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Abstract. This presentation discusses the potential use of machine learning tech-
niques to build datdriven models to characterize an engineering system for per-
formance assessment, diagnostic analysis and control optimization. Focusing o
the Gaussian Process modeling approach, engineering applications on construct-
ing predictive models for energy consumptemnalysis and tool conditianoni-

toring of a milling machine todrepresented. Furthermore, a cooperatioe-

trol optimizationapproach for maximizing wind farm power production by com-
bining Gaussian Process modeling with Baye€latimization isdiscussed
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1 Introduction

The last decade has sesrincreasing number of research and applicatiomsawhine
learning[1]. As sensor technologies, data acquisition systemsdatahnalyticscon-
tinue to improvecompaniesan noweffectively and efficiently collect large, rapid,
and diverse volumes dfata andyjet valuable insights from tltata. The availability of
large volume of data has given strong impetus to-didt@n decision makinglrhere
have been a growing interest in applying machine learning technamdeswinsights
gained from the datia engineering2]. These datalriven approaches are able to find
highly complex and ncfinear patterns in data of different types and tramstheraw
datainto usefulmodels For instance, in the manufacturing domain, machine learning
techniques have been applfed prediction[3,4], detection and classificatidB,6], or
forecastind7] for problems of specific interests.

Engineeringsystemsare inherentlydynamic, uncertain, and compleXajority of
machine learningechniques provide point @dictions thatlo not usuallyconsidemun-
certainties in the models. As prediction and forecasting of futureegoesces carry
many unknowns and uncertaintiegradiction modeshould providesomequantifica-
tion of urcertainty for informed decisiomaking [8,9,10] In this paper, we discuss
methods that are based on Bayesian statistic irderand illustrate thepotentialap-
plications for performance characterization, condition diagnosticamitol optimiza-
tion of physical systems.
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Gaussian Proes Regression GPR) is one popular approach thatovides confi-
dence bounds and distribution for predictive estiomatBoth features arealuable in
establising the foundation for uncertainty quantification anay$Vithout predefining
thebasis functios, the nonparametric GPR has been widely used for approximating a
target function that represents the complex input and output reldpsrizsed on the
observed data and predicts a target output guigmtifieduncertainty{11]. Note that
GPR can also be used for ddigation by converting the regssion output to class
probability[12]. Due to its ability to quantify uncertainty in the preilie model, GPR
has received increased attention in the mael@aming community. The GPR algo-
rithm has bee applied to many fields, including manufacturing, robotics, music ren-
dering, and otherslB-16]. In this paper, we discuss the use of GPR for system char-
acterization and diagnostics, using a manufacturitigngimachine tool as illustrative
testbedappication.

Machine learning has been broaden from building predictive and forerastidels
to supporting optimization and decision making probletrd. [ For manycomplex
physical systems, construngithe analytical model and the objective functiondpti-
mal dedsion making can be difficult. One alternative would beestablish a model
usingthe data collected from the physical systeindatadriven approach would in-
volve using thesampleddata to construct the model while searching for the optimal
value that maximizes the objectit@rgetfunctionat the same timeFor implementa-
tion in a physical environment, the number of sampled trials sheukept to a mini-
mum as each trial would likely involve the execution of some physical actisirsy
Gausian Process (GP) as a way to approximate the target function, Bayesiair Op
zation (BO) has been shown effective in finding the optimialesaofa targefunction
with a small number of sampled triald8]. For efficient sampling, BO uses an acqui-
sition function that takes advantagkthe estimated probability distribution of the-ta
get function so that the number of function evaluat{@es executions of the physical
actions)is kept small. In other wordBO algorithm iteratively approximates the input
and the output relatiahip of a target system using Gaussian ProcessrégRission
andutilizes an acquisition function withe learned model to determine thal inputs
thatcan potentiallimprove the target valu¢$8-20]. Bayesian optinzation has been
applied to problems such as the maltined bandit problems and sensor netw{i2i-

24]. When implementing with a physical system, the trial astiare typically con-
strained by the physical limitation of the systeRurthermore, it mayat be desirable

to imposeabrupt changes in successive actions. We propose a Bayesian Ascent algo-
rithm which augments BO with trust region constraints to ensuressigeections do

not deviate significantly and to avoid abrupt changék [n this paperwe use the total
power productiomf a wind farm with multiple wind turbines as an illatve example

for the execution of the datlriven Bayesiaf\scentmethod.

The purposeof this paper is to illustrate thpotentialapplicationsand implementa-
tions of Bayesiarbasedmachine learningpproachn engineeringsystem including
performance characterization, condition diagnostics and contiplipation. The pa-
per is organized as follows: Section 2 provides a brief ghtiger of the Gaussian
Proces Regression method with illustrative examples involving the developmeant of
energy prediction model and a tool condition diagnostic model for a milling machine
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tool. Section 3 discusses Bayesian Optimization and itgtiadofor the wind farm
power praluction problem. Section 4 summarizes the paper with a brifsion.

