
  

  

Abstract—This paper discusses a data-driven, cooperative 
control strategy to maximize wind farm power production. 
Conventionally, every wind turbine in a wind farm is operated 
to maximize its own power production without taking into 
account the interactions among the wind turbines in a wind 
farm. Such greedy control strategy, when an upstream wind 
turbine attempts to maximize its power production, can 
significantly lower the power productions of the downstream 
wind turbines and, thus, reduces the overall wind farm power 
production. As an alternative, we propose a cooperative wind 
farm control strategy that determines and executes the 
optimum coordinated control actions that maximize the total 
wind farm power production. To determine the optimum 
coordinated control actions of the wind turbines, we employ 
Bayesian Ascent (BA), a probabilistic optimization method 
constructed based on Gaussian Process regression and the trust 
region concept. Wind tunnel experiments using 6 scaled wind 
turbine models are conducted to assess (1) the effectiveness of 
the cooperative control strategy in improving the power 
production, and (2) the efficiency of the BA algorithm in 
determining the optimum control actions of the wind turbines 
using only the input control actions and the output power 
measurement data. 

I. INTRODUCTION 
Conventionally, a wind turbine in a wind farm is operated 

individually to maximize its own power production by 
adjusting its operational conditions, i.e., control actions. 
Under this greedy control strategy, the wake formed by the 
upstream wind turbine would potentially lower the power 
productions of the downstream wind turbines due to reduced 
wind speed and increased turbulence intensity inside the 
wake. Realizing that the interactions among the wind turbines 
can affect their power productions, this study investigates a 
cooperative strategy to coordinate the control actions that 
influence the wake interference pattern with the objective of 
maximizing the total power production of a wind farm. 

To determine the optimum coordinated control actions of 
wind turbines, various approaches have been proposed. One 
approach is to formulate the wind farm control problem 
mathematically using an analytically derived wind farm 
power function, and to determine the optimum control 
actions by solving the formulated problem using an 
optimization scheme. For example, Park and Law formulated 
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the cooperative wind farm control problem using the wind 
farm power function calibrated with CFD simulation data and 
proposed to solve the control problem using sequential 
quadratic programming [1]. As an alternative to constructing 
a wind farm power function, model-free optimization 
approaches have also been attempted to determine the control 
actions for maximizing the wind farm power. For examples, 
game theoretic search [2-3] and point tracking method [4] 
have been proposed to determine the optimum control actions 
using only the wind farm power output data. For model-free 
methods, the strategy is to iteratively find better control 
actions by executing trial actions and observing the 
consequent power outputs. The success of the model free 
control approaches strongly depends on the rate of 
convergence to an optimum and the robustness in handling 
noisy data. 

Recently, efforts have been made to optimize a target 
system using scarce data by exploiting the expressivity of 
non-parametric regression model. For example, Bayesian 
Optimization (BO) iteratively determines the optimum of a 
target system through a sequence of learning and sampling 
steps [5-6]. At each iterate, BO approximates the input and 
the output relationship of the target system using Gaussian 
Process (GP) regression (learning) and uses the approximated 
model to determine the next set of inputs (sampling) that 
improve the target values. Park and Law have developed the 
Bayesian Ascent (BA) method that combines the strengths of 
the Bayesian Optimization (BO) and the gradient-free trust 
region approach [7]. BA adapts the strategy of regulating the 
optimization scope, as used in the Trust Region method, into 
the Bayesian Optimization (BO) framework to ensure that the 
algorithm can monotonically increase a target value. With the 
trust region constraint imposed on the sampling procedure, 
BA tends to increase the target value and results in rapid 
convergence towards the optimum. 

