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Abstract. This presentation discusses the potential use of machine learning tech-
niques to build data-driven models to characterize an engineering system for per-
formance assessment, diagnostic analysis and control optimization.   Focusing on 
the Gaussian Process modeling approach, engineering applications on construct-
ing predictive models for energy consumption analysis and tool condition moni-
toring of a milling machine tool are presented.  Furthermore, a cooperative con-
trol optimization approach for maximizing wind farm power production by com-
bining Gaussian Process modeling with Bayesian Optimization is discussed. 
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1 Introduction 

The last decade has seen an increasing number of research and applications of machine 
learning [1]. As sensor technologies, data acquisition systems, and data analytics con-
tinue to improve, companies can now effectively and efficiently collect large, rapid, 
and diverse volumes of data and get valuable insights from the data. The availability of 
large volume of data has given strong impetus to data-driven decision making. There 
have been a growing interest in applying machine learning techniques to draw insights 
gained from the data in engineering [2].   These data-driven approaches are able to find 
highly complex and non-linear patterns in data of different types and transform the raw 
data into useful models.  For instance, in the manufacturing domain, machine learning 
techniques have been applied for prediction [3,4], detection and classification [5,6], or 
forecasting [7] for problems of specific interests.   

Engineering systems are inherently dynamic, uncertain, and complex.  Majority of 
machine learning techniques provide point predictions that do not usually consider un-
certainties in the models.  As prediction and forecasting of future consequences carry 
many unknowns and uncertainties, a prediction model should provide some quantifica-
tion of uncertainty for informed decision making [8,9,10]. In this paper, we discuss 
methods that are based on Bayesian statistic inference and illustrate their potential ap-
plications for performance characterization, condition diagnostic and control optimiza-
tion of physical systems.    
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Gaussian Process Regression (GPR) is one popular approach that provides confi-
dence bounds and distribution for predictive estimation. Both features are valuable in 
establishing the foundation for uncertainty quantification analysis. Without predefining 
the basis functions, the nonparametric GPR has been widely used for approximating a 
target function that represents the complex input and output relationships based on the 
observed data and predicts a target output with quantified uncertainty [11].  Note that 
GPR can also be used for classification by converting the regression output to class 
probability [12].  Due to its ability to quantify uncertainty in the predictive model, GPR 
has received increased attention in the machine-learning community. The GPR algo-
rithm has been applied to many fields, including manufacturing, robotics, music ren-
dering, and others [13-16].  In this paper, we discuss the use of GPR for system char-
acterization and diagnostics, using a manufacturing milling machine tool as illustrative 
testbed application.   

Machine learning has been broaden from building predictive and forecasting models 
to supporting optimization and decision making problems [17].  For many complex 
physical systems, constructing the analytical model and the objective function for opti-
mal decision making can be difficult. One alternative would be to establish a model 
using the data collected from the physical system. A data-driven approach would in-
volve using the sampled data to construct the model while searching for the optimal 
value that maximizes the objective target function at the same time.  For implementa-
tion in a physical environment, the number of sampled trials should be kept to a mini-
mum as each trial would likely involve the execution of some physical actions. Using 
Gaussian Process (GP) as a way to approximate the target function, Bayesian Optimi-
zation (BO) has been shown effective in finding the optimal values of a target function 
with a small number of sampled trials.  [18].  For efficient sampling, BO uses an acqui-
sition function that takes advantage of the estimated probability distribution of the tar-
get function so that the number of function evaluations (i.e. executions of the physical 
actions) is kept small.  In other words, BO algorithm iteratively approximates the input 
and the output relationship of a target system using Gaussian Process (GP) regression 
and utilizes an acquisition function with the learned model to determine the trial inputs 
that can potentially improve the target values [18-20].  Bayesian optimization has been 
applied to problems such as the multi-armed bandit problems and sensor networks [21-
24].  When implementing with a physical system, the trial actions are typically con-
strained by the physical limitation of the system.  Furthermore, it may not be desirable 
to impose abrupt changes in successive actions. We propose a Bayesian Ascent algo-
rithm which augments BO with trust region constraints to ensure successive actions do 
not deviate significantly and to avoid abrupt changes [25]. In this paper, we use the total 
power production of a wind farm with multiple wind turbines as an illustrative example 
for the execution of the data-driven Bayesian Ascent method.   

The purpose of this paper is to illustrate the potential applications and implementa-
tions of Bayesian-based machine learning approach in engineering system, including 
performance characterization, condition diagnostics and control optimization.  The pa-
per is organized as follows:  Section 2 provides a brief description of the Gaussian 
Process Regression method with illustrative examples involving the development of an 
energy prediction model and a tool condition diagnostic model for a milling machine 
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tool.  Section 3 discusses Bayesian Optimization and its adoption for the wind farm 
power production problem.  Section 4 summarizes the paper with a brief discussion. 

2 System Characterization and Diagnosis with GPR 

This section discusses the use of input and output data of a system to characterize the 
performance of the system and to perform diagnostic analysis.  Specifically, Gaussian 
Process Regression (GPR) is employed to build predictive models for energy perfor-
mance and tool conditions of a milling machine tool.  Prior to the training process, the 
raw data collected are pre-processed to extract features that are deemed useful for the 
construction and execution of the predictive models.  Using the feature data as training 
data points, GPR then approximates a target function that represents the input and out-
put relationships without predefining a set of basis functions.  Given a new input, the 
approximated target function is then used to predict the target output with uncertainty 
quantification.  One desirable property of a GPR model is its ability to capture complex 
input and output relationships with a small number of hyper-parameters.  Moreover, a 
GPR model can be trained with relatively small number of experimental training data 
sets but is able to give reasonable predictive estimation quantified with uncertainty 
measures. 

 
2.1 Gaussian Process Regression (GPR) 

Given a data set 𝑫𝑫𝑛𝑛 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1, … ,𝑛𝑛} with n samples, where 𝒙𝒙1:𝑛𝑛 = (𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) 
and 𝒚𝒚1:𝑛𝑛 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) denote, respectively,  the inputs and the corresponding (possi-
bly noisy) output observations of the target function values 𝒇𝒇1:𝑛𝑛 = �𝑓𝑓(𝒙𝒙1), … ,𝑓𝑓(𝒙𝒙𝑛𝑛)�, 
Gaussian Process Regression (GPR) constructs a posterior distribution 𝑝𝑝(𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛) on 
the function value 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑓𝑓(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) corresponding to an unseen input 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 . The pre-
diction is given as a probability distribution rather than a point estimate.  The probabil-
ity distribution enables quantifying uncertainty in the target value. A detailed descrip-
tion of GPR can be found in [11,12]. The following summarize the basic steps for train-
ing a GPR model and performing prediction using the trained GPR model. 

