wires.  The incorporation 
of wireless communication capabilities within a sensing 
unit allows for wireless communication of all system data 
to all other sensing nodes in the system without wires.  
Advanced wireless sensing units have been designed and 
their viability for application in structural monitoring 
systems tested [6, 7].     
 
The trend of reducing the size and cost of semi-active 
control devices and structural response sensors will 
continue.  The result will be an overall increase in the 
number of actuators and sensors used by engineers, 
which will increase the complexity of the structural control 
system.  Introducing a dense array of actuators and 
sensors into an already complex structure results in a 
control system characterized by high system 
dimensionality and is often termed a large-scale control 
problem.   
 
With increases in system dimensionality, computations 
required by a centralized controller increase faster than at 
a linear rate [8].  The real time demands of the control 
system make it necessary to be aware of the number of 
calculations that can be made in each operation cycle.  An 
additional failure of centrality occurs when considering the 
spatial separation of system sensors.  Cost and reliability 
of communication links between system sensors and a 
controller need to be considered [9].   
 
As a result, the division of the control problem into a 
collective set of smaller sub-systems that can be 
controlled on a local level by decentralized controllers is a 
possible alternative to the centralized controller.  Control 
computations can now be performed in parallel using the 
decentralized distributed control systems.  The 
microprocessor computational core of the sensing units 

can be exploited for performing these computations of 
local control forces.  This control approach of 
decomposing the global system to a set of sub-systems is 
termed decentralized control or distributed control.     
 
 
2. DECENTRALIZED CONTROL 
 
The information structure of the control system defines the 
class of the control approach (centralized versus 
decentralized).  In the centralized approach, complete 
knowledge of the system plant (a priori information) and a 
complete set of state data (a posteriori information) is 
assumed during implementation.   In decentralized control, 
local controllers only have access to a portion of the global 
information.  The amount and type of information available 
to each sub-system controller defines the non-classical 
information structure of the decentralized control 
approach.   
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Figure 1 – Decentralized Information Structures 
 
Three types of decentralized information structures can be 
identified: total, partial and hierarchical decentralized 
control structures [10].  Figure 1 illustrates the three forms 
of the decentralized information structure.  A totally 
decentralized control structure provides local a posteriori 
information to each controller with no information 
exchanged between local controllers.  Knowledge of how 
the control actions of the local controller affect the overall 
system response is not known.  Information transfer 
between local controllers leads to partially decentralized 
control.  While the amount of information exchange is kept 
as low as possible, it provides a way of ensuring partial 



knowledge of how the local controller is affecting the 
global system.     The last type, hierarchical decentralized 
control, adds an additional layer of vertical information flow 
to additional controllers situated above that of the local 
controllers.  The principal role of the controllers of the 
higher level is to ensure concordant behavior between the 
lower local controllers leading to improved overall global 
performance.      
 
A dynamic multivariable system can be represented 
mathematically in state-space form.  Many of the widely 
used classical control approaches depend upon   
representing the dynamic system as a linear time invariant 
model shown in Equation 1.         
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The state of the system is represented by the vector {x(t)} 
and is often a vector of the displacement and velocity 
responses at the system’s degrees of freedom.  The 
system matrix, [A], encapsulates the uncontrolled 
response characteristics of the open-loop system.  With 
the application of control to the system, the control forces, 
{u(t)}, are placed upon the system through the location 
matrix, [B].  External dynamic disturbances to the system 
are represented by [F]{f(t)}.  The system is monitored by 
an array of sensors that provide the measurement vector, 
{y(t)}.   The measurement vector of the system is related 
to the state of the system through the sensor location 
matrix, [C].   
 
The model depicted in Equation 1 facilitates the use of a 
traditional centralized controller.  By modifying Equation 1 
according to the structural constraints of the various 
subsystems, the decentralization of the control solution 
can be depicted.  At the subsystem level, the control force 
input to the system and the sensors to measure 
subsystem output are localized as shown in Equation 2.  
Here, the system is decomposed into N subsystems.         
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This only represents one convenient way of depicting the 
decentralization of the problem along the totally or partially 
decentralized architectures depicted in Figure 1.     
 