In this study, we employ the Bayesian Ascent method to 
determine the optimum coordinated control actions for wind 
farm power production by exploiting the power measurement 
data obtained from the wind turbines. Numerical simulations 
using an analytically derived power function have 
demonstrated the potential of the BA algorithm for the 
control problem [8]. In this work, we focus on the 
implementation of the BA method for real-time control on a 
physical system. We conduct experimental wind tunnel 
studies using 6 scaled wind turbines to investigate (1) the 
effectiveness of the cooperative control strategy in terms of 
increasing the total wind farm power production, and (2) the 
feasibility of using the Bayesian Ascent (BA) algorithm in 
terms of deriving the optimum coordinated control actions for 
wind turbines (i.e., the optimum cooperative control strategy) 
using only power measurement data. We employ the 
Bayesian Ascent algorithm to the scaled wind farm with 
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different configurations and wind directions to gain insight 
on the cooperative control using the BA algorithm. 

 

II. FORMULATION OF COOPERATIVE WIND FARM CONTROL 

When each wind turbine tries to maximize its own 
objective  function without considering the objectives of 
other wind turbines, the non-cooperative wind farm control 
problem can be formulated as 

𝑥!∗ = argmax
!!

𝑓! 𝒙 = argmax
!!

𝑓! 𝑥! ,𝒙!!   
 

(1) 
 

in which wind turbine 𝑖 maximizes its own power 𝑓! 𝒙  with 
respect to its own control actions 𝑥! regardless of the control 
actions 𝒙!! = (𝑥!,… , 𝑥!!!, 𝑥!!!,… 𝑥!)  of other wind 
turbines. For a non-cooperative game, there exists an 
equilibrium point 𝒙∗ = (𝑥!∗,… , 𝑥!∗ ) , called the Nash 
equilibrium, that satisfies [9]. 

𝑓! 𝑥!∗,𝒙!!∗ ≥ 𝑓! 𝑥! ,𝒙!!∗  for 𝑖 = 1,… ,𝑁 
 

(2) 
 

In other words, if all agents except agent 𝑖 hold the Nash 
equilibrium actions 𝒙!!∗ , the action of agent 𝑖 deviated from 
𝑥!∗ will decrease its own objective function according to Eq. 
(1), which is the incentive for all the agents to hold the Nash 
equilibrium strategy 𝒙∗ = (𝑥!∗,… , 𝑥!∗ ) . The operational 
condition that individual wind turbine maximizes its own 
power reflects the Nash equilibrium actions [1].  

When all wind turbines coordinate their control actions to 
achieve the common goal of maximizing the wind farm 
power production, the cooperative wind farm control problem 
can be formulated as  

𝒙∗ = argmax
!
𝑓 𝒙 ≜ 𝑓! 𝒙

!

!!!

 
 

(3) 
 

 
where 𝑓 𝒙 = 𝑓! 𝒙!

!!!  denotes as the total wind farm 
power function. While Eq. (1) is a decentralized control 

problem, Eq. (3) is a centralized control problem in that the 
control actions 𝒙 of the entire wind turbines are determined 
simultaneously. 
 

III. BAYESIAN ASCENT ALGORITHM 

For real-time, data-driven control, it is imperative that the 
control algorithm is designed to improve the target value 
using as few measurement data as possible. To achieve this 
goal, the Bayesian Ascent (BA) method is developed by 
incorporating into the Bayesian Optimization (BO) 
framework strategies to regulate the search region [7]. The 
following briefly describes the optimization procedure of the 
BA method, which will be used to solve the cooperative 
control problem posted in Eq. (3). Figure 1 illustrates the 
procedure of solving the cooperative control problem using 
the BA algorithm. BA algorithm iteratively searches the 
optimum control actions by executing a series of trial actions 
and observing the responses (total power productions) 
corresponding to the selected and executed control actions. 
Each iteration of the BA algorithm consists of a learning, an 
optimization and an observation phase. 

