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ABSTRACT	
  	
  
Using a machine learning approach, this study investigates the effects of machining parameters on the energy consumption of 
a milling machine tool, which would allow selection of optimal operational strategies to machine a part with minimum 
energy. Data-driven prediction models, built upon a nonlinear regression approach, can be used to gain an understanding of 
the effects of machining parameters on energy consumption. In this study, we use the Gaussian Process to construct the 
energy prediction model for a computer numerical control (CNC) milling machine tool. Energy prediction models for 
different machining operations are constructed based on collected data. With the collected data sets, optimum input features 
for model selection are identified. We demonstrate how the energy prediction models can be used to compare the energy 
consumption for the different operations and to estimate the total energy usage for machining a generic part. We also present 
an uncertainty analysis to develop confidence bounds for the prediction model and to provide insight into the vast parameter 
space and training required to improve the accuracy of the model.  Generic parts are machined to test and validate the 
prediction model constructed using the Gaussian Process and we consistently achieve an accuracy of over 95% on the total 
predicted energy.   
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INTRODUCTION 
     The ability to accurately predict energy consumption 
during machining can provide several advantages. For 
example, energy prediction may be used to estimate 

energy costs and improve the efficiency of machine tools. 
It is also useful to predict energy consumption in response 
to new regulations and business drivers, such as Smart 
Grid and carbon cap-and-trade. Finally, energy prediction 
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can enable process monitoring since changes in power 
demand and energy consumption of machine tools can 
identify different events and states [1]. Despite their 
potential in managing and improving machine tool 
performance, data-driven energy prediction models 
remain scarce due to the difficulty in systematically 
measuring energy usage with all machining parameters 
and input features. However, recent technologies and 
standards have made it easier to efficiently monitor and 
manage the machining operation data needed to develop 
energy prediction models. One such example is 
MTConnect, which is a standard that has been developed 
to facilitate archiving, accessing, and retrieving 
operational data from manufacturing equipment [2]. 
MTConnect allows for the collection of raw sensor data 
and machine operational information, which provides a 
means to track variations in energy consumption by the 
different machining operations [1].  
     Machine tool monitoring for tool condition and energy 
consumption has been a subject of active research [3-6].  
Advancements in machine automation and sensing 
technology have allowed measurement of the conditions 
and energy consumption of an operating machine. Teti et 
al. [7] gave an extensive survey of sensor technologies, 
signal processing, and decision-making methodologies on 
machine monitoring. Machine learning techniques, such 
as Artificial Neural Network [8-12], Support Vector 
Regression [13, 14], Hidden Markov Model [15, 16], and 
Conditional Random Field [17], have been proposed to 
study the relationships between machining operations and 
tool conditions.  MTConnect has been employed to study 
the effects of different machining process parameters on 
the energy consumed by a machine tool to produce a 
part [18]; this work also constructed a statistical 
regression model for energy consumption. While prior 
studies have illustrated the potential of collecting 
operational and energy consumption data for further 
analysis, most research dealt primarily with a single 
operation (e.g., face milling). But, machining a part in 
practice involves multiple machining operations with 
different combinations of operational parameters.  This 
study aims to develop energy prediction models for the 
various operations of a computer numerical control 
(CNC) milling machine using a machine learning 
approach.  The energy prediction models are then 
aggregated and applied to estimate the total energy 
consumption for part machining. 
 
EXPERIMENTAL DESIGN AND DATA 
PREPARATION 
     With rapid advancements in sensing and data 
management technologies, energy consumption data 
corresponding to each code block of an NC code and its 
corresponding machining parameters can be collected in 
real time and efficiently processed and retrieved remotely. 
This motivated us to design novel experiments to collect 