Various decentralized control techniques exist but for this 
paper, the discussion will be limited to only three 
decentralized control techniques.  First, the optimal 
centralized controller for a structural system will be 
modified to result in a decentralized but sub-optimal 
control solution.  For a strongly coupled system like a civil 
structure, this extension represents a logical approach of 
simply modifying the familiar centralized controller to fit a 
decentralized architecture.  While such an approach is not 

optimal, the sub-optimal solution might be outweighed by 
its ease of implementation.  The second decentralized 
approach, termed optimal decentralized control, is 
formulated beginning with the decentralized architecture of 
the system and the control problem optimized accordingly.  
The last control approach is more of a phenomenological 
approach termed market-based control.  The market-
based controller is suitable for implementation upon a 
hierarchically decentralized information structure.  
 
 
3. BENCHMARK STRUCTURE 
 
A benchmark structure is selected for comparison of the 
selected distributed control techniques as shown in Figure 
2.  The benchmark structure is a 20-story steel structure 
designed for the Structural Engineers Association of 
California (SAC) project.  The building was designed to 
current seismic codes and represents a realistic building 
design for the southern California region.  In modeling the 
structure, a linear model is employed with full column, 
beam and joint deformation as provided by the nonlinear 
benchmark project at the University of Notre Dame [11].  
The natural frequencies of the first five modes of the 
model are: 0.26, 0.75, 1.3, 1.8, and 2.4 Hz  
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Figure 2 – 20-Story Benchmark Structure 
 
To limit the response of the structure to external 
disturbances, semi-active control devices are attached to 
the structure at various locations.  Control devices with a 
1000 kN capacity are used, connected to the structure 
between adjacent floors.  The control devices are installed 
in a manner that establishes four distinct subsystems with 
four control devices in each with no device bridging any 
two subsystems.  In order to generate large control forces, 
each floor has two control devices installed except the 
first, sixth, eleventh and sixteenth floors.  In total, thirty-two 
semi-active devices are used in the structural frame.      
 

 



Three earthquake loadings are applied to the structure for 
each proposed decentralized control solution.  The El 
Centro N-S record of the Imperial Valley earthquake of 
1940, the Hachinohe City N-S record of the Tokachi-oki 
earthquake of 1968, and the Sylmar Hospital N-S record 
of the Northridge earthquake of 1994 are the three records 
of interest.  The El Centro and Hachinohe earthquakes, 
with peak absolute accelerations of 3.42 and 2.25 m/s2 

respectively, represent far-field records while the 
Northridge record, with a peak absolute acceleration of 
8.27 m/s2, is considered near-field.          
 
 
4. DECENTRALIZED EXTENSIONS OF THE 

CENTRALIZED CONTROLLER  
 
The purpose of the [B]{u(t)} term of Equation 1 is to control 
the response of the open-loop system in a manner that is 
beneficial.  Many centralized control approaches can be 
considered for this task, but often times, the designer 
seeks an optimal control design.  In a control context, 
optimal implies maximum benefit with minimum work.  
One widely used technique that maximizes control benefit 
with a minimum of input power is the Linear Quadratic 
Regulation (LQR) controller.  The derivation of the LQR 
controller requires full knowledge of the system state at all 
times and therefore represents a centralized control 
approach.         
 
In LQR, a cost function, J, weighing system response to 
actuation input is minimized to find the optimal control 
solution.   
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The state of the system, {x(t)}, is regulated (driven to a 
zero state) by the controller using a minimum amount of 
control power.  The relative weighting between the 
regulation of the state vector and actuator effort is 
represented by the positive definite matrices, [Q] and [R].  
The criterion of positive definiteness is necessary to 
ensure that the cost function surface of J, is upward 
convex with a global minimum point defined [12].    
 
Constrained by the equation of motion (Equation 1), the 
cost function, J, is minimized.  An intermediate result of 
the minimization of the cost function is the Ricatti equation 
with [P] representing the Ricatti matrix: 
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An algebraic solution exists for the Riccati equation that 
gives the optimal control solution, {u(t)}.  The solution is 
proportional to the state of the system by matrix [G].   
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For the 20-story benchmark structure, the gain matrix, [G], 
is characterized by a strong dominance of the diagonal 
terms of the matrix.  Figure 3, a three dimensional 
representation of the values of the [G] matrix, illustrates 

the relative dominance of the diagonal terms with the front 
most diagonal corresponding to displacement and the 
back most velocity.   

