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SUMMARY 
 
In order to satisfactorily reproduce the Soil-Structure Interaction (SSI) effects under earthquake loading, 
it is often necessary to model a large domain of the soil surrounding the structure of interest. High 
spatial/temporal resolution is another challenge in analyzing these models. A new parallel nonlinear 
finite element program, ParCYCLIC, is employed to study such high fidelity large-scale SSI models. 
ParCYCLIC incorporates a constitutive model that has been calibrated by physical tests to represent the 
salient characteristics of sand liquefaction and associated accumulation of shear deformations. The 
numerical implementation is designed for distributed-memory parallel computer systems, and allows for 
performing explicit as well as implicit time integration. In this paper, a single pile embedded in mildly 
inclined, liquefiable soil deposit is analyzed under dynamic base shaking conditions. Aspects of model 
response, including pore pressure generation/dissipation, soil lateral deformation during liquefaction, and 
pile displacement and bending moment, are presented and discussed. 
 

INTRODUCTION 
 
Liquefaction and associated shear deformation is a major cause of earthquake-related damage to piles 
and pile-supported structures. Pile foundation damage due to lateral spreading induced by liquefaction is 
documented in numerous reports and papers [1-3]. 
  
The recognition of the importance of lateral ground displacement on pile performance has led to the 
development of analytical models capable of evaluating the associated potential problems [4]. Modeling 
lateral ground displacement and pile response involves complex aspects of SSI mechanisms. In addition, 
computational models of ground response under earthquake loading conditions may require a high level 
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of spatial resolution. A large domain of the ground surrounding the super-structure may be necessary in 
order to satisfactorily represent the involved SSI mechanisms.  
 
A new parallel nonlinear finite element program, ParCYCLIC, recently developed on distributed memory 
parallel computers, is employed to study such high fidelity large-scale SSI models. ParCYCLIC, is 
implemented based on a serial program CYCLIC, which is a nonlinear finite element program developed 
to analyze liquefaction-induced seismic response [5,6]. Extensive calibration of CYCLIC has been 
conducted with results from experiments and full-scale response of earthquake simulations involving 
ground liquefaction [7]. In ParCYCLIC, the calibrated serial code for modeling of earthquake 
geotechnical phenomena is combined with advanced computational methodologies to facilitate the 
simulation of large-scale systems and broaden the scope of practical applications.  
 
This paper presents a pilot three-dimensional (3D) Finite Element study of dynamic pile response in 
liquefied sloping ground. The numerical simulation was conducted using ParCYCLIC on the AMD 
Cluster parallel computer at the University of Michigan.  
 

PARALLEL FINITE ELEMENT PROGRAM 
 
Finite Element Formulation 
In ParCYCLIC, the saturated soil system is modeled as a two-phase material based on the Biot [8] theory 
for porous media.  A numerical framework of this theory, known as u-p formulation, was implemented 
[5,6,9].  In the u-p formulation, displacement of the soil skeleton u, and pore pressure p, are the primary 
unknowns [10,11].  The implementation of ParCYLCIC is based on the following assumptions: small 
deformation and rotation, constant density of the solid and fluid in both time and space, locally 
homogeneous porosity which is constant with time, incompressibility of the soil grains, and equal 
accelerations for the solid and fluid phases. 
 
The u-p formulation as defined by Chan [10] consists of: i) equation of motion for the solid-fluid 
mixture, and ii) equation of mass conservation for the fluid phase, incorporating equation of motion for 
the fluid phase and Darcy's law.  The finite element governing equations can be expressed in matrix form 
as follows [10]: 
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0fHppSUQ pT =−++        (1b)  
where M is the mass matrix, U the displacement vector, B the strain-displacement matrix, σ′  the 
effective stress tensor (determined by the soil constitutive model described below), Q the discrete 
gradient operator coupling the solid and fluid phases, p the pore pressure vector, S the compressibility 
matrix, and H the permeability matrix.  The vectors sf  and pf  represent the effects of body forces and 
prescribed boundary conditions for the solid-fluid mixture and the fluid phase respectively.  
 
In eq. 1a (equation of motion), the first term represents inertia force of the solid-fluid mixture, followed 
by internal force due to soil skeleton deformation, and internal force induced by pore-fluid pressure.  In 
eq. 1b (equation of mass conservation), the first two terms represent the rate of volume change for the 
soil skeleton and the fluid phase respectively, followed by the seepage rate of the pore fluid.  Eqs. 1a and 
1b are integrated in time using a single-step predictor multi-corrector scheme of the Newmark type 
[10,12].  In the current implementation, the solution is obtained for each time step using the modified 
Newton-Raphson approach [6]. 
 