2 System Char acterization and Diagnosiswith GPR

This section discusses the use of input and output data of a systematterire the
performance of the system and to perform diatjn@nalysis.Specifically, Gaussian
Process Regression (GPR) is employed to build predictive models foy gresfor-
mance and tool conditions of a milling machine tool. Prior tortirihg process, the
raw data collected are ppeocessed to extrafgatures that are deemed useful for the
constructiorand executiomf the predictive models. Using the feature data as training
data points, GPR then approximagetarget functiothatrepresents thimput and out-
put relationships without prefieing a set of basis functions. Given a new input, the
approximated target function is then used to predictatget output with uncertainty
guantification.One desirable property of a GPR model is its abilityapturecomplex
input and output relationshipgith a small number of hypgrarameters Moreover a
GPR model can be trained with relatively small number of iaxyeatal training data
sets butis able to givereasonable predictive estimation quantified with uncertainty
measures.

2.1 Gaussian Process Regression (GPR)

Given a data sdd™ = {(x%,y")|i = 1, ..., n} with n sampleswherex'™ = (x!, ..., x™)
andy'™ = (y1, ...,y™) denote respectively,the inputs and the corresponding (possi-
bly noisy) output observatiorts thetarget function valueg*™ = (f(xl), ...,f(x”)),
Gaussian Process RegressiGPR construcs a posterior distributiop (f™¢"|D™) on
the function valug™" = f(x™") corresponding to an unseen inptif”. The pre-
diction is given as a probability distribution rathiean a point estimate. The probabil-
ity distribution enableguantifying uncertainty in the target value. A detaitiegcrip-
tion of GPR can be found [ti1,12]. The following summarize the basic stepstfain-

ing a GPR model and performing prediction using the trained GPR model

Gaussian Process Prior on Target Function Values. GPR usesGaussian Process
(GP) as a prior to describe the distribution on the target fun¢ifan. GP is defined as
a collection of random variables, any finite number of which is assumed tanbe joi
Gaussian distributedlhe distribution ovethe targetfunction f(x) can be fully de-
scribedby its mean functiom(x) = E[f(x)] and a kernefunctionk(x, x") that ap-
proximates the covarian®& (f (x) — m(x))(f (x") — m(x"))]. That s, the prior on the
function values is represented as:

p(f'™) = GP(m(), k() D

where m(-) is a mean function capturing the overall trenchtarget function value,
andk(-,) is a kernel function uskto approximate the covariandene kernel (covari-
ance) function represents a geometrical distance measure assuming thatehe mor
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closely located inputs would be more correlated in terms offtlmgstion values.

Defining Covariance (Kernal) Function. In GPR, the kernel (covariance) function
describes the structure of the target funct®dnvide variety of kernel functionkave

been proposednd described in the literatufg2,26. The covariancé&ernel function
provides an efficient method to estimate the correlation bettiwaeimput feature vec-

tors x' andx’. The type of kernel function chosen can strongly affect the representa-
bility of the GPR model, and influence the accuracy of the predict@ms.common
choice for a GPR model ik stationary and (infinitely) differentiableuared expo-
nential (SE) kernel:

ksg(x', x7) = o2exp (_Zi)\z [l — xjHZ)' @)

where the kernel function is described by the hyperparametarsjA. The hyperpa-
rameterd is commonly referred to as the length scale. The lengtle spadntifies
whether two points at a certain distance apart in the input space are cahsidsee
together. The signal varianeg guantifies the overall magnitude of the covariance
value. While the SE kernel function is a good choice for many apiolisfor a feature
vector with multiple variables (or dimensions), it do®t allow the length scale to vary
for each dimension in the feature vector. A comrab@rnativeis to use amutomatic
relevance determination (ARD) kernel, which assigns a diffentlength scale to each
dimension.The ARD squared exponenti@ARD-SE) kerne| which is essentially a
product of the SE kernels over different dimensions, can bessegres

karp-se(x',27) = a%exp (—% (x' — x/)"diag() 7> (x' — xj))- ®)

An ARD-SE kernel provides the flexibility to adjust the relevance (weight) di eac
parameter in the feature vect@here he parameter vectdr= (1, ... 4;, ..., A,,) is re-
ferred to as the characteristic length scales that quantifglignancy of the input fea-
tures inxt = (xi, ... x}, ..., x5, ), wheremdefines the number of input variables, for pre-
dicting the responsg. A large length scalg; indicates weak relevance for the corre-
sponding input feature‘and vice versa.

Other kernel functions such as linear, periodic, Matern kerrelg £2,26,27. New
kernel function can be constructed by combining kefunattionsvia, for exampls,
addition andmultiplication of the kernel functiond.2,26]. The kernel function pro-
duces a positive serdefinite symmetric kernel matrik whose(i, j)th entry isK;; =
k(xt, x7).

Defining Likelihood Function (Observation Model). The latent random variables
f1™ needs to be inferred from the observadigh™ = (y?, ...,y™). Each observefbr
responseyalue is assumed to contain some random r@djsguch thay’ = f(x*) +

et. Different likelihood functions can be used to model the random noise term. It is
common to assume that the noise tetmN'(0, 2) is independent and identically dis-
tributed Gaussiawith zero meanin which case the likelihood function ba&ces:

pYHIfE) = N(FH7, 0D (4)
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where the noise variancg?, quantifies the level of noise that exists indbhservations
The Gaussian likelihood function is used because it guarantees that the poaterior
also ke expressed as a Gaussian distribution.