A. Learning Phase 
In the learning phase of the 𝑛 th iteration, using the 

collected inputs 𝒙!:! = {𝒙!,… ,𝒙!} and the observed output 
data 𝒚!:! = {𝑦!,… , 𝑦!} , the unknown objective function 
𝑓(𝒙) is modelled using a Gaussian Process (GP) regression. 
Based on the prior and the observation model, the value 
𝑓∗ = 𝑓 𝒙∗  of the target function for the unseen input 𝒙∗ and 
the observed outputs 𝒚!:! = {𝑦!,… , 𝑦!}  are assumed to 
follow a multivariate Gaussian distribution [10]:  

 

𝒚!:!
𝑓∗ ~𝑁 𝟎,

𝐊 + 𝜎!!𝐈 𝒌
𝒌! 𝑘(𝒙∗,𝒙∗)

 
 

(4) 
 

where K is the covariance matrix (kernel matrix) whose 
(𝑖, 𝑗) th entry is defined as 𝐊!"  =  𝑘 𝒙! ,𝒙! , and 𝒌!  =
 𝑘 𝒙!,𝒙∗ , . . . , 𝑘 𝒙!,𝒙∗ . The value of the covariance 

Figure 1. Bayesian optimization for wind farm power maximization problem 



  

function 𝑘 𝒙! ,𝒙!  quantifies the similarity between the two 
input vectors 𝒙!  and 𝒙! . We use a squared exponential 
covariance function whose evaluation between two input 
vectors 𝒙! and 𝒙! is expressed as [11]: 

𝑘 𝒙! ,𝒙! = 𝜎!!exp −
1
2
𝒙! − 𝒙!

!
diag 𝝀 !! 𝒙! − 𝒙!  

 
(5) 

 
where 𝜎! and 𝝀 are termed hyper-parameters. The term 𝜎!! is 
referred to as the signal variance that quantifies the overall 
magnitude of the covariance value. With hyper parameters 
optimized, the posterior distribution on the response 𝑓∗ for 
the unseen input 𝒙∗  given the historical data 𝑫! =
𝒙! , 𝑦! |𝑖 = 1,… , 𝑛  can be expressed as an 1-D Gaussian 

distribution 𝑓∗~𝑁 𝜇 𝒙∗|𝑫! ,𝜎 
! 𝒙∗|𝑫!  with the mean 

and variance functions expressed, respectively, as [10]: 
 

 𝜇 𝒙∗|𝑫! = 𝒌!(𝐊 + 𝜎!!𝐈)!!𝒚!:! (6) 
               𝜎 

! 𝒙∗|𝑫! = 𝑘 𝒙∗,𝒙∗ − 𝒌!(𝐊 + 𝜎!!𝐈)!!𝒌 (7) 
 
Here, 𝜇 𝒙∗|𝑫!  and 𝜎 

! 𝒙∗|𝑫!  are used as the functions for 
evaluating, respectively, the mean and the variance of the 
hidden function output 𝑓∗ corresponding to the unseen input 
data 𝒙∗. 

B. Optimization (Sampling) 
In the 𝑛th iteration of the optimization phase, the next 

input 𝒙!!!  is determined by exploiting the learned target 
function 𝑓(𝒙)  in order to learn more about the target 
function as well as to improve the target value at the same 
time. In Bayesian Optimization (BO), the next sampling 
point is being selected as one maximizing an acquisition 
function that incorporates both the aspects of exploration 
and the exploitation [5-6]. Likewise, the BA algorithm 
selects the next input as one that maximizes the expected 
improvement E max 0, 𝑓 𝒙 − 𝑓!"# , the acquisition 
function that has been proposed by [12]. Additionally, the 
BA algorithm imposes a trust region on the scope of the next 
sampling to ensure that the next input 𝒙!!! is chosen near 
the best input observed so far in an attempt to monotonically 
increase the target value. This optimization phase of BA 
algorithm is posed as a constrained optimization problem 
described in  [7]: 

 
max.
𝒙

 E[max 0, 𝑓 𝒙 − 𝑓!"# |𝑫!]                            
  s.t. 𝒙 ∈ 𝑻 ≜ 𝒙| 𝑥! − 𝑥!!"# ! < 𝜏!   for  𝑖 = 1,… ,𝑁  

