
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 

The worldwide demand for green energy systems is evident. In this context, 
wind energy converters will play a paramount role. Extending the service life of a 
wind energy converter translates into significant economic savings as well as 
ecological earnings. New opportunities for the management and operation of the 
wind energy converters make it beneficial to know the structural condition and the 
remaining life span of wind energy converters at each point in time during their 
operation. This paper presents the implementation of an integrated framework for 
probabilistic lifetime estimation of wind energy converter structures coupling 
sensor-based structural health monitoring with finite element model updating. 
 
 
INTRODUCTION 
 

The Fukushima disaster in Japan, in March 2011, has caused a dramatic change 
in the thinking with respect to the future energy supply. As a consequence, a 
massive demand for green energy systems becomes apparent. In this context, wind 
energy converters play a paramount role. New giant off-shore as well as new large-
scale on-shore wind energy converters are being erected. Likewise, existing wind 
energy converters are being replaced by more powerful systems with taller shafts 
and larger rotor blades. 

One question for renewable wind energy systems is, how the operating costs 
and utility charges should be bored by the customers. To answer this question, it is 
indispensible to know the remaining life span of the wind energy converters at each 
point in time during their operation. This paper presents an integrated framework 
that brings together (i) sensor-based structural health monitoring (SHM) systems, 
(ii) model updating and system identification methodology, and (iii) reliability 
analyses and probabilistic lifetime estimation. This integrated concept opens new 
opportunities for the management and operation of wind energy converters.  
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A SHM SYSTEM FOR WIND ENERGY CONVERTER STRUCTURES 
 

A SHM system is installed on an wind energy converter located in Germany, 
which is used as a reference structure for validating the proposed concept. The 
SHM system consists of two subsystems: an on-site hardware system and a 
decentralized software system that are designed to monitor the structural conditions 
and operations of the wind energy converter (Fig. 1).  
 
On-Site Hardware System 
 

The on-site hardware system, consisting of sensors, data acquisition units and a 
computer installed in the wind energy converter, is designed to continuously collect 
measurement data from the wind energy converter. As shown in Fig. 1, six three-
dimensional accelerometers, type PCB-3713D1FD3G, are placed in selected 
locations on five different levels inside the shaft of the wind energy converter. In 
addition, three single-axis piezoelectric seismic accelerometers are mounted on the 
foundation of the structure. Furthermore, a network of six inductive displacement 
transducers is installed at two levels inside the shaft. The displacement transducers 
are complemented by resistance temperature detectors to account for temperature 
influences on the transducers. Additional temperature sensors are placed inside and 
outside the shaft to measure temperature gradients. For gauging wind speed and 
directions, an ultrasonic anemometer is mounted on a telescopic mast adjacent to 
the wind energy converter. 

To collect and process sensor data, two types of data acquisition units (DAUs) 
are installed. For recording temperature data, three 4-channel Picotech RTD input 
modules PT-104 are deployed. Data handling of accelerations and displacements is 
carried out by means of four Spider8 measuring units. The sampled and digitized 
data sets are temporarily stored in the local computer placed inside the wind energy 
converter. Using a permanently installed DSL connection, the data sets are 
periodically forwarded to the database system for persistent storage and access. 
 

 
Fig. 1. Overview of the SHM system. 

 
A Decentralized Software System 
 

The software system, which is remotely connected to the hardware system, is 
designed (i) to persistently store the measuring data collected by the hardware 



system and (ii) to provide remote access to the data sets for use by both human 
users and software programs. A modular, flexible and robust multi-agent paradigm 
is employed for the implementation of monitoring and management functions. 

The software programs and the database system are installed on different 
computers at the Institute for Computational Engineering (ICE) in Bochum 
(Germany). The overall system consists of (i) server systems for on-line data 
synchronization, conversion and transmission, (ii) a RAID-based storage systems 
for periodic backups, (iii) a MySQL database system for persistent data storage and 
(iv) a web interface for remote access to the data. 

The measurement data can be accessed remotely through the web-based 
interface or a direct database connection. Fig. 2a illustrates the use of the web-based 
interface to visualize the measurement data taken from the wind energy converter. 
Specifically, the figure shows the data recorded on April 24, 2011 and depicts the 
wind speed as well as the radial and tangential horizontal accelerations of the shaft 
at 63 m height. The same data sets can be queried directly from the database as 
displayed in a tabulated format as shown in Fig. 2b. The direct database connection 
not only allows authorized users to download the data from the SHM system but 
also provides remote access to the data from external software programs, for 
example, to automatically execute damage detection algorithms. 
 

    
(a) Web interface connection. (b) Direct database connection. 

Fig. 2. Remotely visualized acceleration and wind speed data measured on April 24, 2011. 
 