 
Gaussian Process Prior on Target Function Values. GPR uses Gaussian Process 
(GP) as a prior to describe the distribution on the target function 𝑓𝑓(𝒙𝒙). GP is defined as 
a collection of random variables, any finite number of which is assumed to be jointly 
Gaussian distributed. The distribution over the target function 𝑓𝑓(𝒙𝒙) can be fully de-
scribed by its mean function 𝑚𝑚(𝒙𝒙) = E[𝑓𝑓(𝒙𝒙)] and a kernel function 𝑘𝑘(𝒙𝒙,𝒙𝒙′) that ap-
proximates the covariance E[(𝑓𝑓(𝒙𝒙) −𝑚𝑚(𝒙𝒙))(𝑓𝑓(𝒙𝒙′) −𝑚𝑚(𝒙𝒙′))]. That is, the prior on the 
function values is represented as: 𝑝𝑝(𝒇𝒇1:𝑛𝑛) = 𝐺𝐺𝐺𝐺�𝑚𝑚(∙), 𝑘𝑘(∙,∙)� (1) 

where  𝑚𝑚(∙) is a mean function capturing the overall trend in the target function value, 
and 𝑘𝑘(∙,∙) is a kernel function used to approximate the covariance. The kernel (covari-
ance) function represents a geometrical distance measure assuming that the more 
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closely located inputs would be more correlated in terms of their function values. 
 

Defining Covariance (Kernal) Function. In GPR, the kernel (covariance) function 
describes the structure of the target function. A wide variety of kernel functions have 
been proposed and described in the literature [12,26]. The covariance kernel function 
provides an efficient method to estimate the correlation between two input feature vec-
tors, 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗. The type of kernel function chosen can strongly affect the representa-
bility of the GPR model, and influence the accuracy of the predictions. One common 
choice for a GPR model is the stationary and (infinitely) differentiable squared expo-
nential (SE) kernel: 𝑘𝑘𝑆𝑆𝑆𝑆(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝜎𝜎2exp �− 1

2λ2 �𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗�2�, (2) 

where the kernel function is described by the hyperparameters, 𝜎𝜎 and 𝜆𝜆. The hyperpa-
rameter 𝜆𝜆 is commonly referred to as the length scale. The length scale quantifies 
whether two points at a certain distance apart in the input space are considered close 
together. The signal variance 𝜎𝜎2 quantifies the overall magnitude of the covariance 
value. While the SE kernel function is a good choice for many applications for a feature 
vector with multiple variables (or dimensions), it does not allow the length scale to vary 
for each dimension in the feature vector. A common alternative is to use an automatic 
relevance determination (ARD) kernel, which assigns a different length scale to each 
dimension. The ARD squared exponential (ARD-SE) kernel, which is essentially a 
product of the SE kernels over different dimensions,   can be expressed as: 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴−𝑆𝑆𝑆𝑆(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝜎𝜎2exp�−1

2
(𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗)𝑇𝑇diag(𝛌𝛌)−2(𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗)�. (3) 

An ARD-SE kernel provides the flexibility to adjust the relevance (weight) of each 
parameter in the feature vector where the parameter vector 𝝀𝝀 = (𝜆𝜆1, … 𝜆𝜆𝑖𝑖 , … , 𝜆𝜆𝑚𝑚) is re-
ferred to as the characteristic length scales that quantify the relevancy of the input fea-
tures in 𝒙𝒙𝒊𝒊 = �𝑥𝑥1𝑖𝑖 , … 𝑥𝑥𝑘𝑘𝑖𝑖 , … , 𝑥𝑥𝑚𝑚𝑖𝑖 �, where m defines the number of input variables, for pre-
dicting the response 𝑦𝑦. A large length scale 𝜆𝜆𝑖𝑖 indicates weak relevance for the corre-
sponding input feature 𝒙𝒙𝑖𝑖and vice versa.   

Other kernel functions such as linear, periodic, Matern kernals exist [12,26,27]. New 
kernel function can be constructed by combining kernal functions via, for examples, 
addition and multiplication of the kernel functions [12,26]. The kernel function pro-
duces a positive semi-definite symmetric kernel matrix 𝐊𝐊 whose (𝑖𝑖, 𝑗𝑗)th entry is 𝐊𝐊𝑖𝑖𝑗𝑗  =

 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗). 
 

Defining Likelihood Function (Observation Model). The latent random variables 𝒇𝒇1:𝑛𝑛 needs to be inferred from the observations 𝒚𝒚1:𝑛𝑛 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛). Each observed (or 
response) value is assumed to contain some random noise 𝜖𝜖𝑖𝑖, such that 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖) +𝜖𝜖𝑖𝑖.  Different likelihood functions can be used to model the random noise term. It is 
common to assume that the noise term 𝜖𝜖𝑖𝑖~𝒩𝒩(0,𝜎𝜎𝜖𝜖2) is independent and identically dis-
tributed Gaussian with zero mean, in which case the likelihood function becomes:  

 𝑝𝑝(𝒚𝒚1:𝑛𝑛|𝒇𝒇1:𝑛𝑛) = 𝒩𝒩(𝒇𝒇1:𝑛𝑛,𝜎𝜎𝜖𝜖2𝐈𝐈) (4) 
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where the noise variance, 𝜎𝜎𝜖𝜖2, quantifies the level of noise that exists in the observations. 
The Gaussian likelihood function is used because it guarantees that the posterior can 
also be expressed as a Gaussian distribution.  
 
Training the Regression Model (Optimizing Hyper-Parameters).  Including the 
noise model, the covariance function is parameterized (i.e., defined) by the hyperpa-
rameters jointly denoted by 𝜽𝜽 = (𝜎𝜎𝜖𝜖 ,𝜎𝜎,𝝀𝝀).The marginal distribution of the observa-
tions (conditioned on the hyperparameters) can be expressed as: 

 𝑝𝑝(𝒚𝒚1:𝑛𝑛|𝜽𝜽) = �𝑝𝑝(𝒚𝒚1:𝑛𝑛|𝒇𝒇1:𝑛𝑛,𝜽𝜽)𝑝𝑝(𝒇𝒇1:𝑛𝑛|𝜽𝜽) 𝑑𝑑𝒇𝒇1:𝑛𝑛  �= 𝒩𝒩(0,𝐊𝐊 + 𝜎𝜎𝜖𝜖2𝐈𝐈)� (5) 

 
Note that since the GP prior and Gaussian likelihood function are used, the marginal 
distribution is also Gaussian. One attractive property of the GP model is that it provides 
an analytical closed form expression for the marginal likelihood of the data (with the 
unknown latent function 𝑓𝑓(𝒙𝒙) being “marginalized” out).  The marginal log-likelihood 
for the training data set 𝑫𝑫𝑛𝑛 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1, … ,𝑛𝑛} can be expressed as [11,12]:   

log𝑝𝑝 (𝒚𝒚1:𝑛𝑛|𝜽𝜽 ) =  −1

2
(𝒚𝒚1:𝑛𝑛)𝑇𝑇(𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈)−1𝒚𝒚1:𝑛𝑛 − 1