Soil Constitutive Model 
The second term in eq. 1a is defined by the soil stress-strain constitutive model.  The finite element 
program incorporates a soil constitutive model [5,6,13,14] based on the original multi-surface-plasticity 
theory for frictional cohesionless soils [15].  This model was developed with emphasis on simulating the 
liquefaction-induced shear strain accumulation mechanism in clean cohesionless soils [5,7,13,14,16].  
Special attention was given to the deviatoric-volumetric strain coupling (dilatancy) under cyclic loading, 
which causes increased shear stiffness and strength at large cyclic shear strain excursions (i.e., cyclic 
mobility). 
 
The constitutive equation is written in incremental form as follows [15]: 

)(: pεεEσ −=′                                                           (2) 

where σ ′  is the rate of effective Cauchy stress tensor, ε  the rate of deformation tensor, pε  the plastic 
rate of deformation tensor, and E the isotropic fourth-order tensor of elastic coefficients.  The rate of 
plastic deformation tensor is defined by: pε = P L , where P is a symmetric second-order tensor 
defining the direction of plastic deformation in stress space, L the plastic loading function, and the 
symbol  denotes the McCauley's brackets  (i.e., L =max(L, 0)).  The loading function L is defined 

as: L = Q:σ ′ / H ′  where H ′  is the plastic modulus, and Q a unit symmetric second-order tensor 
defining yield-surface normal at the stress point (i.e., Q= ff ∇∇ / ), with the yield function f selected of 
the following form [13]: 
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in the domain of 0≥′p .  The yield surfaces in principal stress space and deviatoric plane are shown in 
Fig. 1.  In eq. 3, δσs  p′−′=  is the deviatoric stress tensor, p′  the mean effective stress, 0p′  a small 
positive constant (1.0 kPa in this paper) such that the yield surface size remains finite at 0=′p  for 
numerical convenience (Fig. 1), α  a second-order kinematic deviatoric tensor defining the surface 
coordinates, and M dictates the surface size.  In the context of multi-surface plasticity, a number of 
similar surfaces with a common apex form the hardening zone (Fig. 1).  Each surface is associated with a 
constant plastic modulus.  Conventionally, the low-strain (elastic) moduli and plastic moduli are 
postulated to increase in proportion to the square root of p′  [15]. 
 
The flow rule is chosen so that the deviatoric component of flow P′ = Q′ (associative flow rule in the 
deviatoric plane), and the volumetric component P ′′  defines the desired amount of dilation or 
contraction in accordance with experimental observations. Consequently, P ′′  defines the degree of non-
associativity of the flow rule and is given by [6]: 
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Fig.  1: Conical yield surfaces for granular soils in principal stress space and deviatoric plane 

[9,12,15,17] 
 
where p′= /2/1):)2/3(( ssη  is effective stress ratio, η  a material parameter defining the stress ratio 
along the phase transformation (PT) surface [18], and Ψ  a scalar function controlling the amount of 
dilation or contraction depending on the level of confinement and/or cumulated plastic deformation [13].  
 
The employed model has been extensively calibrated for clean Nevada Sand at rD ≈ 40% [6,9]. 
Calibration was based on results of monotonic and cyclic laboratory tests [19], as well as data from level-
ground and mildly inclined infinite-slope dynamic centrifuge-model simulations [20,21]. The main 
modeling parameters include standard dynamic soil properties such as low-strain shear modulus and 
friction angle, as well as calibration constants to control the dilatancy effects (phase transformation 
angle, contraction and dilation parameters), and the level of liquefaction-induced yield strain. 
 
Parallel Implementation 
Parallel program strategies 
Programming architectures required to take advantage of parallel computers are significantly different 
from the traditional paradigm for a serial program [22].  In a parallel computing environment, care must 
be taken to maintain all participating processors busy performing useful computations and to minimize 
communication among the processors. ParCYCLIC employs the single-program-multiple-data (SPMD) 
paradigm, a common approach in developing application software for distributed memory parallel 
computes. In this approach, problems are decomposed using well-known domain decomposition 
techniques. Each processor of the parallel machine solves a partitioned domain, and data communications 
among sub-domains are performed through message passing. The domain decomposition method (DDM) 
is attractive in parallel finite element computations because it allows individual sub-domain operations to 
be performed concurrently on separate processors. The SPMD model has been applied successfully in the 
development of many parallel finite element programs from legacy serial code [23,24].   
 