Training the Regression Model (Optimizing Hyper-Parameters). Including the
noise model, the covariance function is parameddriz.e., defined) by the hype-
rameters jointly denoted W = (0., 0, 4).The maginal distribution of the observa-
tions(conditioned on the hypparametersgan beexpresseas:

p(y'™|0) = f p(YE|f1™, 0) p(f1)0) dftm (: N(0,K+ O'ezl)) (5)

Note thatsincethe GP prior and Gaussian likedibd function are used, the marginal
distribution is also Gaussian. One attractive prigpaf the GP model is that it provides
an analytical closed form expression for the marginalihibod of the data (with the
unknown latent functioif (x) being “marginalized” out). The marginal iigelihood
for thetraining data se@P™ = {(x!,y")|i = 1, ...,n} can be expressed Hs,12}

1
logp (y¥™0) = —E(yl’”)T(K+o* D~ 1y1"——log|K+o— I| ——logzn (6)

Thehypeparameter® = (a,, g, 1) for the noise model and the kernel function are de-
termined as ones maximizing the marginal-li@glihood of the training dat®™ =
{(x4,y)]i =1, ...,n}as[12]:

0 = argmax logp (y¥"|0)

T 2p) -1yt 1 2y 1 Y
= argmax (——(y1 MK+ gD~ 1yt — ElogIK + oZl| — Eloan)

As long as the kernel function is differentiable with respe its hypemparameter®,
the marginal likelihood can bdifferentiated and optimized by various -tife-shelf
mathematical programming topsuch assPML [28], scikit-learn R9], andothers

Constructing Posterior Predictive Distribution (Perdiction). Once the optimized
hypeparameters are obtaingtietrained GPR model idully characterized Let's de-
note a newly observed inputeY:
xnew — (xnew ."x}('le xrrrllew
The (hidden¥unction valuef (x™") for the new inpuk™" and the observed outputs
" = {y1, .., y"} follow a multivariate Gaussian distribution:

( [(K + 021) k ) ®)

k (xnew xTLeW)

[f(x”ew)] ~N



6 EG-ICE2018, 010, v1: 'Data Driven Analytics (Machine Learning) for System Characteri. ..

Machine FANUC

-p
Control Control

Information
mear e
rﬁv—f:—l‘“' HSPM
Phase Voltage Power
Phase Current Information

Fig. 1. A Mori Seiki NVD 1500DCG 2axismilling machine

wherek” = (k(x!,x"%),..., k(x™ x™*")). The posteriopredictivedistribution on
the responsg (x™") for the newly observed (and previously unseen) inf3éit given
the historical dat®™ = {(x*,y")|i = 1, ...,n} can then be expressed as@ Gaussian
distribution f(x™%)~N(u(x""|D™), a%(x™*|D™)) with the mean and variance
functions expressed, respectively, &%,13:

U |D™) = KT (K + 02D~y (©)
g2V |D™) = k(x"e, x"W) — kT (K + 021) "'k (10

Here,u(x""|D™) anda?(x™"|D™) can be used as the scoring functions for evaluat-
ing, respectively, the mean and variance of the hidden function qitgtft) corre-
sponding to the input dasde".

2.2 Characterizing Energy Consumption of a Milling Machine

Monitoring and optimizing energy efficiency of the manufacturing processebeha
come a priority in the manufacturing indusffis section discusses how a GB&sed
energy prediction model for a milj machineis establishedAn energy prediction
model carprovidea better understanding of walifferent operational strategiesay
influence the energy consumption pattern of a machine tookaable selection of
optimal strategyvith efficient operatins for machining a part.

Figure 1 shows the basic set up dflari Seiki NVD 1500DCG 3axismilling ma-
chine tool. The machining process data, such as process parameterscRéCarid
tool positions, are collected from the FANUC contnodlad the powetime series data
is collected using a High Speed Power Meter (HSPM). With recent technoladies a
standards, such as MTConn¢80], it is now possible to track variations in energy
consumption by different machine operatif@]. The raw data collectkincludes the
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A - Spindle Speed Conventional Climb milling
B - Feed Rate
C - Length of Cut
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(a) Process parameters of a milling proce  (b) Cutting strategy
Fig. 2. Machiningprocess parameters

timestamptime series data fqgower consumptiorfeed rate andpindle speed, and
numerical controlN|C) code information. The raw data is then posicessed to derive
the information such as average feed rate, average spindle speed tigcaneumiargy
consumption, volume of material removed, depth of cut and cutting strategy for each
NC code blockThe hardware platform, the data acquisition system, the experimental
design, and the data processing techniques have been describ@ildibyiBhinge et
al. [32].

In the example presented herein, the input process parameters used are shown in
Figure 2. The input features employed are defined as follows:

x1 € R Feed rate: the velocity at which the tool is fed

X2 € R Spindle speed: rotational speed of the tool

x3€ R Depth of cut: depth of material that the tool is removing

x,€ {1, 2, 3, 4} Active cutting direction: (1 is fot-axis, 2 fory-axis, 3 forz-axis,
and 4 forx-y axes)

o xs€{1, 2, 3} Cutting strategy: the method for removing materias(fbr conven-
tional, 2 for climbing, and 3 for both)

Each operation, i.e. a feature data, refers to a single NC Bloelenergy consumption,
E € R, for each NC blocks obtained by numerically integrating the power tisegies
recrdedby the HSPMover the duration of thHC block. Additionally, the length of
the tool pathl € R, in a single NC block is computed using the lengths of cut in-the
, y- andz-directions. The output parametey, is defined as the energy consumptien p
unit length (i.ey® = E/1* for thei™ NC block operation).