2
log|𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈|− 𝑛𝑛

2
log2π  

 
(6) 

 
The hyperparameters 𝜽𝜽 = (𝜎𝜎𝜖𝜖 ,𝜎𝜎,𝝀𝝀) for the noise model and the kernel function are de-
termined as ones maximizing the marginal log-likelihood of the training data 𝑫𝑫𝑛𝑛 =

{(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1, … ,𝑛𝑛} as [12]: 
 𝜽𝜽∗ = argmax𝜽𝜽 log𝑝𝑝 (𝒚𝒚1:𝑛𝑛|𝜽𝜽 ) 

      =  argmax𝜽𝜽 �−1

2
(𝒚𝒚1:𝑛𝑛)𝑇𝑇(𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈)−1𝒚𝒚1:𝑛𝑛 − 1

2
log|𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈|− 𝑛𝑛

2
log2π�  

(7) 
 

 
As long as the kernel function is differentiable with respect to its hyper-parameters 𝜽𝜽, 
the marginal likelihood can be differentiated and optimized by various off-the-shelf 
mathematical programming tools, such as GPML [28], scikit-learn [29], and others. 

 
Constructing Posterior Predictive Distribution (Perdiction). Once the optimized 
hyperparameters are obtained, the trained GPR model is fully characterized.  Let’s de-
note a newly observed input 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛: 

 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑥𝑥1𝑛𝑛𝑛𝑛𝑛𝑛 , … 𝑥𝑥𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 , … 𝑥𝑥𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛) 
 

The (hidden) function value 𝑓𝑓(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) for the new input 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 and the observed outputs 𝒚𝒚1:𝑛𝑛 = {𝑦𝑦1, … ,𝑦𝑦𝑛𝑛} follow a multivariate Gaussian distribution: 
                   

                    � 𝒚𝒚1:𝑛𝑛𝑓𝑓(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛)
�~𝑁𝑁 �𝟎𝟎, �(𝐊𝐊 + 𝜎𝜎𝜖𝜖2𝐈𝐈) 𝒌𝒌𝒌𝒌𝑇𝑇 𝑘𝑘(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛)

��  
(8) 
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where 𝒌𝒌𝑇𝑇  =  �𝑘𝑘(𝒙𝒙1,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛), . . . , 𝑘𝑘(𝒙𝒙𝑛𝑛,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛)�. The posterior predictive distribution on 
the response 𝑓𝑓(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) for the newly observed (and previously unseen) input 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 given 
the historical data 𝑫𝑫𝑛𝑛 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1, … ,𝑛𝑛} can then be expressed as a 1-D Gaussian 
distribution 𝑓𝑓(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛)~𝑁𝑁�𝜇𝜇(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛),𝜎𝜎 

2(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛)�  with the mean and variance 
functions expressed, respectively, as [11,12]: 

 
  𝜇𝜇(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛) = 𝒌𝒌𝑇𝑇(𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈)−1𝒚𝒚1:𝑛𝑛 (9) 

 
 𝜎𝜎 
2(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛) = 𝑘𝑘(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) − 𝒌𝒌𝑇𝑇(𝐊𝐊 + 𝜎𝜎𝜖𝜖2𝐈𝐈)−1𝒌𝒌 (10) 

 
Here, 𝜇𝜇(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛) and 𝜎𝜎 

2(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑛𝑛) can be used as the scoring functions for evaluat-
ing, respectively, the mean and variance of the hidden function output 𝑓𝑓(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) corre-
sponding to the input data 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛. 
 
2.2 Characterizing Energy Consumption of a Milling Machine 

Monitoring and optimizing energy efficiency of the manufacturing processes has be-
come a priority in the manufacturing industry. This section discusses how a GPR-based 
energy prediction model for a milling machine is established. An energy prediction 
model can provide a better understanding of how different operational strategies may 
influence the energy consumption pattern of a machine tool and enable selection of 
optimal strategy with efficient operations for machining a part. 

Figure 1 shows the basic set up of a Mori Seiki NVD 1500DCG 3-axis milling ma-
chine tool.  The machining process data, such as process parameters, NC blocks, and 
tool positions, are collected from the FANUC controller and the power time series data 
is collected using a High Speed Power Meter (HSPM).  With recent technologies and 
standards, such as MTConnect [30], it is now possible to track variations in energy 
consumption by different machine operations [31].  The raw data collected includes the 

 
Fig. 1. A Mori Seiki NVD 1500DCG 3-axis milling machine 

Control 

Information

FANUC

Power

Information

HSPM
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timestamp, time series data for power consumption, feed rate and spindle speed, and 
numerical control (NC) code information. The raw data is then post-processed to derive 
the information such as average feed rate, average spindle speed, cumulative energy 
consumption, volume of material removed, depth of cut and cutting strategy for each 
NC code block. The hardware platform, the data acquisition system, the experimental 
design, and the data processing techniques have been described in details by Bhinge et 
al. [32].   

In the example presented herein, the input process parameters used are shown in 
Figure 2.  The input features employed are defined as follows: 

 
• 𝑥𝑥1∈ ℝ Feed rate: the velocity at which the tool is fed 
• x2 ∈ ℝ Spindle speed: rotational speed of the tool 
• 𝑥𝑥3∈ ℝ Depth of cut: depth of material that the tool is removing 
• 𝑥𝑥4∈ {1, 2, 3, 4} Active cutting direction: (1 is for 𝑥𝑥-axis, 2 for y-axis, 3 for z-axis, 

and 4 for 𝑥𝑥-𝑦𝑦 axes) 
• 𝑥𝑥5∈ {1, 2, 3} Cutting strategy: the method for removing material (1 is for conven-

tional, 2 for climbing, and 3 for both) 
 

Each operation, i.e. a feature data, refers to a single NC block. The energy consumption, 𝐸𝐸 ∈ ℝ, for each NC block is obtained by numerically integrating the power time series 
recorded by the HSPM over the duration of the NC block. Additionally, the length of 
the tool path. 𝑙𝑙 ∈ ℝ, in a single NC block is computed using the lengths of cut in the x-
, y- and z-directions.  The output parameter, y, is defined as the energy consumption per 
unit length (i.e. 𝑦𝑦𝑖𝑖 = 𝐸𝐸𝑖𝑖/𝑙𝑙𝑖𝑖 for the ith NC block operation). 

For this example, the data for a total of 196 face milling experiments for machining 
parts using the milling machine are collected.  We choose to use all of the measured 
input features, and define the input feature vector, 𝒙𝒙 =  {𝑥𝑥1, … , 𝑥𝑥5}. We assume that 
the output measurement 𝑦𝑦 = 𝑓𝑓(𝒙𝒙) + 𝜖𝜖 contains noise 𝜖𝜖 ~ 𝒩𝒩(0,𝜎𝜎𝜖𝜖2). The ARD-SE ker-
nel is used as the covariance function.  Furthermore, we assume the mean function from 
the prior (see Eq. (1)) to be a zero function.   