Parallel Sparse Solver 
Nonlinear finite element computations of earthquake simulations involve the iterative solution of sparse 
symmetric systems of linear equations. Solving the linear system is often the most computationally 
intensive task, especially when an implicit time integration scheme is employed. ParCYCLIC employs a 
direct sparse solution method proposed and developed by Law and Mackay [25].  The parallel sparse 



solver is based on a row-oriented storage scheme that takes full advantage of the sparsity of the stiffness 
matrix. The concept of the sparse solver incorporated in ParCYCLIC is briefly described below. 
  
Given a linear system of equations Kx = f, the symmetric sparse matrix K is often factored into the matrix 
product LDLT, where L is a lower triangular matrix and D is a diagonal matrix.  The solution vector x is 
then computed by a forward solution, Lz = f or z = L-1f, followed by a backward substitution DLTx = z or 
x = L-TD-1z. Sparse matrix factorization can be divided into two phases: symbolic factorization and 
numeric factorization [25].  Symbolic factorization determines the structure of matrix factor L from that 
of K (i.e. locations of nonzero entries).  Numeric factorization then makes use of the data structure 
determined to compute the numeric values of L and D. The nonzero entries in L can be determined by the 
original nonzero entries of K and a list vector, which is defined as:  

                                    }0|min{)( ≠= ijLijPARENT    (4) 
in which j is the column number and i the row subscript. The array PARENT represents the row subscript 
of the first nonzero entry in each column of the lower matrix factor L.  The definition of the array 
PARENT results in a monotonically ordered elimination tree T of which each node has its numbering 
higher than its descendants [26].  The list array PARENT contains sufficient information for determining 
the nonzero structure of any row in L.  Furthermore, by topologically postordering the elimination tree, 
the nodes in any subtree can be numbered consecutively [27].  The resulting sparse matrix factor is 
partitioned into block submatrices where the columns/rows of each block correspond to the node set of a 
branch in T. Fig.  2 shows a simple finite element grid and its post-ordered elimination tree 
representation. 
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Fig.  2: A finite element mesh and its elimination tree representation[28-30] 

 
For parallel implementation of the sparse matrix factorization, the processor assignment strategy can be 
based on matrix partitioning according to the post-ordered elimination tree.  The coefficients of a sparse 
matrix factor are distributively stored among the processors according to the column blocks.  Essentially, 
the strategy is to assign the rows corresponding to the nodes along each branch (column block) of the 
elimination tree to a processor or a group of processors.  Beginning at the root of the elimination tree, the 
nodes belonging to this branch of the tree are assigned among the available processors in a rotating round 
robin fashion.  As we traverse down the elimination tree, at each fork of the elimination tree, the group of 
processors is divided to match the number and the size of the subtrees below the current branch.  A 
separate group of processors is assigned to each branch at the fork and the process is repeated for each 
subtree.  
 



The parallel numerical factorization procedure is divided into two phases [25].  In the first phase, each 
processor independently factorizes certain portions of the matrix assigned to a single processor.  In the 
second phase, other portions of the matrix shared by more than one processor are factored.  Following the 
parallel factorization, the parallel forward and backward solution phases proceed to compute the solution 
to the global system of equations. 
 

SIMULATION OF SOIL-PILE INTERACTION IN LIQUEFIED SLOPING GROUND  
 
In this section, numerical simulation of the response of a single-pile foundation in a liquefied ground 
(Fig.  3) is presented. The soil profile consists of a saturated loose liquefiable sand layer (relative density 
Dr = 40%, 6m in thickness), underlain by a slightly cemented non-liquefiable sand layer (2m thick) [31]. 
The single pile (square in cross section) is 0.6m in width, 8m in length, has a bending stiffness, EI = 8000 
kN/m2, and is free at the top. The bedrock base underneath the soil strata has an inclination angle of 4°. 
The single pile foundation is subjected to a predominantly 2Hz harmonic base excitation with a peak 
acceleration of about 0.2g. 