A multi-agent software paradigm is adopted for the implementation of 
management and monitoring tasks [1]. Each software agent is self-contained 
software entity that is capable of carrying out monitoring tasks and – if necessary – 
proactively cooperating with other software entities autonomously without any 
direct intervention from the users [2]. Customary failures or malfunctions are 
manifold, e.g. communication problems when using long-distance lines, temporary 
power blackouts that affect the computer systems or simply hardware blackouts. If 
such functional failures should not be detected and eliminated timely, loss of 
valuable sensor data needed for accurate lifetime estimations occurs. The software 
agents are geographically and distributedly located, in this case, at the ICE in 
Bochum and Stanford University. The monitoring agent is implemented to 
autonomously detect malfunctions of the DAUs installed in the structure, and to 
react to them by notifying the responsible engineer via email alerts. 
 



FE MODEL UPDATING USING SYSTEM IDENTIFICATION 
 

One of the key features of the integrated monitoring framework is the linkage 
between the computational models representing the wind energy converter structure 
and the sensor measurement data. The purpose is to support model updating using 
real-time measurement data and to assess the conditions of the structure. 
 
Finite Element Modeling of the Structural Wind Energy Converter System  
 

The computation of the structural and dynamic behavior of the wind energy 
converter is carried out using the finite element software ANSYS [3]. Two 
individual finite element models of the wind energy converter are created. The first 
model is a complex 3D finite element model; the second model is a simplified 
approximation of the first model that is explicitly implemented for computationally 
efficient system identification. 

The first finite element model is intended to provide a highly accurate and 
realistic detailed model of the structure. The 3-D finite element model comprises of 
the shaft of the wind energy converter, including the connection flanges between 
the shaft segments, the shaft access door (Fig. 3a), and the rotor blades (Fig. 3b). 
The discretization of the 3-D model yields large number of elements and requires 
enormous computational efforts, in particular, to compute the eigenfrequencies of 
interests. The second (simplified) finite element model is constructed for system 
identification purposes. The model encompasses the shaft and the rotor blades; it is 
composed of only 23 beam elements for the shaft and 20 beam elements for the 
blades. The nacelle at top of the shaft is modeled as an additional mass. The 
behavior of the foundation and the subsoil is captured by separate finite element 
models where continuous elastic support for the ground is assumed (Fig. 3c). The 
eigenvibration characteristic of the second model matches nearly perfectly with that 
of the first model (albeit the local effect of the cross section can, of course, not be 
mapped). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (a)                                         (b)                                                      (c) 
Fig. 3. 3D finite element models of the wind energy converter. 
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SSI 

Determination of Modal Parameters and System Identification 
 

To obtain highly qualified finite element models of an observed structure for 
SHM purposes, engineers increasingly employ sensor-based measurement data to 
validate and to update the structural model. The model updating process is 
accomplished by modifying the properties of the finite element models. These 
modifications are repeated until the computed structural responses (accelerations, 
velocities and displacements) approximate closely the measured responses. If the 
approximation problem is posed as an optimization problem minimizing the 
difference between the computed quantities and their measured counterparts, the 
problem becomes an inverse or a system identification problem. Modal properties 
are among the most commonly used parameters for the model updating process. 

The extraction of the modal parameters from the actual measured data is based 
on Operational Modal Analysis (OMA); it is carried out by using the commercial 
software “ARTeMIS Extractor” [4]. Specifically, two OMA methods are utilized: 
(i) the Enhanced Frequency Domain Decomposition Method (EFDD) in the 
frequency domain and (ii) the Stochastic Subspace Identification Method (SSI) in 
the time domain. Fig. 4 shows the bending modes in the X-Z- and Y-Z-plane. Fig. 5 
shows the close matches between the measurement-driven EFDD and SSI 
calculations and the model-predicted results from the finite element analysis (EFA), 
as indicated using the Modal Assurance Criterion (MAC) in terms of a MAC-
matrix. In Fig. 5, it can be seen that the diagonals of the MAC-matrix tend towards 
the value of 1, which indicates high conformity between measurement-driven and 
model-predicted modal parameters. 
 
 
 
 
 
 
 
 

 
Fig. 4. First three bending modes of the wind energy converter in X-Z- and Y-Z-plane computed by 

FEA (black) and identified by EFDD (red) and SSI (green). 
 

 
                             (a)                                                                (b) 

Fig. 5. MAC-matrix: comparison of eigenshapes from EFDD (a) and from SSI (b) with FE model. 
 



Model Updating and Damage Detection 
 

Clearly, most interesting is the non-destructive (system) identification of events 
that represent deteriorations or damages. It can neither be anticipated nor expected 
that serious damage events occur to the 12-year old wind energy converter observed 
within the time window of the current (36-month) research project. Therefore, 
synthetic damages are imposed on the structure to predict the structural response by 
means of a forward finite element computation. Several damage patterns can be 
created and archived in a “damage catalog” by this forward computational 
approach. If deteriorations or damages occur to the real structure, the a-priori 
created damage patterns would allow a rapid assessment of damages. 