data that can realistically represent the manufacturing 
process by a machine tool. The experimental design, 
setup, and data processing techniques used for generating 
the training data for this study have been described 
previously by Bhinge et al. [19].  Here, we briefly present 
the basic setup and data processing steps used in our 
experiments.  We then discuss the input features and data 
sets employed in constructing the prediction model.   
     Figure 1 shows a sample part designed to collect the 
training data for the data-driven energy prediction 
function [19]. Table 1 shows specific details of the work 
piece, the machine tool, and the cutting tool employed in 
the experimental study [19].  There are six basic cutting 
operations involved in machining the part: face milling, 
contouring, pocketing, slotting, spiraling and drilling. In 
addition, there are three non-cutting operations that are 
also included in the data sets collected from the 
experiments: air-cuts in 𝑥 − 𝑦 and 𝑧 directions and rapid 
tool motion. Because process parameters, such as feed 
rate, spindle speed, and depth of cut, can affect energy 
consumption, the test parts are produced with different 
combinations of machining parameters to investigate the 
relationship between the machining process parameters 
and the energy usage. A Taguchi technique [20] has been 
employed to design the experiments to ensure a fractional 
factorial combination for each of the process parameters in 
each operation. Table 2 shows the levels chosen for the 
depth of cut, chip load, and spindle speed used to machine 
the parts [19]. The feed rate f (mm/min) is obtained as the 
product of the spindle speed (RPM), the number of tool 
teeth, and the chip load (mm/tooth). 

18 parts were machined for a total of 196 face milling 
experiments, 108 contouring experiments, 54 slotting and 

Table 1. Experimental setup [19] 
Work piece 
Material 

Cold Finish Mild Steel 1018 

Work piece 
Dimensions 

63.5mm x 63.5mm x 56mm 

Machine Make Mori Seiki NVD 1500 
Machine Type Micro NC Milling Machine 
Tool Material Solid Carbide 
Tool Diameter 3/8'' (9.525 mm) 
	
  

	
  
	
  

Figure 1. Test part for experimentation [19]	
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pocketing experiments, 16 spiraling experiments, and 32 
drilling experiments. The face-milling operations on the 
first 9 parts were carried out in the 𝑦 direction, while the 
remaining 9 parts were milled in the 𝑥  direction. The 
separation of milling operations in the x- and y-directions 
was necessary to measure the energy consumption 
accurately for the target machine.  The data sets collected 
during machining of the 18 parts were then used to 
construct the energy prediction model for each cutting or 
non-cutting operation.     
     Figure 2 shows the hardware used to collect the energy 
consumption data contextualized with machining 
parameters [21]. The machining process data, such as 
process parameters, NC blocks, and tool positions, were 
collected from the FANUC controller, and the power time 
series data was collected using a High Speed Power Meter 
from System Insights. The machining parameters and the 
power time series were synchronously combined through 
the MTConnect agent. The hardware platform and the 
data acquisition system used here were identical to the 
ones presented by Bhinge et al. [19] and Helu et al. [21]. 
     The raw data collected from the MTConnect agent 
included the timestamp, power consumption, feed rate, 
spindle speed, and NC code block information.  The 
collected data were then processed in two stages. The first 
stage calculated the derived data, such as the average feed 
rate, average spindle speed, and cumulative energy 
consumption for each NC code block. The second stage 
calculated the volume of material removed, depth of cut, 
and cutting strategy for each NC code block by simulating 
the cutting process while accounting for the actual 
dimensions of the work piece. The data obtained from the 
cutting simulation was denoted as simulated data. Figure 
3 summarizes the data categorized as directly measured 
data, derived data, and simulated data, which were used to 
construct the energy prediction function for the machine 
tool [19].  
     From the NC code, the measured, derived, and 
simulated data were obtained as the input parameters for 
the learning algorithm.  Specifically, the input feature 
vector 𝒙 = 𝑥!,… , 𝑥!  is defined as follows: 
 
• 𝑥! ∈ ℝ   Feed rate: the velocity at which the tool is fed, 

which can be retrieved from the controller data 
• 𝑥! ∈ ℝ   Spindle speed: rotational speed of the tool, 

which can be retrieved from the controller data 
• 𝑥! ∈ ℝ   Depth of cut: the actual depth of material that 

the tool is removing, which can be obtained from the 
cutting simulation 

• 𝑥! ∈ 1, 2, 3, 4   Active tool axis ID (1 is for 𝑥-axis, 2 
for 𝑦-axis 3 for 𝑧-axis and 4 for 𝑥-y axes): index for the 
active cutting direction, which can be determined by 
the lengths of cut in the 𝑥-, y- and z-directions 

• 𝑥! ∈ 1, 2, 3  Cutting strategy (1 is for conventional, 2 
for climbing and 3 for both): the method for removing 
material, as obtained from the cutting simulation 

 
The input process parameters used in this study are shown 
in Figure 4 [19]. Additionally, the total length of the tool 
path, 𝑙 ∈ ℝ, in a single NC code block was computed 
using the lengths of cut in the x-, y- and z-directions.  For 
the output response, the energy consumption of the 
milling machine measured by a high-speed power meter 
was used. Specifically, the average energy consumption, 
𝐸 ∈ ℝ, was obtained by numerically integrating the power 
time series measured during the machining operation in 
each NC code block.  In this study, the output feature y 
was the energy density value defined as the energy 
consumption per unit length of tool path for each NC code 
block.  