(8) 

  
where the trust region 𝑻 is defined as a hypercube with its 
center being 𝒙!"# that produces the maximum target value 
𝑓!"# with the historical data 𝑫!. The strategy employed in 
the BA algorithm is similar to imposing a trust region 
constraint in mathematical optimization [13]. The ith 
component 𝜏! of 𝝉 = (𝜏!,… , 𝜏! ,… , 𝜏!) determines the range 
where the 𝑖 th component 𝑥!  of 𝒙 = (𝑥!,… , 𝑥! ,… , 𝑥!)  is 
being sampled next. Thus, the vector 𝝉 controls the overall 
size of the hypercube trust region where the exploration 
takes place.  

C. Observation 
In the observation phase, the selected control input 𝒙!!! 

is executed and the corresponding output 𝑦!!! is observed. 
The collected new data point 𝒙!!! , 𝑦!!!  is then appended 
to the historical data set as 𝑫!!! = 𝒙! , 𝑦! |𝑖 = 1,… , 𝑛 +
1 , which is then used to update the target function 𝑓(𝒙) and 
re-optimize the hyper-parameters in the learning phase of the 
next iteration. In addition, to expedite the convergence rates, 
BA adjusts the size of the trust region depending on the 
improvement in the target value. 

 

IV.  WIND TUNNEL EXPERIMENTAL SETUPS 

This section describes an experimental study to validate 
(1) the effectiveness of the cooperative wind farm control 
strategy for improving the total wind farm power and (2) the 
efficiency of the BA algorithm for finding the optimum 
coordinated control actions using only the power 
measurement data. 

A. Scaled Wind Turbine 
The scaled wind turbine model, shown in Figure 2, is 

made of three aluminum blades with a length of 70 cm. The 
rotor diameter is 150 cm. The tower is made of a steel tube 
with a height of 100 cm. The blade pitch angles are 
controlled by a servomotor (Dynamixel-64T). As shown in 
Figure 2(b), the rotation of the servomotor is transformed 
into a linear motion to rotate the blade angles through a 
mechanical linkage. The rotation angles of the servomotor 
range from 0° to 70° which convert the blade pitch angles 
varying from 0° to 20° (albeit they are not related in a linear 
fashion). We use the rotation of the servomotor, instead of 
the actual blade pitch angle, as the control variable for 
optimization. The rotational change of the servomotor is 
easy to track using the encoder in the servomotor, which is 
also used to acknowledge the executed control actions. As 
shown in Figure 2(b), the yaw angle is controlled by the 
same type of servomotor through a mechanical gear system. 
With an one-to-one gear ratio, the rotational angle of the 
servomotor is the same as the actual rotation of the yaw of 
the wind turbine. An AC generator, shown in Figure 2(b), is 
used to convert the mechanical energy into electrical energy.  

B. Control Board 
Figure 3 shows the circuit board designed to measure the 

electrical power output from the wind turbine and to execute 
the control actions to adjust the blade pitch and the yaw angle 
of the wind turbine. The AC voltage output from the 
generator is converted into DC voltage by the rectifier. The 
rectified voltage and the associated current flowing through 
the load resistance are then measured using voltage and 
current sensors, from which the instantaneous power is 
computed. The microcontroller (Arbotix-M) continuously 
samples the instantaneous power and compute the average 
power  (using a moving average technique). The 
microcontroller then transmits the computed average power 
to the central node (laptop computer) through the XBee radio 
module every 2 minutes. The BA method processes the 
average power collected from the wind turbines in the central 
node and determines the next control actions. The determined 



  

control actions are then wirelessly transmitted to the 
microcontroller to change the blade pitch and the yaw angle 
in the wind turbine. 