For this examplethe data foatotal of 196 face milling experiments for machining
parts using the milling machirare collected.We choose to use all of the measured
input features, and define the input feature vectos {x, ... ,xs}. We assume that
the outpumeasurement = f(x) + e containmoisee ~ N (0, 52). The ARDSEker-
nel is used as the covariance function. Furthermore, we assume the nutian from
the prior (see Eg. (1)) to be a zero function.

The GPR model is used to generate energy density predigtidios a new set of
operating conditions®. Let D*"#" denote the training data set containing the input fea-
ture data ad the output parameter data. Each new prediftias represented by a
mean energy density functigrfx’| D) and associated standard deviation function
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Fig. 3. Predicted energy consumption density for generic tets pechined using
face milling. The operating parameters inclyegirection cut, 2,400 RPM spin-
dle speed, conventional cutting strategy, and 1mm cut depthh@iledarea
shows onestandard deviation bounds for the prediction.
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Fig. 4. Predicted mean energy consumption for face milling operations usgng th
GPRmodel. Results amompared to the actual energy consumption of the machine.

o(x!|Drn) We can then estimate the energy consumgifcand the corresponding
standard deviatio§* on the estimated energy consumption value as:

Fi = #(xi|Dtrain) X li (11)

St = o(xt|Drainy x [ (12)

Detais on developing the GPR model have been reportgt¥]nFigure 3 shows the
energy consumption predicted by &R model. As shown in Figurd, the GPR
model provides a good estimation of the energy consumption of the milling machine
on the test data se
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This example illustrates that¢é GARR modelscan be established talculate the
complex relationship between the input machining parameters and output emergy ¢
sumption, and construct a prediction function for the energy consumption with confi
dence bunds While thisexample useface milling as a demonstrative example, the
same technique has shown to be applicable to other milling opergitRin&urther-
more,since the input features are directly related to the NC code informatiooh(w
can ofterbe generated from a CAD mod#ie savedsPRmodel can be used to predict
energy consumption when machining a new part as wpheidetermine the best tool
path for machining a part with minimal eneldy,14]

2.3 Diagnosisof Tool Conditions

This sectiordescribes an application of GPR in developing a predictive modgdbr
condition diagnosticResearchers have previously demonstrated that the condition of
a machine tool can be inferred from features of the vibration and audio time series
[33,34,35] With the availability of low cost sensors, it is possible dttect real time
vibration and audio data from critical locations insid@eanufacturing machine tool.

As shown in Figure 5a waterproof sensor unit from Infinite Uptime, ligattached

to the vise of theMori Seiki NVD 1500DCG 3axis milling machine The sensor unit

is capable of measuring both the audio and triaadakleration signals inside the mill-

ing machineln the experimental set up, the acceleration signal is recordieexn y-
andz-direction with a sampling rate of 1000 Hz to capture the 200d#t@akgenerated

by the cutting tool when the spindle rate is set to 3000 RPM. The audio signal is rec-
orded at 8000 Hz. Data is streamed from the sensor to a laptgquter using ani-

versal Serial Bus (USB) connectioRigure 5(b) showthe time series data in the pro-
duction of a part that involveld climb-cutting operations and 1€onventional -cutting
operations. Each cutting operation is separated by adnriefitting operatiam (without
removing materials)n which the machine pauses briefly between cuts.

The milling machine was programmed to produce a number of simple parts by re-
moving material from a solid steel block until the cutting tool became severely dam
aged, or theutting tool broke. Tests were conducted using an Atrax solid carbide 4
flute square end mill, and a continuous supply of cooktiescribed previously, the
machining data, such as tool position and rotation speed, can be recordethdr
FANUC controler and streamed to a laptop computer, along with a timestamp. The
data is then pogirocessed to extract the behavior of the machine from the raw numer-
ical control (NC) code3?2).

In this work, we define theondition of the milling machin#ol y € [0,1], based
on the remaining lifetime of the tool, as estimated after manually examiningathe t
with a microscope. The scale is defined suchlladicates a new tool in perfect con-
dition, and0.5 indicates the condition at which the tool wouldrbplaced in a com-
mercial manufacturingperationas judged by a machine operatéigure 6 shows ex-
amples of different levels of tool wear condition.
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08 Labeled Acceleration Time Series e Labeled Audio Time Series

0.2

Acceleration [g]
Audio Intensity [Pa)
o
{=]

’ -0.1
“041 i cutting —— Air Cutting
—0.6] — Conventional Cutting =02 — conventional Cutting
—— Climb Cutting —— Climb Cutting
-0.8 -0.3
o 50 100 150 200 250 300 [*] 50 100 150 200 250 200

Time [s] Time [s]
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Fig. 5. Experimental Set Up for Tool Condition Diagnosis
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Fig. 6. Solid arbide end mill flute in different states of condition. A lower value
of y indicates higher tool wear condition
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Fig. 7. Periodograms recorded with a sharp tool and a worn to@ldtimb-cutting
operation

As the audio athvibration signals are periodic, it seems naturaktesiorm the time
series signals into power spectra in the frequeloegain. First, an attempt is made to
data[36,37,38. In Welch's method, a discrete time series signas divided intok
successive blocks,, using a window functiow:

smm) =wm)s(n+mR), n=0..M—1, m=0..K—1 (13)

whereM is the length of the window aritlis the window hop sizf87]. Furthermore,
we use the Hann window furioh to reduce the spectral leakage [37]

w(n)={ 0.5(1—cos(];7in1>) if n<M-1; (14)

0 otherwise.