 
Figure 3 – Terms of the LQR Gain Matrix 

 
The dominance of the diagonal terms is expected because 
the actuators and sensors are collocated.  The form of the 
gain matrix is convenient and can be exploited with minor 
modifications to provide a decentralized control solution.  
All gain terms outside of the four subsystems of the 20-
story structure are zeroed, as shown in Figure 4.  Such a 
solution would represent a sub-optimal controller that is a 
close approximation of the optimal controller.  As the 
dominance of the off-diagonal terms increase, the 
decentralized extension of the centralized controller 
diverges further from optimality.     
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Figure 4 – Non-zero Terms of the New Gain Matrix 
 

Figure 5 shows the response of the 20-story benchmark 
structure employing the centralized controller and the 
decentralized extension of the centralized controller for all 
three earthquakes.   In calculating the LQR controller gain, 
the relative weighting between [Q] and [R] is 3x1014.  As 
shown in Figure 5, the LQR controller and the 
decentralized extension represent significant gains in 
reducing the overall response of the structure.  The 
difference between the centralized LQR and decentralized 
extension is best illustrated when considering a plot of the 
normalized inter-story drift response of the structure.  The 
decentralized extension exhibits degraded performance 
with more erratic differentiation in drifts demand from one 
story to the next.  This is in contrast to the well behaved 
maximum drifts of the centralized LQR controller.  The 
zero off-diagonal terms of the decentralized extension 
appear to be the contributing factor in the reduction of the 
optimality of the control solution.   
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Figure 5 – Inter-story Drift Demands: Centralized LQR 

versus the Decentralized LQR Extension 
 

 
5. OPTIMAL DECENTRALIZED CONTROL 
 
The decentralized extension of the centralized LQR 
controller, while yielding suitable performance, does not 
represent an optimal solution.  A reformulation is 
necessary to derive an optimal decentralized controller.  
The derivation will parallel that of the centralized LQR 
controller.   
 
The cost function used in the derivation of the LQR 
controller (Equation 3) is now minimized subject to 
Equation 2.  Unlike the minimization of the cost function 
when constrained by Equation 1, the minimization in this 
case can yield a non-linear feedback controller [8].  
However, to remain consistent with the linear feedback 
control structure, the feedback control law is explicitly 
defined with the control gain, [G’], which is a block 
diagonal matrix of the various subsystem displacement 
and velocity gain matrices, [GDi] and [GVi], as shown in 
Equation 6.  
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The optimization of the cost function is further constrained 
by Equation 6 to ensure that a linear feedback controller 
results.  A direct result of this constraint is that the 
optimization is now dependent upon the initial state of the 
system.  The state trajectory, {x(t)}, is a direct function of 
the initial state as stated in Equation 7.   
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The cost function of is written to reflect the dependence of 
the state trajectory on its initial state.   
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Provided that the weighting matrix, [Q], is symmetric, the 
cost function of Equation 8 is equivalent to  
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Here, [P] is the solution to the well known Lyapunov 
stability equation  
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Provided that the initial state of the system represents an 
unknown, the mean value of the minimization of the cost 
function is sought over all possible {xO}.  This is equivalent 
to simply minimizing Equation 11.  
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With a relative weighting of 1.2x1014 between [Q] and [R], 
an optimal decentralized controller is designed following 
the iterative procedure proposed by Lunze [8].  The 
resulting controller gain for the benchmark structure is in 
the appropriate form that is suitable for implementation in 
the system’s four totally decentralized subsystems as 
shown in Figure 6.  One interesting observation is how the 
optimal decentralized controller compensates for its 
decentralization with a heavier emphasis upon the 
feedback of the state’s velocity terms when compared to 
the gain matrix of the centralized controller of Figure 3.    

 
Figure 6 – Terms of the Optimal Decentralized Gain 

Matrix 
 
As presented in Figure 7, the results of the optimal 
decentralized controller are compared against those 
obtained by the centralized optimal controller.  The results 



of the decentralized controller are quite similar to those of 
the centralized controller with only a slight degradation of 
performance at the higher levels of the structure.  
However, the controller still represents an optimal solution 
subjected to the limitations of a posteriori information flow 
in the system infrastructure.  The centralized controller has 
the advantage of transferring information regarding the 
state of the system at the structure’s lower levels to the 
actuators at the structure’s higher level giving the 
centralized controller better performance at the higher 
levels of the benchmark structure.       
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Figure 7 – Inter-story Drift Demands: Centralized LQR 

versus the Optimal Decentralized Controller 
 
 
6. MARKET BASED CONTROL 
 
In observing free capitalistic markets, it is evident that 
through the individual intentions of both consumers and 
sellers alike, an efficient means of societal resource 
allocation exists.  The complex laws of supply and 
demand are the fundamental building blocks in 
determining the equilibrium price of goods in a 
decentralized economy.  Borrowing the concept of a 
marketplace for application in a control system is rather 
new to the field of control.  Investigations have been made 
into the use of market-based control techniques in the 
realm of MEM’s (micro-electrical machines), computer 
networks as well as in computer resource allocation 
problems [13].   Lynch and Law proposed to implement a 
market-based control strategy for structural control [14].  
The resulting market-based controller is decentralized with 
respect to knowledge of the system plant.  In terms of a 
posteriori information, the approach can be easily 
decentralized with a hierarchical information control 
structure during implementation.   
 