C. Wind Tunnel Laboratory 
Figure 4 shows the 6-scaled wind turbines arranged in the 

test section of the KOCED’s Wind Tunnel, located at 
Chonbuk National University in Korea. The wind tunnel test 
section is 12 m wide and 40 m long. The height of the test 
section is 2.2 m at the front and continuously increases until 
reaching 2.5 m at the end of the test section. Due to the 
varying height of the test section, the wind speed varies 
depending on the locations in the test section. The constant 
wind speed of 4 m/s (measured at 32m downside of the test 
section) is used throughout the experiments to ensure that 
the scaled wind turbines are operated safely without having 
excessive vibrations. The layout shown in Figure 4 is one 
example of the wind farm configuration used in the 
experimental studies.  

D. Experimental Procedure 
The effectiveness of the cooperative control with the BA 

algorithm is experimentally investigated by applying it to the 
scaled wind farm with different wind farm configurations 
and wind conditions. For each case, the wind turbines are 
placed at the designated locations, and the yaw angles of the 
wind turbines are set to be perpendicular to the wind 

direction, i.e., the initial yaw offset angle is always zero that 
is the optimum control actions for maximizing its own 
power production. In addition, to evaluate the performance 
of the cooperative control approach and the BA algorithm in 
terms of efficiency, two wind turbine powers, as defined 
below, are measured before employing the cooperative 
control strategy with the BA algorithm: 
 
• 𝑃!!: Freestream maximum power of wind turbine 𝑖 that 

can be produced at a given location when there is no wake 
interference. 𝑃!!  for 𝑖 = 1,… ,𝑁  is individually 
determined by iteratively changing the pitch angle of wind 
turbine 𝑖 located at its designated position in the wind 
tunnel. The reason why we measure 𝑃!!  for all wind 
turbines is that the wind flow conditions (i.e., wind speed 
and turbulence intensity) are different depending on the 
location of the wind turbine. The measured power 𝑃! 
normalized by 𝑃!! then represents the power efficiency for 
wind turbine 𝑖. The total wind farm power is computed 

𝑃!!!
!!! , where 𝑁  is the number of wind turbines 

considered. The maximum total wind farm power will be 
used to normalize the results to show the relative 
improvement.  

• 𝑃!!: Greedy maximum power of wind turbine 𝑖 that can be 
produced at a given location when the upstream wind 

	 	
Figure 2. Scaled wind turbine model Figure 3. Control board 

 

 
Figure 4. Wind tunnel section 



  

turbines are producing their maximum powers. 𝑃!!  for the 
first upstream wind turbine is same with 𝑃!! . For 
𝑖 = 2,… ,𝑁, 𝑃!!  is individually determined by iteratively 
changing the blade pitch angle of wind turbine 𝑖 as the 
upstream wind turbines are operated with their greedy 
control strategy. The wind farm power efficiency for the 
greedy control strategy is then computed as 

𝑃!!!
!!! 𝑃!!!

!!! .  
 
Starting from the identified greedy control strategy 
𝒙! = 𝑥!! ,… , 𝑥!!  that produces the greedy maximum power 
𝑷! = 𝑃!! ,… ,𝑃!! , the BA algorithm proceeds to find the 
optimum coordinated control actions 𝒙! = 𝑥!! ,… , 𝑥!!  that 
maximizes the sum of the wind turbine powers 𝑃!!!

!!!  
where 𝑷! = 𝑃!! ,… ,𝑃!!  corresponds to wind turbine 
powers produced using 𝒙! . The wind farm power efficiency 
for the cooperative control strategy is then computed as 

𝑃!!!
!!! 𝑃!!!

!!! .  

V. RESULTS 

We study the effectiveness of the cooperation control and 
the capability of the BA algorithm for finding the optimum 
coordinated control actions. The improvement in the total 
wind farm power by the cooperative control strategy is 
quantified as a gain 𝑃!!!

!!! − 𝑃!!!
!!! 𝑃!!!

!!! , which 
reflects the effectiveness of the cooperative control strategy 
comparing to the greedy control strategy. The convergence 
rate to the maximum cooperative power 𝑃!!!

!!!  reflects the 
performance of the BA algorithm. It should be noted that the 
exact optimum strategy for the cooperative control is not 
known. The goal of BA algorithm is to rapidly improve the 
wind farm power production compared to the initial greedy 
control strategy. 