The periodogram of thet" block isthencalculated using #1Fourier transform:

N-1 2

1 _i2nnk
Z sm(n)e” N

Pm(wy) = M
n=0

(15)

wherew is thek point in in the discretized frequency domaiime Welch estimate
of the power spectral density is given by:

1 K-1
3@ =7 ) Pnl@). (16)
m=0

TheWelch’s method essentially computes the average of periodograrss tore.
Each periodogram is obtained from a windowed segment of the tifae. darthisex-
ample casstudy, a window overlapf 50% is used andHann window length of 256
points is chosen for the vibration and audio signals. The length ofitldewis equal
to the number of intervals in the discretized frequency dorkégoires7(a) and )
show respectively the periodograms for sample accelemtidaudio signals produced
by a sharp and a worn toolclin beobserve that the signal amplitugeend to produce

11
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larger amplitude when the tool is worn.

In the tool condition model, we choose to use the periodograms as inpug¢dgeatur
which, as desdved, can be easily constructed in real time as data is coll&ttede-
note the vibration periodogra®) € R?%® and acoustic periodogray € R?5¢ for
each milling machine operation The condition of the milling tool tends thange
gradually under normal operation. For this reason, we choose to iribkigheevious
condition of the milling tool in the feature vectéidtogether, we denote the input fea-
tures for each milling operatiaras

i

(17

xt =

w W A

i
v
i
a
wherec! is the best estimate of the previous tool condition. Duringr#ieing proce-
dure, the previous tool condition is known,cs@an be set equal yg~:

1 fori=1,
y“=1  otherwise.

To make a new prediction using the scoring procedure, the feature x&tdirst
needs to be derived from the milling machine data. In a manufactuttimgyséhe vi-
bration and audio periodograrman be calculated immediately after each operation is
performed by the milling machine. However, the previous tool condition value
y=1, will not be known. Therefore, we use the previous tool condition prediction,

-~

91, in the scoring procedle, that is:

s

i —
Ctraining - {

; (1 fori=1,
Ctesting = $i-1  otherwise. (19)
This makes the prediction process recursive. The first piadlicst made by assuming
a new tool, i.eciz5n, = 1. All subsequent predictions are made using the previous

prediction as a starting point.

An ideal kernel for the tool condition model would allow the length scale of each
periodogram to be varied independently, without introducing a large number of addi-
tional hyperparametergvhen using the ARD squared exponential kernel, the number
of hyperparameters grows linearly with the dimenalsize of the feature vector, mak-
ing the model prone to overfitting9]. Instead, we choose to combine the SE kernels
for each data typed0]. The resultingsum of square exponential (SSE) kernel is defined
as follows:

. . . . . P2
kgsp (X', x7) = olexp (_Zi)\f [|ct - c’”z) + oZexp (—Zi)\% |35 — 87| )
) 1
+ o3exp <— 2—7%
whereag,, g,, 05,11, 4, and A5 are the parameters to be determined for the SSE kernel

function. Includingthe noise terna2, themodel with the SSE kernel function is de-
scribed by sevehyperparameter®, = [0y, 0,5, 03,41, 45,43, 0.]. When compared to

. - (20)
Ist 541" )
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Fig. 8. Tool condition prediction for three testingtd sets. Each plot represents a
test where the milling machine was run until the cuttoa became severely worn
or broken. The shaded region represents the 90% confidence intematifiopre-
diction.

the ARD-SE kernel, the SSE kernel has fewer hyperparameters, but still allows the
length scale of the previous state and periodograms to beeatlindependeht

We randomly select4 experiments for the training set aAgéxperiments for the
testing setTwo GP models are trained to predict tool conditioa;fitst is trained with
climb-cutting data from the training set, and the second is trained with oot
cutting data from the training set. The two models are thentagether to predict the
condition of the tool for each test cages shown inFigure8, even with a small number
of training data setshe predictive resultgive reasonablaccurag prediction for good
tool conditions. The figuralso reved that the confidence interval on the predicted
value is large when the tool is worn. There aressveasons for this: firstly, the tool
is more likely to break or undergo rapid conditionra at this stage; hence, there is
less certainty when predicting the condition of avilgavorn tool. Secondly, the train-
ing set contains less data for heavily worn tools, as some of the trstemded ab-
ruptly when the tool broke. The reduced amodrttaining data for heavily worn tools

13
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makes predictions less certain. Finally, the amplitudes of theeaatieh signal gener-
ated by heavily worn tools have a much larger variance. For examplginifla flute

on the tool is worn heavily, the tool is tonger symmetric so the corresponding accel-
eration signal will have a very high amplitude. On the ottand, if the tool is worn
evenly the corresponding acceleration signal may have a much smaller deaplitu
Many of these limitations may have beenaothated by the accelerated nature of the
tool wear experiment. It is important to note that tooldition would rarely be allowed

to pass below 50% in a real manufacturing setting. Once the tool exceeldsy¢hipf
wear, the surface quality of the pdrteriorates quicklyThis example illustrates the
potential use of GPR as a means for predictivedoontlition monitoring.