Figure 2. Data collection and processing hardware [21]	
  

 
Figure 3. Classified data types from MTConnect [19] 

	
  

Table 2. Levels for obtaining training data [19] 
Level Spindle 

Speed (RPM) 
Chip Load 
(mm/tooth) 

Depth of 
Cut (mm) 

1 1500 0.0254 1 
2 3000 0.0330 1.5 
3 4500 0.0432 3 
4 6000 0.0508 - 
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     In total, 12,299 pairs (NC code blocks) of input feature 
vectors 𝒙 and output feature 𝑦 were collected from the 
experiments. To ensure the training time series data were 
statistically of good quality, we selectively used the input 
features and the energy densities corresponding to NC 
code blocks whose duration were longer than 3 seconds 
(for rapid motion, time filtering was not applied since the 
operational durations were all under 3 seconds). The 
filtered data set 𝑫 = 𝒙! , 𝑦! |𝑖 = 1,… ,𝑚 , where  
𝑚 = 3,092, was further categorized into nine different 
data sets represented by 𝑫!,… ,𝑫! ,… ,𝑫!  
corresponding to the nine operations where each data set 
𝑫! = 𝒙! , 𝑦! 𝑖 = 1,… ,𝑚!  contains 𝑚!  NC code 
blocks for the machining operation type q.  
 
ENERGY PREDICTION MODEL 
     This section discusses how the energy prediction 
models for the machining operations are constructed 
using a Gaussian Process (GP).  First, the basic procedure 
for constructing a GP regression model for a machining 
operation is introduced.  We then discuss the selection of 
optimum input features that provide the best prediction 
accuracy for a machining operation.  Lastly, we describe 
how the prediction models for each machining operation 
are aggregated and applied to estimate the total energy 
consumption for machining a part.   
 
Gaussian Process Regression 
     In the GP, we assume that the output 𝑦 = 𝑓! 𝒙 + 𝜖 is 
measured with noise 𝜖~  𝑁(0,𝜎!!), which is also Gaussian 
distributed with zero mean and variance 𝜎!!. In a GP, the 
values for the unknown function 𝑓! 𝒙  are treated as 
random variables and modeled by a Gaussian distribution 
for incorporating prior knowledge captured in the 
historical data.  Suppose the current data set is denoted by 
𝑫! = 𝒙! , 𝑦! 𝑖 = 1,… ,𝑚!  for the machining operation 
type 𝑞 . The measured output 𝑦!"# = 𝑓! 𝒙!"# + 𝜖!"# 
corresponding to the new input feature 𝒙!"#  and the 
historical outputs 𝒚!:!! = {𝑦!,… , 𝑦!!}!  in the training 
data set 𝑫!  follow a multivariate Gaussian 
distribution [22]: 
 

𝒚!:!!

𝑦!"# ~𝑁 𝟎, 𝐊 𝒌
𝒌! 𝑘 𝒙!"# ,𝒙!"# ,	
  

	
  
(1)	
  
	
  

	
  
where 𝒌!   =    𝑘 𝒙!, 𝒙!"# , . . . , 𝑘 𝒙!! ,𝒙!"#    and K is 
the covariance matrix (kernel matrix) whose (𝑖, 𝑗)th entry 
is 𝐊!"   =   𝑘 𝒙! ,𝒙! . The value of the covariance function 
𝑘 𝒙! ,𝒙!  quantifies the amount the two input feature 
vectors 𝒙! and 𝒙! change together.  Note that the more the 
two vectors 𝒙! and 𝒙! disagree, the closer the value of the 
covariance approaches zero, implying that the two input 
vectors are not correlated in terms of their function 
values. We use a squared exponential function to evaluate 
the covariance between the two input feature vectors 𝒙! 
and 𝒙!   as [23]: 
 

𝑘 𝒙! ,𝒙! = 𝜏!exp −
1
2
𝒙! − 𝒙!

!
diag 𝝀 !! 𝒙! − 𝒙!  