A structure employing a large number of sensors and 
actuators can be modeled as a market place that centers 
on the buying and selling of the scarce resource of power.  
The cost efficiency of any structural control system is 
indirectly proportional to the consumption of power the 
system requires.  Therefore, allowing actuators to enter a 
market place for purchasing power, the local interaction of 
the system’s actuators can potentially attain an efficient 
global control system that can adequately control a 
structure’s deflections while at the same time use power in 
an efficient manner.  The derived control law is termed 
Pareto optimal since no agent can do any better in the 
marketplace without diminishing the performance of 
another [15].       
    
First, a demand function is proposed for the system’s 
actuators that will govern the amount of control power 
purchased.  Numerous demand functions can be 
proposed, but to make illustration of the market-based 
control concept simple, a linear demand function is 
proposed [14].   
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The scarce commodity of interest in the system is power, 
P.  The control force applied to the structure by each 
control device will be directly proportional to the amount of 
power purchased.  Each actuator will have an opportunity 
to purchase at the market’s equilibrium price, p.  It is 
natural to expect that as the price of power is high relative 
to the actuator’s overall wealth, it’s inclined to purchase 
less.  For a linear demand function, the slope and the P-
axis intercept are sufficient to fully characterize the 
function.  It is proposed that the intercept and the slope of 
the demand function take on the following form.   
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Figure 8 depicts how the selection of the demand 
function‘s intercept and slope influence the growth of 
demand for large structural responses.  
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Figure 8 - Growth of Demand and Control Force to 
Large System Responses 

 
 
 



In a similar fashion, a linear supply function is proposed.  
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β
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In the implementation phase, supply and demand of the 
system agents are aggregated and the equilibrium price of 
power at each time step is determined by finding the point 
where aggregate supply equals aggregate demand.  For 
the selected supply and demand functions, the resulting 
control force can be found for the global system.   For 
linear supply and demand functions, the resulting control 
law is non-linear [14].  
 
Each system agent is provided with an amount of wealth 
with which it can spend on power purchases.  The 
demand function of each agent is weighted by his 
respective wealth.  If power is purchased by an agent at 
the market price when Pmarket < Pdemand, then that amount 
is subtracted from the overall wealth of the agent.  .     
 
With appropriate selection of the weighting terms (G, α, 
and β) used in the system demand and supply functions of 
each agent, suitable global control can be achieved.  
Figure 9 depicts the performance of the decentralized 
market based controller compared to that of the 
centralized LQR controller.  As shown, the performance of 
the market-based controller can be tuned to have 
performance characteristics similar to that of the LQR 
controller.     
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Figure 9 – Inter-story Drift Demands: Centralized LQR 

versus Market-based Control 
 
 
 
 
   

7. CONCLUSION 
 
This paper introduced three decentralized control 
techniques.  All three exhibited suitable global 
performance with the optimal decentralized controller and 
the market-based controller yielding the best reductions in 
system response.  However, the decentralized extension 
of the centralized optimal controller represents an easy to 
implement controller with sub-optimal performance.  
 
Other decentralized control techniques exist and can also 
be considered for application to the large-scale complex 
problem of controlling a structure during an earthquake.  
Decentralized control will become important and better 
suited in the future for systems employing large numbers 
of small and inexpensive actuators and sensors. 
      
Given their flexible frameworks, the decentralized control 
approaches can be extended to handling significantly 
more complex systems such as nonlinear structures.   
Many methods of nonlinear structural control depend upon 
the reduction or the linearization of the system model to a 
point where classical control approaches can be applied.  
Alternatively, the complexity of the nonlinear control 
problem can be best tackled with a distributed control 
framework with increased complexity being dealt with by 
each subsystem. 
 
Future investigation will consider the robustness of the 
decentralized control approaches.  An advantage of the 
decentralization of the controller is robustness in the face 
of failure.  Given one subsystem fails, the other 
subsystems might be capable of compensating 
accordingly and ensure suitable global performance of the 
system.  Decentralized control provides a framework to 
study possible subsystem failures in a distributed control 
system.   
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