3 System Control Optimization

Thissectiondiscusses real time control of a physical system, for which the cormtruct
of the analsical model and the objective functiedifficult. The strategy is to itera-
tively select a series of trial input actions thatemtially gtimizethe objectivepbserve

the corresponding outputs, and learn about the unknown target function basethon the
puts andheoutputs.One important consideration for control of a physical system using
a datadriven approach is to ensutatthe number of trials ikeptsmall as a trial would
involve execution of corresponding control actions. Utilizing GPRegtblish a
learned model based on the input trials and output measureBaygsjan Optimiza-
tion (BO) has been found effective in optimiziagarget function using a small number
of trials. To illustrate, we discuss an application of BO to méazénthepower produc-
tion of a wind farm with multiple wind turbines in an experimental winesh&listudy.

3.1 Bayesian Optimization

Bayesian Optimizatio(BO) algorithm iteratively approximates the input and the out-
put relatioship of a target system using Gaus&ancess (GRegression and uses the
learned model to determine thii@al inputs thatan potentiallymprove the target values
[18,19,20] Following the GPR procedure described in the previous sedéantex =
(xy, ..., xn) @s theminput control actions and lgt(x) be the unknown target function
for the output measuremeyinferred byx. The output measurement= f(x) + ¢, is
assumed to include noigewhich follows a Gaussian distribution, i.exV'(0,02)
[18,19,20] At the nth iteration, using the historicalnputoutput data D™ =
{(xtyh), o, (D), ., (2™, y™)}, wherext = (xf, ..., x},) andy® represent, respec-
tively, the inputactions and the corresponding output measuremehé &h iteration,
BO attempts to improve the target function by executing three basic steps:

e Learning: model the unknown target functjfx) using Gaussian Process (GP) re-

gression.
e Optimization: select the next trial inpat*?! that is usefulfor increasing (exploita-
tion) and learning (exploration) the objective function

f@~N (u(x|D™), 0*(x|D™)).
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Fig. 9. Acquisition functionincorporating exploration ancgloitation

e Observation: execute the selected actidhid and obtain the corresponding output
y™*+1 from the target system.

The new input and output pajr™*?, y™*1) will then be used to update the regression
model for the target functiofi(x) in the next iterationThe key of the BO algorithm lies

in the optimization step for selecting a trial action to improve towards the optimallcontro
actions.

As discussed, GPR is an effective method to establish -parametric regression
modeltarget functiorf (x) to represent the complex inpoitput relationship of a sys-
tem. The model is defined by mean functioru(x|D™) and a variance function
a?(x|D™) obtained from the GP regressitssing the GPR model, the goal iss&lect
the next inpuk™** in order tolearn more about the target function as well asne
prove the target value at the satime. Thestrategy would be to select the next input
by exploiting the currerielief about the target systday maximizingthecurrentmean
functionu(x|D™) as well as exploringhe uncertainty (variance) around the selected
input by maximizingthe variance function?(x|D™). In general, the next sampling
inputis selected as the one that maximizes an acquisition dmntttat incorporates
both the aspects of exploration and exploitatisrillustrated as shown in Figurel@®
this study, we select the next input*! based on maximizing the expected improve-
ment (EI) acquisition function 441]:

n+1 _ a __ fmax n
x = arg max El(x) £ arg max. E[max{0, f (x) — f™**} |D"] (22)

Here,A := {x| x* < x < x*} defines the ranges of allowable valuestfa action,
T :={x]| |lx; — x"**|| < t; for i =1,...,m} is a trust region used tgestrict the
change ofactions,andf ™% = max,e,1my u(x|D™) is the maximumarget function
value estimated in the (curremth iteration. The ranges for system constraiAtsle-
fine the limits of trial actions allowed by the physicalteys. For a physical system,

15
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abruptly changing the control actions may not be desirablestrust regionT is im-
posed as a proximity constraimt, that limits the range of change allowable for the
actionsfor each iterative stepVe call the BO algorithm with the trust region constraint
Bayesian Ascent (BA) method, in that the algorittothofvs the ascending direction
estimated probabilistically from a sequence of observafsis

The quantitymax{0, f (x) — f™*} denotes the improvement toward the maximum
outputf (x) with respect to the estimated maximum function vélti&*. Here we use
™ instead of the actually observed maximum resp@fis€ because the measure-
ment valuey™** may have large noise thebuld interfere with the sampling proce-
dure. Given the estimatgd™®*, thevalue ofthe expected improvemeiii(x) can be
analytically derived using the distribution of ttaegget functiorf (x) atx [41]:

() = frN)e(2) + a(x)p(Z) if a(x) >0

0 ifo(x) =0 )

El(x) ={

where¢(-) and @(-) denote, respectivelyhe probability and cumulative distribution

_ smax
functions, andZ = £~
o(x)