                                            +𝜎!!𝛿!" . 
(2)	
  

 
In Eq. (2), the Kronecker delta function 𝛿!"  serves to 
selectively specify the noise variance 𝜎!! to the covariance 
value; that is, the noise signals adding to different 
measurements are assumed to be independent and the 
noise correlation is non-zero only when 𝑖 = 𝑗 . The 
covariance function is described by the hyper parameters 
𝜏 , which denotes the amplitude of the function, and 
𝝀 = 𝜆!,… , 𝜆! ,… 𝜆! , where the length scale 𝜆! quantifies 
the relevancy of the 𝑖th input feature 𝑥! (i =1, …,5) in 𝒙 
for predicting the energy consumption. A large length 
scale indicates weak relevance, while a small length scale 
implies strong relevance of the corresponding machining 
parameter in predicting the energy consumption. The 
optimum hyper parameters 𝜏 and 𝝀 can be obtained by 
maximizing the log-likelihood of data [22]. In this study, 
we use a machine-learning module, scikit-learn [24], to 
construct the GP regression models. Once the length 
scales 𝝀 = 𝜆!,… , 𝜆! ,… 𝜆!  are determined, the 
importance of each input feature 𝑥!   in predicting output  𝑦 
for the specific machining operation can also be studied.  
     Since the distribution conditional on any subset of the 
data assumed to be Gaussian distributed is also Gaussian, 
the posterior distribution 𝑝 𝑦!"# 𝑫! ,𝒙!"#  on 𝑦!"# 
given the historical data set 𝑫! =
𝒙! , 𝑦! 𝑖 = 1,… ,𝑚!   and the new input feature vector 

𝒙!"#  can be expressed as a 1-D Gaussian 
distribution [22]: 
 

𝑝 𝑦!"# 𝑫! ,𝒙!"# =
𝑁 𝑦!"#; 𝜇 𝒙!"#|𝑫! ,𝜎  ! 𝒙!"#|𝑫! . 

(3) 

 
The posterior distribution 𝑝 𝑦!"# 𝑫! ,𝒙!"#  can be 
described by its mean 𝜇 and the variance 𝜎  !, which can 
be expressed, respectively, as [22]: 
 

𝜇 𝒙!"#|𝑫! = 𝒌!𝐊!!𝒚!:!!, (4) 

	
   	
  
(a) Process parameters of a milling process (b) Cutting strategy 

Figure 4. Machining process parameters [19] 
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𝜎 𝒙!"#|𝑫! = 𝑘 𝒙!"# ,𝒙!"# − 𝒌!𝐊!!𝒌 .                                          (5) 

 
That is, we can obtain the mean function 𝜇 𝒙|𝑫!  from 
the Gaussian Process to predict the most probable energy 
density 𝑦 = 𝑓! 𝒙   for a given input feature vector 𝒙 and 
the standard deviation function 𝜎 𝒙|𝑫!  to quantify the 
uncertainty in the predicted value of 𝑦 at 𝒙. As will be 
discussed, the energy consumption per each machining 
operation is aggregated to predict the total energy 
consumption (with some estimated uncertainty bound) for 
machining a part. 
 
Optimum Input Feature Selection 
     Depending on the machining operation, the parameters 
in the input feature vector 𝒙 affect the energy density 
value 𝑦 differently. For each machining operation type 𝑞 
with the data set 𝑫! = 𝒙! , 𝑦! 𝑖 = 1,… ,𝑚! , we select 
the optimum combination of the input features from 
𝒙 = {𝑥!, 𝑥!, 𝑥!, 𝑥!, 𝑥!}  that best predicts the energy 
density. Only the selected input features will then be used 
to model the energy density prediction function. The 
optimum input feature sets are selected using the holdout 
cross validation technique [25].   
     First, we select one possible combination of input 
features from a set of candidate input features among all 
possible (factorial) combinations of the candidate input 
features. For each combination of input features, we 
compute the error rates from the GP models as follows: 
 
(1) Randomly divide the data set 𝑫!  into the training 

data set 𝑫!
!"  with 𝑚!

!"  training data points and the 
validating data set 𝑫!

!"  with 𝑚!
!"  validation data 

points.   In this study, we set the ratio 𝑚!
!":𝑚!

!" =
7: 3. 

(2) Construct the energy density prediction function 
𝑓!(𝒙) by computing 𝜇 𝒙|𝑫!  and 𝜎 𝒙|𝑫!  using the 
training data set 𝑫!