To demonstrate the performance of the proposed approach, characteristic 
damage scenarios are examined and benchmarked. As an example, the loosening of 
a high strength bolt at a specified location of a shaft connection flange is 
considered. This damage scenario is captured by introducing four stiffness reducing 
parameters (optimization or design variables). As noted by Zhang et al. [5], 
fundamental to model updating is the selection of the objective function, the 
updating parameters and the optimization procedure. This work employs the 
objective function which involves the weighting the MACs with the relative 
deviation of the modal frequencies as suggested by Bittner [6]. These criteria are 
computed from the aforementioned OMA methods. In the optimization loop 
according to the optimization strategy chosen, finite element analyses using 
ANSYS are carried out repeatedly, whereby each analysis takes about a few 
seconds. The optimization strategies adopted are the Differential Evolution (DE) 
and Evolution Strategies (ES) because both of them are best candidates for the 
solution of the non-linear, multi-modal non-standard optimization problems [7]. 
The optimization variables defined in the application example, along with the 
optimization history using ES for the damage due to the loosening of a bolt, are 
depicted in Fig. 6. 
 

             
Fig. 6. Left: FE model for defect minimization. Right: Optimization history using ES applying 

the optimization criterion according to Bittner [6]. 
 
 



STOCHASTIC PROBABILISTIC-BASED LIFETIME ESTIMATION 
 

Our recent research in lifetime oriented design of structures has indicated that 
the appropriate lifetime estimation has to take into account the realistic stochastic 
time variant actions (loading) as well as the induced stochastic lapse of strains on 
the structure’s resistance level [8]. Both processes are observed through the SHM 
system and utilized for probabilistic computations leading to applicable lifetime 
estimation. In the following, the procedure for developing the lifetime estimation 
according to Hartmann, et al. [8] is briefly summarized. 

The key of the lifetime estimation is the determination of failure probabilities 
for specific damage categories, which is usually based upon a weak point analysis 
for the total structural system. The problem is to guaranteed that the time variant 
probability D(t) exceeding a given stochastic damage limit Dlimit is less or equal 
than a given admissible failure probability Padm: 
 

P(D(t=Tlimit) > Dlimit) ≤ Padm.                                        (1) 
 
Assuming linear dynamic behavior, the damage-dominating amplitudes of the 
induced vibrations can easily be computed. Furthermore, assuming the vibration 
behave as stationary Gaussian processes, the computational efforts required to 
obtain the responses can be reduced drastically,. For reliability analysis, mainly the 
mean values are of interest and the variances of the stress response can be readily 
computed using linear system theory (i.e. the spectral and covariance analysis). 
Subsequently, the spectral moments λ0, λ1, λ2 and λ4 of the dynamic response 
quantities can be determined using the analytical equations as suggested by Dirlic 
[9] and based on a semi-empirical peak counting method. Developing an 
appropriate Wöhler-curve (S/N-curve) for the damage category considered, a 
fatigue-loading function is constructed that mimics the damage evolution process. 
Using this function, damage jumps ΔD are assessed on the micro-time level of a 
wind load event. Hereby, the fatigue endurance strength, the load cycle number and 
the inclination of the S/N-curve are defined as random parameters. Accumulating 
the jumps ΔD over the long-term time window, up to D(t=Tlimit), yields the desired 
assessment of the damage from which the remaining lifetime can be deduced. Since 
the random parameters are governed by their distribution functions, a variety of 
fatigue paths are created and checked to determine which one exceeds the 
stochastically defined limit damage Dlimit first (as illustrated in Fig. 7). 
 

 
Fig. 7. Stochastic simulations using various fatigue paths. 



CONCLUSIONS 
 

This paper has presented an integrated framework for the probabilistic lifetime 
estimation of wind energy converter structures. Representative results have been 
shown for a 500 kW wind energy converter, which serves as a reference structure. 
The main innovation of the proposed framework is the coupling of sensor-based 
structural health monitoring with finite element model updating for probabilistic-
based lifetime estimation. Coupling measured data and finite element models – i.e. 
measurement-driven and model-predicted modal parameters – potential 
probabilities of certain failures have been calculated and, based upon that, lifetime 
estimations can be computed. As the field of lifetime estimation matures, plenty of 
opportunities exist for extending the proposed framework. For example, system 
identification and damage localization, representing non-linear multi-modal non-
standard optimization problems, can further be improved by expanding the network 
of sensors installed in the wind energy converter and by introducing more 
sophisticated finite element models. 
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