The GPR model is used to generate energy density predictions 𝑦𝑦�𝑖𝑖  for a new set of 
operating conditions 𝒙𝒙𝑖𝑖 . Let 𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕 denote the training data set containing the input fea-
ture data and the output parameter data. Each new prediction 𝑦𝑦�𝑖𝑖 is represented by a 
mean energy density function 𝜇𝜇(𝒙𝒙𝑖𝑖|𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕) and associated standard deviation function 

 
(a) Process parameters of a milling process (b) Cutting strategy 

Fig. 2. Machining process parameters 
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𝜎𝜎(𝒙𝒙𝑖𝑖|𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕). We can then estimate the energy consumption 𝐸𝐸� 𝑖𝑖 and the corresponding 
standard deviation 𝑆𝑆𝑖𝑖 on the estimated energy consumption value as: 

                    𝐸𝐸�𝑖𝑖 = 𝜇𝜇(𝒙𝒙𝑖𝑖�𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕) × 𝑙𝑙𝑖𝑖  
(11) 

 

                    𝑆𝑆𝑖𝑖 =  𝜎𝜎(𝒙𝒙𝑖𝑖�𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕) × 𝑙𝑙𝑖𝑖  
(12) 
 

Details on developing the GPR model have been reported in [14]. Figure 3 shows the 
energy consumption predicted by the GPR model. As shown in Figure 4, the GPR 
model provides a good estimation of the energy consumption of the milling machine 
on the test data set.  

 
Fig. 3. Predicted energy consumption density for generic test parts machined using 
face milling.  The operating parameters include y-direction cut, 2,400 RPM spin-
dle speed, conventional cutting strategy, and 1mm cut depth. The shaded area 
shows one-standard deviation bounds for the prediction. 

 
Fig. 4. Predicted mean energy consumption for face milling operations using the 
GPR model. Results are compared to the actual energy consumption of the machine. 
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This example illustrates that the GPR models can be established to calculate the 
complex relationship between the input machining parameters and output energy con-
sumption, and construct a prediction function for the energy consumption with confi-
dence bounds.  While this example uses face milling as a demonstrative example, the 
same technique has shown to be applicable to other milling operations [13]. Further-
more, since the input features are directly related to the NC code information (which 
can often be generated from a CAD model) the saved GPR model can be used to predict 
energy consumption when machining a new part as well to pre-determine the best tool 
path for machining a part with minimal energy [13,14]. 

 
2.3 Diagnosis of Tool Conditions 

This section describes an application of GPR in developing a predictive model for tool 
condition diagnostic.  Researchers have previously demonstrated that the condition of 
a machine tool can be inferred from features of the vibration and audio time series 
[33,34,35]. With the availability of low cost sensors, it is possible to collect real time 
vibration and audio data from critical locations inside a manufacturing machine tool.   
As shown in Figure 5, a waterproof sensor unit from Infinite Uptime, Inc. is attached 
to the vise of the Mori Seiki NVD 1500DCG 3-axis milling machine. The sensor unit 
is capable of measuring both the audio and triaxial acceleration signals inside the mill-
ing machine. In the experimental set up, the acceleration signal is recorded in the x-, y- 
and z-direction with a sampling rate of 1000 Hz to capture the 200 Hz signal generated 
by the cutting tool when the spindle rate is set to 3000 RPM.  The audio signal is rec-
orded at 8000 Hz.  Data is streamed from the sensor to a laptop computer using a uni-
versal Serial Bus (USB) connection.  Figure 5(b) shows the time series data in the pro-
duction of a part that involves 10 climb-cutting operations and 10 conventional-cutting 
operations. Each cutting operation is separated by a brief air-cutting operation (without 
removing materials), in which the machine pauses briefly between cuts.  

The milling machine was programmed to produce a number of simple parts by re-
moving material from a solid steel block until the cutting tool became severely dam-
aged, or the cutting tool broke. Tests were conducted using an Atrax solid carbide 4-
flute square end mill, and a continuous supply of coolant. As described previously, the 
machining data, such as tool position and rotation speed, can be recorded from the 
FANUC controller and streamed to a laptop computer, along with a timestamp.  The 
data is then post-processed to extract the behavior of the machine from the raw numer-
ical control (NC) code [32].   

In this work, we define the condition of the milling machine tool 𝑦𝑦 ∈ [0,1], based 
on the remaining lifetime of the tool, as estimated after manually examining the tool 
with a microscope. The scale is defined such that 1 indicates a new tool in perfect con-
dition, and 0.5 indicates the condition at which the tool would be replaced in a com-
mercial manufacturing operation as judged by a machine operator. Figure 6 shows ex-
amples of different levels of tool wear condition. 
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reduce signal noise by employing the Welch’s method to pre-process the time series  

 
(a) Milling machine showing (1) the cutting tool and (2) the sensor unit 

 
(b) Recorded vibration and acoustic time series signals 

Fig. 5. Experimental Set Up for Tool Condition Diagnosis 

 
(a) y = 0.9 

 
(b) y = 0.8 

 
(c) y = 0.7 

 
(d) y = 0.6 

 
(e) y = 0.5 

 
(f) y = 0.4 

 
(g) y = 0.2 

 
(h) y = 0.1 

Fig. 6. Solid carbide end mill flute in different states of condition. A lower value 
of 𝑦𝑦 indicates higher tool wear condition 
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As the audio and vibration signals are periodic, it seems natural to transform the time 
series signals into power spectra in the frequency domain. First, an attempt is made to 
data [36,37,38]. In Welch’s method, a discrete time series signal 𝑠𝑠, is divided into 𝐾𝐾 
successive blocks 𝑠𝑠𝑚𝑚, using a window function 𝑤𝑤: 𝑠𝑠𝑚𝑚(𝑛𝑛) = 𝑤𝑤(𝑛𝑛)𝑠𝑠(𝑛𝑛 +𝑚𝑚𝑚𝑚),     𝑛𝑛 = 0 …𝑀𝑀 − 1, 𝑚𝑚 =  0 …𝐾𝐾 − 1 (13) 

where 𝑀𝑀 is the length of the window and 𝑚𝑚 is the window hop size [37]. Furthermore, 
we use the Hann window function to reduce the spectral leakage [37]: 

𝑤𝑤(𝑛𝑛) = �  0.5 �1− cos � 
2𝜋𝜋𝑛𝑛𝑀𝑀 − 1

 ��     𝑖𝑖𝑓𝑓    𝑛𝑛 ≤ 𝑀𝑀 − 1; 

    0                                              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒.           