 
Fig.  3: A single pile foundation in a slightly sloping ground 

 
Numerical Modeling 
The single pile foundation was simulated using the above-described three-dimensional parallel finite 
element program ParCYCLIC. A 30m by 16m of soil domain surrounding the pile was considered. As 
shown in Fig.  4, the soil domain and the single pile were discretized using 3D 8-node brick elements. A 
total of 13,824 3D brick elements constitute the FE mesh. A half mesh configuration is used due to 
geometrical symmetry. The boundary conditions were (i) lateral excitation was defined along the 
longitudinal direction of the base (Fig.  4b), (ii) at any given depth, displacement degrees of freedom of 
the downslope and upslope boundaries were tied together (both horizontally and vertically using the 
penalty method) to reproduce a 1D shear beam effect [6], (iii) the soil surface was traction free, with zero 
prescribed pore pressure, and (iv) the base and lateral boundaries were impervious. 
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(b) Input motion 

 
Fig.  4: Finite element mesh and input motion 

 
A static application of gravity (model own weight) was performed before seismic excitation. The 
resulting fluid hydrostatic pressures and soil stress-states served as initial conditions for the subsequent 
dynamic analysis [7]. 
 
A total 5000 time steps of analysis was performed at 0.01 second per step. The run was conducted on the 
AMD Cluster at the Center for Advanced Computing (CAC), University of Michigan. The AMD Cluster 
has 128 nodes of dual Athlon 2000MP CPUs and each node has 2 CPUs and 2 GB of RAM. The total 
wall-clock execution time for the simulation was approximately 20 hours using 8 processors.  
. 
Computation Results and Discussion 
Acceleration and Pore Pressure in Soil 
Figs. 5-6 display the computed lateral accelerations and pore pressure time histories along the model 
depth. Initially, the input motion was amplified near ground surface. After about 4 seconds of shaking, 



de-amplification occurred from surface down to 2m depth (Fig.  5), as this portion of the soil domain 
reached liquefaction (Fig.  6), indicated by the pore-pressure ratio ru approaching 1.0 (ru = ue/σv′ where ue 
is excess pore pressure, and σv′ initial effective vertical stress).  
 
The top portion of the loose sand layer remained liquefied until the end of shaking and beyond. 
Thereafter, excess pore pressure started to dissipate. The computed excess pore pressure time histories 
displayed a number of instantaneous sharp pore pressure drops after initial liquefaction (Fig.  6). These 
drops coincided with the acceleration spikes that occurred exclusively in the negative direction (Fig.  5). 
 
Soil and Pile Lateral Displacement 
The mild inclination imposed a static shear stress component (due to gravity), causing accumulated 
cycle-by-cycle lateral deformation (Fig.  7). The permanent lateral displacement of the ground surface 
after shaking is approximately 45cm. All lateral displacements occurred in the top 6.0m within the 
liquefiable sand layer. The top graph of Fig.  7 shows pile head lateral displacement during and after 
shaking. The final lateral displacement of pile head is approximately 17cm.  
 
Fig.  8 shows the profiles of pile and free-field soil lateral displacement at different time instants during 
the shaking (5 and 10 seconds) as well as after the shaking. Most of the free field soil movement 
concentrated at the top two meters of depth, as a consequence of liquefaction in this area (Fig.  6). The 
bottom non-liquefiable sand layer behaved as a rigid body, and did not slide with respect to the bedrock 
base. The lower portion of the pile and soil domain deformed similarly. However, the maximum surface 
soil displacement is about 2.5 times that of the pile head. The relative movement of the pile head to the 
soil surface is about 28 cm at the end of the shaking, as also indicated in  Fig.  7. The contour lines in the 
final deformed mesh (Fig.  9) clearly show the “flow” path  of the liquefied soil near the pile head. 
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Fig.  5: Computed lateral acceleration time histories 
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Fig.  6: Computed excess pore pressure time histories 
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Fig.  8: Pile and free-field soil lateral displacement profiles at different time instants 

 

 
Fig.  9: Final deformed mesh (factor of 5) of the single pile foundation model (unit: m) 

 
 
Pile Bending moment 
Fig.  10 shows the bending moment time histories of the pile at different depths. The bending moment 
was obtained by integrating all vertical normal stresses from Gauss integration points across a section of 
the pile [32]. Gradual accumulation of permanent bending moment is particularly evident at 5.75m depth, 
a pattern similar to the lateral displacement accumulation in the soil and pile (Fig.  7). As indicated in the 



bending moment profile (Fig.  11), the maximum moment (31kN-m) occurred at the interface of the two 
soil layers, at the end of the shaking. 
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Fig.  11: Bending moment profiles at different times 