!". 
(3) Predict the energy densities corresponding to the 

input features in the validation data set 𝑫!
!"  and 

compute the error rates by comparing them to the true 
energy densities in the validation data set 𝑫!

!". The 
error is measured in terms of the mean absolute error 
(MAE), which is more insensitive to outliers than the 
root mean square error (RMSE) [26]: 

 

MAE! =
1
𝑚!
!" 𝜇 𝒙!|𝑫! − 𝑦!

  

𝒙!,!! ∈𝑫!!"       
. (6) 

 
MAE!  quantifies how close the predictions are 
compared to the measured values.  Specifically, we 
use the normalized mean absolute error 
(NMAE) [27]:  

 

  NMAE! =
𝜇 𝒙!|𝑫! − 𝑦!  

{(𝒙!,!!)∈𝑫!!"    }  

𝑦!  
{(𝒙!,!!)∈𝑫!!"    }  

=
MAE!
y!

. 

  (7) 

 
Note that we can compute the average deviation 
between the predicted and measured densities, 
i.e.,  MAE!, by simply multiplying   NMAE! with the 
measured mean density y!  (for the machining 
operation type q). 

 
The above procedure is repeated 100 times in this study, 
and the averaged error rate 𝜇!"#$  is computed to 
minimize the dependency of the error rate on specific 
training and validation sets.  Finally, among all possible 
combinations of input features, the optimum input feature 
set that gives the lowest averaged error rate is selected. 
The selected optimum input feature set will then be used 
to construct the energy density prediction functions. 
     Figures 5(a) and 5(b) show the average NMAE, 𝜇!"#$, 
for the cutting and non-cutting operations.  For the cutting 
operations, all input features, 𝑥! (feed rate), 𝑥! (spindle 
speed), 𝑥! (depth of cut), 𝑥! (active tool axis), and 
𝑥! (cutting method), are included as candidates for 
selection with a total of 31 possible combinations of input 
feature sets. For the non-cutting operations, only the input 
features, 𝑥!,   𝑥!, and 𝑥!  are considered because the input  
features 𝑥! (depth of cut) and 𝑥!  (cutting method) are 
irrelevant for the operations.  There are altogether 7 
different combinations of input feature sets for the non-
cutting operations. For each machining operation type, the 
𝜇!"#$ values for all the different combinations of input 
features are sorted and plotted in Figures 5(a) and 5(b).  
As marked in the figures, the solid circles indicate the 
average error rates for each machining operation when all 
possible input features are included.  It can be seen that 
including all the available input features may result in 
over fitting and does not necessarily achieve the lowest 
error ratio. 
     Table 3 shows the optimum input features 𝒙∗ for the 
machining operations and the corresponding average error 
rates 𝜇!"#$.  From the optimum input features 𝒙∗, we can 
also rank the relative importance of individual input 
feature 𝑥!  based on the residual accuracy, defined as 
𝜇!"#$ 𝒙∗   − 𝜇!"#$ 𝒙∗  \{𝑥!} , where 𝜇!"#$ 𝒙∗  \{𝑥!}  
represents the average error rate with the input feature 
𝑥!   removed from the optimum input feature vector 𝒙∗ .  
The larger the residual accuracy when the input feature 𝑥!  
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is excluded implies that the input feature 𝑥! contributes to 
better prediction accuracy. In Table 3, the input features 
for each machining operation are listed in the order of 
their relative importance. For example, in the case of face 
milling, the cutting direction 𝑥!  is ranked as the most 
important machining parameter among the five input 
features.  This result indicates that the machine consumes 
different levels of energy with the tool moving in 
different directions.  
 
Uncertainty Estimation for Energy Prediction  
     With the energy density prediction model for each 
machining operation type q represented by the mean 
energy density function 𝜇! 𝒙|𝑫!  and the associated 
standard deviation function 𝜎!(𝒙|𝑫!), the total energy 
consumption for machining a part can be estimated from 
the NC codes.  First, from the input feature 𝒙! of the NC 
code block i performing the machining operation type 𝑞, 
we can estimate the energy consumption 𝐸!  and the 
standard deviation 𝑆!, respectively, as: 
 

𝐸! = 𝜇! 𝒙!|𝑫! ×𝑙! , (8) 

  
𝑆! = 𝜎! 𝒙! 𝑫! ×𝑙! ,   (9) 

 
where 𝑙!  is the length of tool path specified for the 
operation by the NC code.  Aggregating all the NC blocks 
for the machining operation type q, the predicted total 
energy consumption 𝐸!  and the associated standard 
deviation 𝑆! can be computed for that operation type: 
 

𝐸! = 𝜇! 𝒙!|𝑫! ×𝑙!
  