 (14) 

The periodogram of the 𝑚𝑚𝑡𝑡ℎ block is then calculated using the Fourier transform: 

𝒑𝒑𝑚𝑚(𝜔𝜔𝑘𝑘) =
1𝑀𝑀 �� 𝑠𝑠𝑚𝑚(𝑛𝑛)𝑒𝑒−𝑖𝑖2𝜋𝜋𝑛𝑛𝑘𝑘𝑁𝑁𝑁𝑁−1

𝑛𝑛=0 �2. (15) 

where 𝜔𝜔𝑘𝑘 is the kth point in in the discretized frequency domain. The Welch estimate 
of the power spectral density is given by: 

𝒔𝒔�(𝜔𝜔𝑘𝑘) =
1𝐾𝐾 � 𝒑𝒑𝑚𝑚(𝜔𝜔𝑘𝑘).

𝐾𝐾−1
𝑚𝑚=0  (16) 

The Welch’s method essentially computes the average of periodograms across time. 
Each periodogram is obtained from a windowed segment of the time series. In this ex-
ample case study, a window overlap of 50% is used and a Hann window length of 256 
points is chosen for the vibration and audio signals. The length of the window is equal 
to the number of intervals in the discretized frequency domain. Figures 7(a) and 7(b) 
show respectively the periodograms for sample acceleration and audio signals produced 
by a sharp and a worn tool. It can be observed that the signal amplitudes tend to produce 

 
(a) Acceleration periodograms 

 
(b) Audio periodograms 

Fig. 7. Periodograms recorded with a sharp tool and a worn tool for a climb-cutting 
operation  
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larger amplitude when the tool is worn.   
In the tool condition model, we choose to use the periodograms as input features 

which, as described, can be easily constructed in real time as data is collected. We de-
note the vibration periodogram 𝒔𝒔�𝑣𝑣𝑖𝑖 ∈ ℝ256  and acoustic periodogram 𝒔𝒔�𝑎𝑎𝑖𝑖 ∈ ℝ256   for 
each milling machine operation 𝑖𝑖.  The condition of the milling tool tends to change 
gradually under normal operation. For this reason, we choose to include the previous 
condition of the milling tool in the feature vector. Altogether, we denote the input fea-
tures for each milling operation 𝑖𝑖 as: 

𝒙𝒙𝑖𝑖 = �𝑐𝑐𝑖𝑖𝒔𝒔�𝑣𝑣𝑖𝑖𝒔𝒔�𝑎𝑎𝑖𝑖 �. (17) 

where 𝑐𝑐𝑖𝑖 is the best estimate of the previous tool condition. During the training proce-
dure, the previous tool condition is known, so 𝑐𝑐𝑖𝑖 can be set equal to 𝑦𝑦𝑖𝑖−1: 𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 = �  1            for 𝑖𝑖 = 1,             𝑦𝑦𝑖𝑖−1       otherwise.            

 (18) 

To make a new prediction using the scoring procedure, the feature vector 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 first 
needs to be derived from the milling machine data. In a manufacturing setting, the vi-
bration and audio periodograms can be calculated immediately after each operation is 
performed by the milling machine. However, the previous tool condition value 
 𝑦𝑦𝑖𝑖−1, will not be known. Therefore, we use the previous tool condition prediction, 𝑦𝑦�𝑖𝑖−1, in the scoring procedure, that is: 𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 = �  1            for 𝑖𝑖 = 1,             𝑦𝑦�𝑖𝑖−1       otherwise.            

 (19) 

This makes the prediction process recursive. The first prediction is made by assuming 
a new tool, i.e. 𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖=1 = 1.  All subsequent predictions are made using the previous 
prediction as a starting point. 

An ideal kernel for the tool condition model would allow the length scale of each 
periodogram to be varied independently, without introducing a large number of addi-
tional hyperparameters. When using the ARD squared exponential kernel, the number 
of hyperparameters grows linearly with the dimensional size of the feature vector, mak-
ing the model prone to overfitting [39]. Instead, we choose to combine the SE kernels 
for each data type [40]. The resulting sum of square exponential (SSE) kernel is defined 
as follows: 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝜎𝜎12exp�− 1

2λ12 �𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗�2�+ 𝜎𝜎22exp�− 1

2λ22 �𝒔𝒔�𝑣𝑣𝑖𝑖 − 𝒔𝒔�𝑣𝑣𝑗𝑗�2�
+ 𝜎𝜎32exp�− 1

2λ32 �𝒔𝒔�𝒕𝒕𝑖𝑖 − 𝒔𝒔�𝒕𝒕𝑗𝑗�2 �, 
(20) 

where 𝜎𝜎1,𝜎𝜎2,𝜎𝜎3, 𝜆𝜆1, 𝜆𝜆2  and 𝜆𝜆3 are the parameters to be determined for the SSE kernel 
function. Including the noise term 𝜎𝜎𝜖𝜖2, the model with the SSE kernel function is de-
scribed by seven hyperparameters, 𝜽𝜽 = [𝜎𝜎1,𝜎𝜎2,𝜎𝜎3, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3,𝜎𝜎𝜖𝜖].  When compared to 
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the ARD-SE kernel, the SSE kernel has fewer hyperparameters, but still allows the 
length scale of the previous state and periodograms to be adjusted independently.  

We randomly select 14 experiments for the training set and 4 experiments for the 
testing set. Two GP models are trained to predict tool condition; the first is trained with 
climb-cutting data from the training set, and the second is trained with conventional-
cutting data from the training set. The two models are then used together to predict the 
condition of the tool for each test case.  As shown in Figure 8, even with a small number 
of training data sets, the predictive results give reasonable accurate prediction for good 
tool conditions.  The figure also reveals that the confidence interval on the predicted 
value is large when the tool is worn. There are several reasons for this: firstly, the tool 
is more likely to break or undergo rapid condition change at this stage; hence, there is 
less certainty when predicting the condition of a heavily worn tool. Secondly, the train-
ing set contains less data for heavily worn tools, as some of the tests were ended ab-
ruptly when the tool broke. The reduced amount of training data for heavily worn tools 

 
Fig. 8. Tool condition prediction for three testing data sets. Each plot represents a 
test where the milling machine was run until the cutting tool became severely worn 
or broken. The shaded region represents the 90% confidence interval for each pre-
diction. 
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makes predictions less certain. Finally, the amplitudes of the acceleration signal gener-
ated by heavily worn tools have a much larger variance. For example, if a single flute 
on the tool is worn heavily, the tool is no longer symmetric so the corresponding accel-
eration signal will have a very high amplitude. On the other hand, if the tool is worn 
evenly the corresponding acceleration signal may have a much smaller amplitude.  
Many of these limitations may have been exacerbated by the accelerated nature of the 
tool wear experiment. It is important to note that tool condition would rarely be allowed 
to pass below 50% in a real manufacturing setting. Once the tool exceeds this level of 
wear, the surface quality of the part deteriorates quickly. This example illustrates the 
potential use of GPR as a means for predictive tool condition monitoring. 