 
SUMMARY AND CONCLUSIONS 

 
A 3D high spatial resolution FE study of dynamic soil-pile interaction on parallel computers was 
presented in this paper. A new parallel nonlinear finite element program, ParCYCLIC, is employed to 
study this model. The computational results, including pore pressure generation/dissipation, soil lateral 
deformation during liquefaction, and pile displacement and bending moment, are presented and 
discussed. The study demonstrates the current capabilities of ParCYCLIC. Further development is 
underway to include beam element and high order solid element. 
 

ACKNOWLEDGEMENTS 
 
This research was supported by the National Science Foundation (NSF), Grants Number CMS-0084616, 
0200510 and ANI-0205720 to University of California, San Diego, and Grant Number CMS-0084530 to 
Stanford University. This research was also supported by the Pacific Earthquake Engineering Research 
(PEER) Center, under the National Science Foundation Award Number EEC-9701568. Additional 
funding was also provided by the NSF cooperative agreement ACI-9619020 through computing resources 
provided by the National Partnership for Advanced Computational Infrastructure at the San Diego 
Supercomputer Center and the University of Michigan. This support is most appreciated. 
 

REFERENCES 
 
1. Mizuno H. "Pile damage during earthquakes in Japan (1923-1983)." in Proc. Session on Dynamic 

Response of Pile Foundations, T. Nogami, ed., ASCE, Atlantic City, April 27, 1987, pp. 53-77. 



2. Matsui T, and Oda K. "Foundation damage of structures." Soils and Foundations, vol. Special 
Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nambu Earthquake, January, 
no.,  1996, pp. 189-200. 

3. Tokimatsu K, and Aska Y. "Effects of liquefaction-induced ground displacements on pile 
performance in the 1995 hyogoken-nambu earthquake." Soils and Foundations, vol. Special Issue 
on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nambu Earthquake, No. 2, September, 
no.,  1998, pp. 163-178. 

4. Abdoun T. "Modeling of seismically induced lateral spreading of multi-layered soil and its effect 
on pile foundations," Ph.D. Thesis, Dept. of Civil Engineering, Rensselaer Polytechnic Institute, 
Troy, New York, 1997. 

5. Yang Z, and Elgamal A. "Influence of permeability on liquefaction-induced shear deformation." J. 
Engineering Mechanics, vol. 128, no. 7,  2002, pp. 720-729, ASCE. 

6. Parra E. "Numerical modeling of liquefaction and lateral ground deformation including cyclic 
mobility and dilation response in soil systems," Ph.D. Thesis, Dept. of Civil Engineering, 
Rensselaer Polytechnic Institute, Troy, NY, 1996. 

7. Elgamal A, Yang Z, and Parra E. "Computational modeling of cyclic mobility and post-
liquefaction site response." Soil Dynamics and Earthquake Engineering, vol. 22, no. 4,  2002, pp. 
259-271. 

8. Biot MA. "The mechanics of deformation and acoustic propagation in porous media." Journal of 
Applied Physics, vol. 33, no. 4,  1962, pp. 1482-1498. 

9. Yang Z. "Numerical modeling of earthquake site response including dilation and liquefaction," 
Ph.D. Thesis, Dept. of Civil Engineering and Engineering Mechanics, Columbia University, New 
York, NY, 2000. 

10. Chan AHC. "A unified finite element solution to static and dynamic problems in geomechanics," 
Ph.D. Dissertation, University of Wales, Swansea, U.K., 1988. 

11. Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, and Shiomi T. "Static and dynamic behavior of 
soils: A rational approach to quantitative solutions: I. Fully saturated problems." Proceedings of 
the Royal Society London, Series A, Mathematical and Physical Sciences, vol. 429, no.,  1990, pp. 
285-309. 

12. Parra E, Adalier K, Elgamal A-W, Zeghal M, and Ragheb A. "Analyses and modeling of site 
liquefaction using centrifuge tests." in Eleventh World Conference on Earthquake Engineering, 
Acapulco, Mexico, June 23-28, 1996. 

13. Elgamal A, Yang Z, Parra E, and Ragheb A. "Modeling of cyclic mobility in saturated 
cohesionless soils." Int. J. Plasticity, vol. 19, no. 6,  2003, pp. 883-905. 