Figure 10 summarizes the Bayesian Ascent algorithm [J23he observation phase,
the selected actione**! are executed and the corresponding output measumte
y™*1is observed. The collected new data péiftt!,y™+1) is thenusedto update
the regression model for the target functf@) in the learning phase of the next iter-
ation. Additionally, depending on the improvement in the &rgalue the size of the
trust region is adjusted to expedite the rate of convergéhttee observed increase
(y™t1 — fmaxy petweerthe measured outpyf*t! andthe previously estimated max-
imum target valug™**is larger than a ctin thresholdsay,y (1/n)(f™** — y1)),
the trust region is expandes t"*! = g™, with § > 1, in an attempto expedite the
conwergence rateOtherwise, the trust regida reset ag™*! = 1! (the size of initial
trust regon). In our studywe usey = 0.05 andf = 1.1 and set the initial trust region
7! to be1~10% of the input range for each input component. Imposing a trust region
and adjusting its size are to ensure monotonic increase in the target valuadarad gr
convergence to an optimum with high probability

3.2 Cooperative Maximization of Wind Farm Power Production

This section discussem application of the BA algorithm for finding the optimum co-
ordinated control actions using orihe measurement data obsenied physical sys-

tem. In a wind farm with multiple wind turbines, wakes formed byubstream wind
turbines can decrease the attacking wind speed and, thus, the powerignoafutte
downstream wind turbines. Typically, each wind turbine would indemehydzdjust

its yaw and blades to maximize its power productigthout taking into consideration

of the power production of other wind turbines; we refer tois-cooperativejnde-
pendentactionsasa greedystrategy On the other handhe cooperative ofimization
strategy would béo adjust the yaws and the blades of the wind turbines such that the
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Bayesian Ascent (BA) algorithm
Choosex! andz!(initial trust region size) and obseryé
Repeat until convergence,n =1,2,3 ...
Learning Phase:
1) Optimize the hyper parameters
0* = arg maxg logp (y¥"|x'™, 9)
2) Construct a GP geession to approximaje(x)
p(x|D™) = kT (K + oZD 7 tyt"
o?(x|D™) = k(x,x) — kT (K+ 62Dk
Optimization Phase:
3) Select the next input by solving
a1 = argmax,eanr E[max{0, f (x) — ™} |D"]
where 4 :={x]| x! < x < a*}
T :={x]| ||x; —x™*|| <1} for i =1,..,m}
Observation Phase:
4) Executex™*1and observe outpyt*+!
Append the dat®™** = {(x},y)|i=1,..,n+ 1}
5) Update the size of trust region
if yn+1 — fmax > y(l/n)(fmax — yl) then
T+l = ﬁ‘l’n, (ﬁ > 1)
else
T
end if

n+l — 41

Fig. 10. Bayesian Ascent (BA) Algorithm

total wind farm power production is maximized. The solution for the coopelgtive
timization problem involves the development of an analytical wind farmepéumc-
tionwhich isderived from physical principleempirical observations and experimental
calibrationg42]. Here, we emplothe BA algorithm for the cooperative control opti-
mization problem using the yaw and blade angles of the wind turbinte agput
control actionsx and the total power output collected from the wind turbinethes
output measurement

A wind tunnel experiment with 6 scaled wind turbireesonducted at the KOCED’s
Wind Tunnellocated at Chonbuk National University in Koifg&]. As shown in Fig-
ure 11, he scaled wind turbinis made of three aluminuisiades with a length of 70
cm and theotor diameter is 150 cm. The tower is made of a steel tubeavtieight of
100 cm. The bladesre controlled by a servomotor (Dynamié@T) through a me-
chanical linkage that allowthe blade pitch angles varying frddfito 20°. The yaw is
controlled by the same type of servomotaptiyh a mechanical gear system and the
yaw is allowed to rotate from-40° to 40°. The ranges of the servomotamrespond
to the physical constraistA imposedon the control inputs < x < x*. An AC gen-
erator is used to convert the mechanical energy into electrical energy. fichéuwi
bines ae arranged as shown in Figur2with the longitudinal separation oD7and a

17
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Fig. 12. Experimental set up for the 6 scaled wind turbines in a wind tunne

lateral separation of@ A constant wind speasd set a#l nVs (measured at a distance
of 32mfrom the front of the test section).

Three sets of experiments are conducted to assess the performanceopérative
control of wind turbines using the BA algorithm. First, we measure thémue
freestream powek/” of a wind turbinei that can be produced at its location when it
operates alonand withoutwake interferencdrom other wind turbinesFrom the
measurementshé absolute maximum power for all 6 wind turbines can be computed
asPf = Y% Pf. Secondfor comparison, we measure the maximum paifeof a
wind turbinei that can be produced at its location when the upstream wind turbénes ar
producing their maximum powerSor this greedy strategyhe wind farm power effi-
ciencyrelative to the absolute maximum power from the freestream nesasnts can
becomputedasy?_, P /PF. Finally, the third experiment is conducted to measure the
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Fig. 13. Experimental results from egeting BA algorithm for cooperative control