3 System Control Optimization 

This section discusses real time control of a physical system, for which the construction 
of the analytical model and the objective function is difficult.  The strategy is to itera-
tively select a series of trial input actions that potentially optimize the objective, observe 
the corresponding outputs, and learn about the unknown target function based on the in-
puts and the outputs.  One important consideration for control of a physical system using 
a data-driven approach is to ensure that the number of trials is kept small as a trial would 
involve execution of corresponding control actions.  Utilizing GPR to establish a 
learned model based on the input trials and output measurements, Bayesian Optimiza-
tion (BO) has been found effective in optimizing a target function using a small number 
of trials.  To illustrate, we discuss an application of BO to maximize the power produc-
tion of a wind farm with multiple wind turbines in an experimental wind tunnel study. 
 
3.1 Bayesian Optimization 

Bayesian Optimization (BO) algorithm iteratively approximates the input and the out-
put relationship of a target system using Gaussian Process (GP) regression and uses the 
learned model to determine the trial inputs that can potentially improve the target values 
[18,19,20]. Following the GPR procedure described in the previous section, denote 𝒙𝒙 =
(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) as the m input control actions and let 𝑓𝑓(𝒙𝒙)  be the unknown target function 
for the output measurement y inferred by x. The output measurement 𝑦𝑦 = 𝑓𝑓(𝒙𝒙) + 𝜖𝜖, is 
assumed to include noise 𝜖𝜖  which follows a Gaussian distribution, i.e., 𝜖𝜖~𝒩𝒩(0,𝜎𝜎𝜖𝜖2 ) 
[18,19,20]. At the nth iteration, using the historical input-output data 𝑫𝑫𝑛𝑛 =

{(𝒙𝒙1,𝑦𝑦1), … , (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖), … , (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛)} , where 𝒙𝒙𝑖𝑖 = �𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑚𝑚𝑖𝑖 �  and 𝑦𝑦𝑖𝑖  represent, respec-
tively, the input actions and the corresponding output measurement at the 𝑖𝑖th iteration, 
BO attempts to improve the target function by executing three basic steps: 
  
• Learning: model the unknown target function 𝑓𝑓(𝒙𝒙) using Gaussian Process (GP) re-

gression.  
• Optimization: select the next trial input 𝒙𝒙𝑛𝑛+1 that  is useful for increasing (exploita-

tion) and learning (exploration) the objective function 𝑓𝑓(𝒙𝒙)~𝒩𝒩(𝜇𝜇(𝒙𝒙|𝑫𝑫𝑛𝑛),𝜎𝜎2(𝒙𝒙|𝑫𝑫𝑛𝑛)). 
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• Observation: execute the selected actions 𝒙𝒙𝑛𝑛+1 and obtain the corresponding output 𝑦𝑦𝑛𝑛+1 from the target system.  
 
The new input and output pair (𝒙𝒙𝑛𝑛+1,𝑦𝑦𝑛𝑛+1) will then be used to update the regression 
model for the target function 𝑓𝑓(𝒙𝒙) in the next iteration.  The key of the BO algorithm lies 
in the optimization step for selecting a trial action to improve towards the optimal control 
actions.    

As discussed, GPR is an effective method to establish a non-parametric regression 
model target function 𝑓𝑓(𝒙𝒙) to represent the complex input-output relationship of a sys-
tem.  The model is defined by a mean function 𝜇𝜇(𝒙𝒙|𝑫𝑫𝑛𝑛)  and a variance function 𝜎𝜎 
2(𝒙𝒙|𝑫𝑫𝑛𝑛) obtained from the GP regression. Using the GPR model, the goal is to select 

the next input 𝒙𝒙𝑛𝑛+1 in order to learn more about the target function as well as to im-
prove the target value at the same time.  The strategy would be to select the next input 
by exploiting the current belief about the target system by maximizing the current mean 
function 𝜇𝜇(𝒙𝒙|𝑫𝑫𝑛𝑛) as well as exploring the uncertainty (variance) around the selected 
input by maximizing the variance function 𝜎𝜎 

2(𝒙𝒙|𝑫𝑫𝑛𝑛). In general, the next sampling 
input is selected as the one that maximizes an acquisition function that incorporates 
both the aspects of exploration and exploitation as illustrated as shown in Figure 9. In 
this study, we select the next input 𝒙𝒙𝑛𝑛+1 based on maximizing the expected improve-
ment (EI) acquisition function as [41]: 
 𝒙𝒙𝑛𝑛+1  = arg max𝒙𝒙∈𝑨𝑨∩𝑻𝑻EI(𝑥𝑥) ≜  arg max𝒙𝒙∈𝑨𝑨∩𝑻𝑻E[max{0, 𝑓𝑓(𝒙𝒙) − 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚} |𝑫𝑫𝑛𝑛] (21) 

 
Here, 𝑨𝑨 ∶= {𝒙𝒙| 𝒙𝒙𝑙𝑙 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑢𝑢} defines the ranges of allowable values for the actions x, 𝑻𝑻 ∶= {𝒙𝒙| ‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑎𝑎𝑚𝑚‖ < 𝜏𝜏𝑖𝑖  for  𝑖𝑖 = 1, … ,𝑚𝑚}  is a trust region used to restrict the 
change of actions, and 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 = max{𝒙𝒙∈𝒙𝒙1:𝑛𝑛} 𝜇𝜇(𝒙𝒙|𝑫𝑫𝑛𝑛) is the maximum target function 
value estimated in the (current) 𝑛𝑛th iteration.  The ranges for system constraints A de-
fine the limits of trial actions allowed by the physical system. For a physical system, 

 
Fig. 9. Acquisition function incorporating exploration and exploitation 

𝑓𝑓

𝐸𝐸𝐸𝐸(𝑥𝑥)
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Exploration Exploitation
argmax𝜎𝜎 𝑥𝑥 argmax𝜇𝜇 𝑥𝑥
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abruptly changing the control actions may not be desirable.  The trust region T is im-
posed as a proximity constraint, 𝜏𝜏𝑖𝑖 ,  that limits the range of change allowable for the 
actions for each iterative step. We call the BO algorithm with the trust region constraint 
Bayesian Ascent (BA) method, in that the algorithm follows the ascending direction 
estimated probabilistically from a sequence of observations [25]. 

The quantity max{0, 𝑓𝑓(𝒙𝒙) − 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚} denotes the improvement toward the maximum 
output 𝑓𝑓(𝒙𝒙) with respect to the estimated maximum function value 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚.  Here we use 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 instead of the actually observed maximum response 𝑦𝑦𝑚𝑚𝑎𝑎𝑚𝑚 because the measure-
ment value 𝑦𝑦𝑚𝑚𝑎𝑎𝑚𝑚 may have large noise that could interfere with the sampling proce-
dure. Given the estimated 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚, the value of the expected improvement EI(𝒙𝒙) can be 
analytically derived using the distribution of the target function 𝑓𝑓(𝒙𝒙) at 𝒙𝒙 [41]:  
 𝐸𝐸𝐸𝐸(𝑥𝑥) = �(𝜇𝜇(𝑥𝑥) − 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚)𝛷𝛷(𝑍𝑍) + 𝜎𝜎(𝑥𝑥)𝜙𝜙(𝑍𝑍) 𝑖𝑖𝑓𝑓 𝜎𝜎(𝑥𝑥) > 0

0 𝑖𝑖𝑓𝑓 𝜎𝜎(𝑥𝑥) = 0
 (7) 

 
where 𝜙𝜙(∙) and 𝛷𝛷(∙) denote, respectively, the probability and cumulative distribution 

functions, and 𝑍𝑍 =
𝜇𝜇(𝑚𝑚)−𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎(𝑚𝑚)

. 