14. Yang Z, Elgamal A, and Parra E. "A computational model for cyclic mobility and associated shear 
deformation." J. Geotechnical and Geoenvironmental Engineering, vol. 129, no. 12,  2003, pp. 
1119-1127, ASCE. 

15. Prevost JH. "A simple plasticity theory for frictional cohesionless soils." Soil Dynamics and 
Earthquake Engineering, vol. 4, no. 1,  1985, pp. 9-17. 

16. Elgamal A, Parra E, Yang Z, and Adalier K. "Numerical analysis of embankment foundation 
liquefaction countermeasures." Journal of Earthquake Engineering, vol. 6, no. 4,  2002, pp. 447-
471. 

17. Lacy S. "Numerical procedures for nonlinear transient analysis of two-phase soil system," Ph.D. 
Thesis, Princeton University, NJ, 1986. 

18. Ishihara K, Tatsuoka F, and Yasuda S. "Undrained deformation and liquefaction of sand under 
cyclic stresses." Soils and Foundations, vol. 15, no. 1,  1975, pp. 29-44. 

19. Arulmoli K, Muraleetharan KK, Hossain MM, and Fruth LS. "Velacs: Verification of liquefaction 
analyses by centrifuge studies, laboratory testing program, soil data report." Report, The Earth 
Technology Corporation, Project No. 90-0562, Irvine,CA, 1992. 



20. Taboada VM. "Centrifuge modeling of earthquake-induced lateral spreading in sand using a 
laminar box," Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1995. 

21. Dobry R, Taboada V, and Liu L. "Centrifuge modeling of liquefaction effects during earthquakes." 
in Proc. 1st Intl. Conf. On Earthquake Geotechnical Engineering, IS-Tokyo, K. Ishihara, Balkema, 
Rotterdam, Tokyo, Japan, Nov. 14-16, 1995, pp. 1291-1324. 

22. Law KH. "Large scale engineering computations on distributed memory parallel computers and 
distributed workstations." in NSF Workshop on Scientific Supercomputing, Visualization and 
Animation in Geotechnical Earthquake Engineering and Engineering Seismology, Carnegie-
Mellon University, October, 1994. 

23. Aluru NR. "Parallel and stabilized finite element methods for the hydrodynamic transport model of 
semiconductor devices," Ph.D. Thesis, Department of Civil and Environmental Engineering, 
Stanford University, Stanford, CA, 1995. 

24. De Santiago E, and Law KH. "A distributed finite element method for solving the incompressible 
navier-stokes equations." International Journal for Numerical Methods in Engineering, vol. 39, 
no.,  1996, pp. 4243-4258. 

25. Law KH, and Mackay DR. "A parallel row-oriented sparse solution method for finite element 
structural analysis." International Journal for Numerical Methods in Engineering, vol. 36, no.,  
1993, pp. 2895-2919. 

26. Mackay DR, Raefsky A, and Law KH. "An implementation of a generalized sparse/profile finite 
element solution method." Computer and Structure, vol. 41, no. 4,  1991, pp. 723-737. 

27. Liu JWH. "A compact row storage scheme for cholesky factors using elimination tree." ACM 
TOMS, vol. 12, no.,  1986, pp. 127. 

28. Mackay DR. "Solution methods for static and dynamic structural analysis on distributed memory 
computers," Ph.D. Thesis, Department of Civil Engineering, Stanford University, 1992. 

29. Peng J, Lu J, Law KH, and Elgamal A. "Parcyclic: Finite element modeling of earthquake 
liquefaction response on parallel computers." Submitted to Int'J for Numerical and Analytical 
Methods in Geomechanics, vol., no.,  2004. 

30. Lu J, Peng J, Elgamal A, Yang Z, and Law KH. "Parallel finite element modeling of earthquake 
liquefaction response." Int'l Journal of Earthquake Engineering & Engineering Vibration, vol. 3, 
no. 1,  2004,  in print. 

31. Abdoun T, and Dobry R. "Evaluation of pile foundation response to lateral spreading." Soil 
Dynamics and Earthquake Engineering, vol. 22, no. 9-12,  2002, pp. 1051-1058. 

32. Yang Z. "Development of geotechnical capabilities into OpenSees platform and their applications 
in soil-foundation-structure interaction analyses," Ph.D. Thesis, Dept. of Civil Engineering, 
University of California, Davis, CA, 2002. 

 