As shown in Figure 4, a total of 6 wind turbines are 
arranged in two lines separated by a lateral distance 2𝐻. The 
downstream inter distance between two wind turbines is fixed 
at 7𝐷 where 𝐷 is the rotor diameter of a wind turbine. The 
BA algorithm is employed to three different wind farm 
configurations with 𝐻 = 0 m, 1.5 m and 3 m. For each case, 
the blade pitch angle and the yaw offset angle of WT 6 is 
fixed at its greedy control strategy because WT 6 is the last 
wind turbine in the array. In total, 10 control variables, yaw 
and the blade pitch (servo) angles for wind turbines WT1~5, 
are optimized by the BA algorithm. 

For the three cases, Figure 5 shows the trajectories of the 
control actions and the power efficiencies of the 6 wind 
turbines with the iterations of the BA algorithm. Figure 6 
shows the improvements in the total wind farm power 
efficiency by the BA algorithm. In terms of the effectiveness 
of the cooperative control, the following trends are observed: 
 
• As shown in Figure 5, the two upstream wind turbines 

WT 1 and WT 2 produce the powers that are comparable 
to the maximum free stream powers for the three cases, 
𝐻 = 0 m, 1.5 m and 3 m. When the cooperative control 
is employed, these two upstream wind turbines offset their 
yaw angles the largest (when comparing to other wind 
turbines) to increase the power productions of the 

downstream wind turbines as well as the total power 
production.  

• While the yaw offset angles for WT 1 and WT 3 change in 
clockwise direction, WT 2 and WT 4 change in the 
counterclockwise direction. This result causes the wake to 
divert away from the downstream wind turbines. The 
blade pitch servo angles for the 5 wind turbines are also 
concurrently adjusted, but their common trend is a little bit 
difficult to observe because its influence on both their own 
powers and the powers of other wind turbines are not as 
strong as the influence of the yaw offset angles.   

 
In terms of the effects of the wind direction on the capability 
of the BA algorithm, the following trends are observed: 
 
• As shown in Figure 6, the lateral distance 𝐻 does not 

dramatically influence the wind farm power efficiencies 
for both the greedy and the cooperative control strategies 
(compare the initial and the final wind farm power 
efficiencies for three cases). This implies that the 
cooperative control strategy would still be effective to a 
wind farm with its wind turbines being densely populated.  

• When 𝐻 = 3 m , the convergence rate of the BA 
algorithm is slower than the other cases. After a few 
explorations in the initial iterations, the BA algorithm 
improves the target wind farm power efficiency as much 
as the other cases.  

VI. CONCLUSION 
The data driven BA optimization algorithm iteratively 

finds the optimum of the target system by using the input 
(control actions of the wind turbines) and the output (power 
measurements from the wind turbines) data collected from 
the target (wind farm). Using 6 scaled wind turbines in a 
wind tunnel laboratory, this study experimentally investigates 
(1) the effectiveness of the cooperative control in improving 
the total wind farm power, and (2) the capability of BA 
algorithm in finding the optimum coordinated control actions 
using only the input and the resultant power measurement 
data. The BA algorithm is employed to determine optimum 
coordinated control actions of the wind turbines that 
maximize the total power production. Due to the trust region 
constraints, the BA algorithm increases almost monotonically 
the target wind farm power by gradually chaining the control 
actions of the wind turbines. Finally, it is generally unknown 
what the true optimum is for the cooperative control problem. 
The role of BA algorithm is not to identify the exact 
optimum, but to improve the wind farm power as quickly as 
possible compared to the initial conventional control strategy.  
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(a) 𝐻 = 0 m (b) 𝐻 = 1.5 m (c) 𝐻 = 3 m 

Figure 5. Control actions and power efficiencies for different wind directions. 

   
(a) 𝐻 = 0 m (b) 𝐻 = 1.5 m (c) 𝐻 = 3 m 

Figure 6. Improvement on power production using cooperative control for different wind directions. 
 