Figure 10 summarizes the Bayesian Ascent algorithm [25].  In the observation phase, 
the selected actions 𝒙𝒙𝑛𝑛+1  are executed and the corresponding output measurement 𝑦𝑦𝑛𝑛+1 is observed. The collected new data point (𝒙𝒙𝑛𝑛+1 ,𝑦𝑦𝑛𝑛+1 ) is then used to update 
the regression model for the target function 𝑓𝑓(𝒙𝒙) in the learning phase of the next iter-
ation.  Additionally, depending on the improvement in the target value, the size of the 
trust region is adjusted to expedite the rate of convergence. If the observed increase 
(𝑦𝑦𝑛𝑛+1 − 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚) between the measured output 𝑦𝑦𝑛𝑛+1 and the previously estimated max-
imum target value 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚is larger than a certain threshold (say, 𝛾𝛾(1 𝑛𝑛⁄ )(𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑦𝑦1)), 
the trust region is expanded as  𝝉𝝉𝑛𝑛+1 = 𝛽𝛽𝝉𝝉𝑛𝑛, with 𝛽𝛽 > 1, in an attempt to expedite the 
convergence rate.  Otherwise, the trust region is reset as 𝝉𝝉𝑛𝑛+1 = 𝝉𝝉1 (the size of initial 
trust region). In our study, we use 𝛾𝛾 = 0.05 and 𝛽𝛽 = 1.1 and set the initial trust region 𝝉𝝉1 to be 1~10% of the input range for each input component. Imposing a trust region 
and adjusting its size are to ensure monotonic increase in the target value and gradual 
convergence to an optimum with high probability. 

3.2 Cooperative Maximization of Wind Farm Power Production  

This section discusses an application of the BA algorithm for finding the optimum co-
ordinated control actions using only the measurement data observed in a physical sys-
tem.  In a wind farm with multiple wind turbines, wakes formed by the upstream wind 
turbines can decrease the attacking wind speed and, thus, the power production of the 
downstream wind turbines.  Typically, each wind turbine would independently adjust 
its yaw and blades to maximize its power production without taking into consideration 
of the power production of other wind turbines; we refer this non-cooperative, inde-
pendent actions as a greedy strategy. On the other hand, the cooperative optimization 
strategy would be to adjust the yaws and the blades of the wind turbines such that the 
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total wind farm power production is maximized.  The solution for the cooperative op-
timization problem involves the development of an analytical wind farm power func-
tion which is derived from physical principles, empirical observations and experimental 
calibrations [42].  Here, we employ the BA algorithm for the cooperative control opti-
mization problem using the yaw and blade angles of the wind turbines as the input 
control actions x and the total power output collected from the wind turbines as the 
output measurement y.   

 A wind tunnel experiment with 6 scaled wind turbines is conducted at the KOCED’s 
Wind Tunnel located at Chonbuk National University in Korea [43]. As shown in Fig-
ure 11, the scaled wind turbine is made of three aluminum blades with a length of 70 
cm and the rotor diameter is 150 cm. The tower is made of a steel tube with a height of 
100 cm. The blades are controlled by a servomotor (Dynamixel-64T) through a me-
chanical linkage that allows the blade pitch angles varying from 0° to 20°. The yaw is 
controlled by the same type of servomotor through a mechanical gear system and the 
yaw is allowed to rotate from  −40° to 40°. The ranges of the servomotors correspond 
to the physical constraints A imposed on the control inputs 𝒙𝒙𝑙𝑙 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑢𝑢. An AC gen-
erator is used to convert the mechanical energy into electrical energy.  The wind tur-
bines are arranged as shown in Figure 12 with the longitudinal separation of 7D and a 

Bayesian Ascent (BA) algorithm  
Choose 𝒙𝒙1 and 𝝉𝝉1(initial trust region size) and observe 𝑦𝑦1 
Repeat until convergence, 𝑛𝑛 = 1, 2, 3 … 
Learning Phase: 
    1) Optimize the hyper parameters 
         𝜽𝜽∗ = arg max𝜃𝜃 log𝑝𝑝 (𝒚𝒚1:𝑛𝑛|𝒙𝒙1:𝑛𝑛,𝜽𝜽)            
    2) Construct a GP regression to approximate 𝑓𝑓(𝒙𝒙) 
            𝜇𝜇(𝒙𝒙|𝑫𝑫𝑛𝑛) = 𝒌𝒌𝑇𝑇(𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈)−1𝒚𝒚1:𝑛𝑛 
         𝜎𝜎 

2(𝒙𝒙|𝑫𝑫𝑛𝑛) = 𝑘𝑘(𝒙𝒙,𝒙𝒙) − 𝒌𝒌𝑇𝑇(𝐊𝐊+ 𝜎𝜎𝜖𝜖2𝐈𝐈)−1𝒌𝒌 
Optimization Phase: 
    3) Select the next input by solving  
      𝒙𝒙𝑛𝑛+1  =  arg max𝑚𝑚∈𝑨𝑨∩𝑻𝑻 E[max{0,𝑓𝑓(𝒙𝒙) − 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚} |𝑫𝑫𝑛𝑛] 
      where  𝑨𝑨 ∶= {𝒙𝒙| 𝒙𝒙𝑙𝑙 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑢𝑢} 
                           𝑻𝑻 ∶= {𝒙𝒙| ‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑎𝑎𝑚𝑚‖ < 𝜏𝜏𝑖𝑖𝑛𝑛  for  𝑖𝑖 = 1, … ,𝑚𝑚}  
Observation Phase:   
    4) Execute 𝒙𝒙𝑛𝑛+1and observe output 𝑦𝑦𝑛𝑛+1 
        Append the data 𝑫𝑫𝑛𝑛+1 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)| 𝑖𝑖 = 1, … ,𝑛𝑛 + 1} 
    5) Update the size of trust region 
        if   𝑦𝑦𝑛𝑛+1 − 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 ≥ 𝛾𝛾(1 𝑛𝑛⁄ )(𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑦𝑦1) then 
            𝝉𝝉𝑛𝑛+1 = 𝛽𝛽𝝉𝝉𝑛𝑛, (𝛽𝛽 > 1) 
       else 
            𝝉𝝉𝑛𝑛+1 = 𝝉𝝉1  
       end if 

 
Fig. 10. Bayesian Ascent (BA) Algorithm 
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lateral separation of 3m.  A constant wind speed is set at 4 m/s (measured at a distance 
of 32 m from the front of the test section). 