𝒙!,!! ∈𝑫!       
, (10) 

 
 

𝑆! = 𝜎!(𝒙!|𝑫!)×𝑙!
!  

𝒙!,!! ∈𝑫!       
. (11) 

 
Finally, the estimated total energy consumption 𝐸  for 
machining a whole part and the standard deviation 𝑆 
associated with the estimation can be computed, 
respectively, by summing the predicted energy 𝐸!  and 
accumulating the standard deviation 𝑆! for all machining 

	
   	
  
(a) Cutting processes (b) Non-cutting processes 

Figure 5. Change in the NMAE of the GP for different sets of input feature combinations 
 

Table 3: Optimum input feature sets for different processes 
(𝑥! : feed rate, 𝑥! : spindle speed, 𝑥! : depth cut, 𝑥! : cutting direction, 𝑥! : cutting method.) 

 
Operation type 

Number  
of NC 
blocks 

Average  
duration  

(sec) 

Optimum  
input features  

𝝁!!! 
(J/mm) 

𝝁𝐌𝐀𝐄 
(J/mm) 

𝝁𝐍𝐌𝐀𝐄 
(%) 

Feed 
with cut 

Face milling 1,466 20.8 {𝑥!, 𝑥!  𝑥!, 𝑥!, 𝑥!} 3.072 0.502 16.35 
Contouring 425 9.2 {𝑥!, 𝑥!, 𝑥!, 𝑥!} 4.612 0.833 18.08 

Slotting 134 5.6 {𝑥!, 𝑥!, 𝑥!, 𝑥!} 4.372 1.028 23.60 
Pocketing 168 5.4 {𝑥!, 𝑥!, 𝑥!} 3.873 1.306 33.74 
Spiraling 16 5.4 {𝑥!, 𝑥!, 𝑥!} 6.420 1.009 15.94 
Drilling 140 22.2 {𝑥!, 𝑥!, 𝑥!, 𝑥!} 10.845 2.722 25.85 

Non-
cutting 

Air cut in x-y 140 12.3 {𝑥!, 𝑥!, 𝑥!} 4.037 0.5314 13.27 
Air cut in z 281 6.5 {  𝑥!, 𝑥!, 𝑥!} 10.336 4.796 46.27 

Rapid motion 322 0.4 {𝑥!, 𝑥!} 0.558 0.323 58.04 
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operation types, 𝑞 = 1,… ,𝑄, where Q = 9 (including all 
cutting and non-cutting operations), as 
 

𝐸 = 𝐸!
  !

!!!    
, (12) 

 
  

𝑆 = 𝑆!
!  !

!!!      
. 

 

(13) 
 

Note that the energy density function 𝑦 for an operation 
type q, represented by its mean function 𝜇! 𝒙|𝑫!  and 
standard deviation function 𝜎!(𝒙|𝑫!), is assumed to be 
Gaussian, the predicted total energy 𝐸  computed as a 
linear combination of the energy densities, as shown in 
Eqs. (10) and (12), is also Gaussian, according to the 
Gaussian Process.  Given the predicted total energy 𝐸 and 
the predicted total standard deviation 𝑆, the probability 
density function for the true total energy consumption 𝐸 
can be represented as 𝐸~𝑁 𝐸, 𝑆 .  
 
ENERGY PREDICTION OF GENERIC PARTS 
     We apply the energy prediction and uncertainty 
estimation functions constructed from the training data 
sets to predict the energy consumption for machining a 
generic part to assess the accuracy of the GP.  Figure 6 
shows the generic part, the geometry of which is quite 
different from the part used in the training process.  The 
machining operations used to produce the generic test part 
involve the cutting operations face milling, pocketing, and 
drilling and the non-cutting operations air-cut in x-y 