maximum powePf of wind turbinei that is produced at it®¢ationwhen executing
the BA algorithm fothe cooperativetrategy Starting from the configuration obtained
from the greedy control, the BA algorithm is applied to coordinate the adfahs
wind turbines as an attempt to maximize the total winoch fpaower. The wind farm
power efficiency for the cooperative control strategy is t@mputed ag¢_, P /PF.
During the test, the blade pitch angle and the yaw offset angle of Wdatd at
the end of the wind tunné fixed in its position. In total, 1put control variables,
theyaw and the blade pitch (servo) angles for wimthines WT1~5, are optimized by
the BA algorithm. A& shown in Figuré3, significant gain in the total paw production
can be observed and the maximum gain is obtained in about 20 iterdti@as be
seen that the power productions by the two upstream wind turbines WT 1 a@d WT
initially are neathe maximum free stream powers. During the execution of the BA
algorithm, hese two wind turbines offset their yaw angles the most so that the power
productions of the downstream wind turbiesrease, anthereby maximizéhe ptal
power production increask.is alsointeresting to note that WT 1 and WT 3 offset their
yaw angles in clockwise direction while WT 2 and WT 4 offset in cowritmkwise
direction such that the wakes are diverted away fronddlanstream wind turbines.

4  Summary and Discussion

Datadrivenmachine learning has been an active area of research and has been success-
fully applied inbusiness, medical, engineering and many other demasengineer-
ing systers areinherentlycomplex, dynamic, andncertain and thedaa observed in
a physicalenvironmenis oftennoisy, probabilisticbased Bayesialearningcan play
an important role in developing machine learmmgdek. The uncertaintiesstimated
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with the learned modgkanprovidevaluable insights about thsystemor problem of
interest and helpatision making This papereviewstwo Bayesiarbased approaches,
namely Gaussian Process Regiliessand Bayesian Optimizatipmnd demonstrates
their potential applicationfor system baracterization, diagnostic agsis and control
optimizationandtheir imdementation wittphysical engineering systems.

The use of a neparametric regression model, namely Gaussian Pr&@ggession
(GPR), allows the complex relationship between the input featuddhetarget value
of the system of interest be modelled.In this paper, @ discusshe use ofGPRto
developpredictve energy consumption model and predictive wmiditiondiagnostic
modelof amilling machine tool.In constructing predictive models useful for practical
implementationit is important to selct meaningful features appraoge for the prob-
lem of interest

e To establish th@redictivepower consumption model for the milling machine w
combinethe informatiorcollectedfrom a milling machine controlleand the power
meter GPis then employed to mod#ierelationship betweerhé input machining
parameters and output energy consumption and constructs a prefliaigtion for
the energy consumption with confidence boutids.important to note thahé raw
time series data af@st transformed into meaningfégatureshatarerelated tahe
numerical control (NC) code for thmeilling operationg32]. The GPRmodels can
thus be used to analgthe milling operationsas described with NC coded to
determine optimatiool pathfor machining gpart[13,14]

e When establishing thgredictive toolconditiondiagnostic modelsenso(vibration
and soundylata that are relevant to understand the tool conditiensodlected.The
time series data are ppeocessedising the Welcts methodthat results irsmoother
power spectrun. Furthermore, the transformation from time seriesroémbitrary
lengthdatato the frequency domain produces the data sets with specific nofbe
points and reduces tlimensiorsignificantly. The GPmodel provides confidence
bounds for the predictive estimatiowhich can baisdul in a practical application
where the toetondition predictionsreused to determine when to change machine
tools.

For both illustrative case exampléise GPR moded aretrained with relatively small
number of experimental training data sets but the learned nscalgke to givereason-
able predictive estimation quantified with uncertaimeasuresis more data become
available, the GPR models and their prediction capabilities should improveheOn t
other handone of the drawbacks of the GiR the form that is described in this paper,
is thatit uses the whole set of samples otdess information to perform the prediction.
When thesize of training data is large, approximated methods for mguand predic-
tion to reduce the computational and storage requiresnesaybe necessari4-47).

For control optimizationwe discusshe Bayesian Ascent (BA) algorithm that opti-
mizes a target sysin using limited amount of data [23he BA algorithm builds upon
the Bayesian optimization framework but augmented with a trust region constraint.
During the learning phase, the input and output relationship ofet tsystem is mod-
elled wsing Gaussian Process (GP) regressirach iterative step, the algorithm ex-
ploits the constructed GP model function addtermines the next sampling point that
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can best increase the expected improvement. The trust region corestmiet that
the next input is selected from the region near the best input observedRatfaer-
more, theBA algorithmis able to increase a target value incrementally with gdadu
changes in theput actions To illustrate applicability to physical problems, the BA
algorithm is employed to the wind farm power maximization problenguanly input
(control actions) and output (wind farm power production) dete. experimental re-
sults show that the BA algorithm is able to increasédts power production by grad-
ually changing the control actions of the wind turbines. Without edplmbnstructing
the objective functiorthe BA algorithm is able to optimizbe operations of a complex
physical system using only the measurement data from the system.

While this paper focuses the discussion on the Gaussian ProcesssiRagaesl
Bayesian Optimization, there exist a broad rangmac¢hine learningechniques. It
should be noted thagkection of an appropriate machine learning technisjpeoblem
and data dependent and would require judicious engineeringdaysdf the problem
involved. As computing and sensing technologdsancethe scope of machine learn-
ing taskswill continue to grow. There is no doubt tha will continue to see the
impacts ofdatadriven machine learning in engineering for years to come.
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