Three sets of experiments are conducted to assess the performance of the cooperative 
control of wind turbines using the BA algorithm.  First, we measure the maximum 
freestream power 𝐺𝐺𝑖𝑖𝐹𝐹 of a wind turbine 𝑖𝑖 that can be produced at its location when it 
operates alone and without wake interference from other wind turbines.  From the 
measurements, the absolute maximum power for all 6 wind turbines can be computed 
as 𝐺𝐺𝐹𝐹 = ∑ 𝐺𝐺𝑖𝑖𝐹𝐹6𝑖𝑖=1 .  Second, for comparison, we measure the maximum power 𝐺𝐺𝑖𝑖𝐺𝐺 of a 
wind turbine 𝑖𝑖 that can be produced at its location when the upstream wind turbines are 
producing their maximum powers. For this greedy strategy, the wind farm power effi-
ciency relative to the absolute maximum power from the freestream measurements can 
be computed as ∑ 𝐺𝐺𝑖𝑖𝐺𝐺6𝑖𝑖=1 𝐺𝐺𝐹𝐹⁄ .  Finally, the third experiment is conducted to measure the 

 
Fig. 11. Experimental design of the scaled wind turbine 
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Fig. 12. Experimental set up for the 6 scaled wind turbines in a wind tunnel 
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maximum power 𝐺𝐺𝑖𝑖𝐶𝐶of wind turbine 𝑖𝑖 that is produced at its location when executing 
the BA algorithm for the cooperative strategy.  Starting from the configuration obtained 
from the greedy control, the BA algorithm is applied to coordinate the actions of the 
wind turbines as an attempt to maximize the total wind farm power.  The wind farm 
power efficiency for the cooperative control strategy is then computed as ∑ 𝐺𝐺𝑖𝑖𝐶𝐶6𝑖𝑖=1 𝐺𝐺𝐹𝐹⁄ .  

During the test, the blade pitch angle and the yaw offset angle of WT 6 located at 
the end of the wind tunnel is fixed in its position. In total, 10 input control variables, 
the yaw and the blade pitch (servo) angles for wind turbines WT1~5, are optimized by 
the BA algorithm.  As shown in Figure 13, significant gain in the total power production 
can be observed and the maximum gain is obtained in about 20 iterations.  It can be 
seen that the power productions by the two upstream wind turbines WT 1 and WT 2 
initially are near the maximum free stream powers.  During the execution of the BA 
algorithm, these two wind turbines offset their yaw angles the most so that the power 
productions of the downstream wind turbines increase, and thereby maximize the total 
power production increase. It is also interesting to note that WT 1 and WT 3 offset their 
yaw angles in clockwise direction while WT 2 and WT 4 offset in counter-clockwise 
direction such that the wakes are diverted away from the downstream wind turbines.  

4 Summary and Discussion 

Data-driven machine learning has been an active area of research and has been success-
fully applied in business, medical, engineering and many other domains. As engineer-
ing systems are inherently complex, dynamic, and uncertain,  and the data observed in 
a physical environment is often noisy, probabilistic-based Bayesian learning can play 
an important role in developing machine learning models.  The uncertainties estimated 

Fig. 13. Experimental results from executing BA algorithm for cooperative control 
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with the learned models can provide valuable insights about the system or problem of 
interest and help decision making.  This paper reviews two Bayesian-based approaches, 
namely Gaussian Process Regression and Bayesian Optimization, and demonstrates 
their potential applications for system characterization, diagnostic analysis and control 
optimization and their implementation with physical engineering systems.  

The use of a non-parametric regression model, namely Gaussian Process Regression 
(GPR), allows the complex relationship between the input features and the target value 
of the system of interest to be modelled.  In this paper, we discuss the use of GPR to 
develop predictive energy consumption model and predictive tool condition diagnostic 
model of a milling machine tool.  In constructing predictive models useful for practical 
implementation, it is important to select meaningful features appropriate for the prob-
lem of interest.   

• To establish the predictive power consumption model for the milling machine, we 
combine the information collected from a milling machine controller and the power 
meter.  GP is then employed to model the relationship between the input machining 
parameters and output energy consumption and constructs a prediction function for 
the energy consumption with confidence bounds. It is important to note that the raw 
time series data are first transformed into meaningful features that are related to the 
numerical control (NC) code for the milling operations [32].   The GPR models can 
thus be used to analyze the milling operations as described with NC code and to 
determine optimal tool path for machining a part [13,14].   

• When establishing the predictive tool condition diagnostic model, sensor (vibration 
and sound) data that are relevant to understand the tool conditions are collected.  The 
time series data are pre-processed using the Welch’s method that results in smoother 
power spectrum. Furthermore, the transformation from time series of an arbitrary 
length data to the frequency domain produces the data sets with specific number of 
points and reduces the dimension significantly.  The GP model provides confidence 
bounds for the predictive estimations which can be useful in a practical application 
where the tool-condition predictions are used to determine when to change machine 
tools.   

For both illustrative case examples, the GPR models are trained with relatively small 
number of experimental training data sets but the learned model is able to give reason-
able predictive estimation quantified with uncertainty measures. As more data become 
available, the GPR models and their prediction capabilities should improve.  On the 
other hand, one of the drawbacks of the GP, in the form that is described in this paper, 
is that it uses the whole set of samples or features information to perform the prediction.  
When the size of training data is large, approximated methods for training and predic-
tion to reduce the computational and storage requirements may be necessary [44-47].   

For control optimization, we discuss the Bayesian Ascent (BA) algorithm that opti-
mizes a target system using limited amount of data [25]. The BA algorithm builds upon 
the Bayesian optimization framework but augmented with a trust region constraint.  
During the learning phase, the input and output relationship of a target system is mod-
elled using Gaussian Process (GP) regression. At each iterative step, the algorithm ex-
ploits the constructed GP model function and determines the next sampling point that 
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can best increase the expected improvement. The trust region constraint ensures that 
the next input is selected from the region near the best input observed so far. Further-
more, the BA algorithm is able to increase a target value incrementally with gradual 
changes in the input actions.  To illustrate applicability to physical problems, the BA 
algorithm is employed to the wind farm power maximization problem using only input 
(control actions) and output (wind farm power production) data. The experimental re-
sults show that the BA algorithm is able to increase the total power production by grad-
ually changing the control actions of the wind turbines. Without explicitly constructing 
the objective function, the BA algorithm is able to optimize the operations of a complex 
physical system using only the measurement data from the system. 

While this paper focuses the discussion on the Gaussian Process Regression and 
Bayesian Optimization, there exist a broad range of machine learning techniques.  It 
should be noted that selection of an appropriate machine learning technique is problem 
and data dependent and would require judicious engineering knowledge of the problem 
involved.  As computing and sensing technologies advance, the scope of machine learn-
ing tasks will continue to grow.  There is no doubt that we will continue to see the 
impacts of data-driven machine learning in engineering for years to come. 
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