direction, air cut in z direction, and auxiliary operations 
(such as rapid tool motion).   
     Three test parts with identical geometry are machined 
but using different sets of spindle speeds, as shown in 
Table 4.  Comparing the spindle speeds used in machining 
the 18 training parts, the first test part uses the same 
spindle speed while the second and third use different 
spindle speeds from those of the training sets.  For all test 
parts, the depth of cut is set to 1 mm. 
     Figure 7 shows the measured energy density values y 
and the prediction energy density function 𝑦 for the face 
milling operations with different spindle speeds and 
different feed rates.  For the prediction energy density 
function, the plots show a one-standard deviation bound, 
i.e., 𝜇! 𝒙!|𝑫! ± 𝜎! 𝒙!|𝑫! .  As shown in Figure 7(a), 
the measurements from test part 1 are well captured by 
the prediction functions.  For test parts 2 and 3, the 
measurements are also well captured by the prediction 
function shown in Figures 7(b) and 7(c). However, 
underestimations by the prediction models on the energy 
density are observed when the spindle speeds are high.  
     Figure 8 compares the mean predicted and measured 
energy consumption for each individual NC code block.  
In general, the mean predicted energy consumption values 
match well with the measurements.  However, differences 
can be observed in test parts 2 and 3 in the NC block 
sequence between 95 and 140 when the spindle speeds are 
high.  Finally, Table 5 compares the total mean predicted 
and measured energy consumption using NMAE 
(normalized mean absolute error) and RTE (relative total 
error) defined as: 
 

NMAE =
𝐸! − 𝐸!  

{!∈  !"  !"#$%&}  

𝐸!  
{!∈  !"  !"#$%&  }  

, (14) 

  

RTE =
𝐸 − 𝐸
𝐸

.   (15) 

 
Note that the NMAE in Eq. (14) is defined using the 
predicted energy 𝐸! and the measured energy 𝐸!, whereas 
NMAE in Eq. (7) is defined using the predicted density 𝑦! 
and the measured energy density 𝑦! . Thus, the energy 
prediction with the longer length of tool path 𝑙!  will 
contribute more to the value of NMAE in Eq. (14). In spite 
of this dependence on the geometry, the measure can still 
quantify the mean absolute errors of the three test cases 
(parts) in a relative manner.  
     It can be seen that for all three test cases, the relative 
total errors for predicting the total energy consumption for 
machining the three parts fall within 4%. The RTEs for 
the energy prediction are small for all three test parts 
because the distribution of errors 𝐸! − 𝐸! are centered at 
the zero-mean with almost equal chance to over- or 
under-estimate the energy as shown in Figure 9.  

 
Figure 6. Generic test part 

 
Table 4: Spindle speeds chosen for the blind tests 

 Used spindle speeds (in RPM) 
Training parts 1~18 {1,500;   3,000;   4,500} 
Test part 1 {1,500;   3,000;   4,500} 
Test part 2 {1,700;   2,800;   4,300} 
Test part 3 {2,125;   2,400;   3,750} 
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Figure 7. Predicted energy density values for generic test parts (machined using face-milling, y-direction cut, conventional 
cutting strategy and depth of cut = 1mm); the highlighted area shows the one standard deviation bounds for the prediction 
	
  

 
(a) Test Part 1 

 
(b) Test Part 2 

 
(c) Test Part 3 

Figure 8. Total mean predicted energy consumption including all operations 
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DISCUSSION 
     This study demonstrates the use of a non-parametric 
regression model, namely the Gaussian Process (GP), to 
predict the energy consumption of a machine tool. The 
GP models the complex relationship between the input 
machining parameters and output energy consumption 
and constructs a prediction function for the energy 
consumption with confidence bounds. Using the GP, this 
study also examines the input features used in each 
prediction function and the relative importance of the 
input features for the machining operations. The 
probabilistic model also provides confidence bounds for 
the predictive estimations.  Even though the training data 
sets in this study include only 18 experimental parts, the 
models constructed using the machine learning approach 
are able to accurately predict the energy consumption for 
machining a generic test part with the milling machine 
tool.  The prediction models can be updated and, possibly, 
improved as further experimental data sets are collected.   
     The GP can potentially be extended as a real-time 
adaptive learning algorithm to reduce the burden of 
extensive training data collection. The technique can be 
used to develop the prediction function as and when new 
parameter spaces are explored. This, in turn, can 
significantly reduce data processing time, data storage 
capacity, and the dependence on using large training data 
sets. We are currently investigating a real-time adaptive 
system for energy and machine tool monitoring.  
     In conclusion, this study shows that with advanced 
data collection and processing techniques, prediction 
models can be constructed to predict energy consumption 

of a machine tool with multiple operations and multiple 
process parameters. The prediction model can be 
generalized to study energy consumption of a generic part 
with a degree of uncertainty based on the parameters 
employed to construct the model. 
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