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ABSTRACT 
The application of machine learning 

techniques in the manufacturing sector provides 
opportunities for increased production efficiency 
and product quality. In this paper, we describe how 
audio and vibration data from a sensor unit can be 
combined with machine controller data to predict 
the condition of a milling tool. Emphasis is placed 
on the generalizability of the method to a range of 
prediction tasks in a manufacturing setting. Time 
series, audio, and acceleration signals are 
collected from a Computer Numeric Control 
(CNC) milling machine and discretized into blocks. 
Fourier transformation is employed to create 
generic power spectrum feature vectors. A 
Gaussian Process Regression model is then trained 
to predict the condition of the milling tool from the 
feature vectors. We highlight that this multi-step 
procedure could be useful for a range of 
manufacturing applications where the frequency 
content of a signal is related to a value of interest.  

INTRODUCTION 
The application of modern machine learning 

techniques to manufacturing processes provides an 
opportunity to increase productivity and improve 
overall product quality in traditional 
manufacturing lines [1]. The adoption of predictive 
models within the industrial value chain is part of 
a larger transition often referred to as the industrial 
internet, which promises to bring substantially 
increased operational effectiveness as well as the 
development of entirely new business models, 
services, and products [2].  

In order to increase manufacturing productivity 
while reducing maintenance costs, it is crucial to 
develop more intelligent maintenance strategies, 
that can predict when maintenance should be 
performed [3].   Reliable tool-condition monitoring 
is likely to play an important role in the reactive 
maintenance strategies of future manufacturing 
facilities. 
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Numerous machine learning models have been 
proposed to optimize a range of tasks, from robotic 
control to machine failure detection [4,5]. One of 
the hurdles preventing adoption on a broader scale 
is that preprocessing raw data into relevant features 
is a subjective and difficult process [6]. In 
developing most machine learning models, a 
domain expert is given the task of carefully 
selecting a set of inputs, normally referred to as 
features, that yield optimum performance for the 
given prediction task. While such a technique has 
been considered the status quo for some time, 
recent progress in deep learning has demonstrated 
that automatic feature selection often yields 
superior performance than manual feature 
selection [7]. The recent popularization of Deep 
Recurrent Neural Networks provides a promising 
method of analyzing time series data [8]. However, 
the development of deep neural networks requires 
a large training dataset and tremendous 
computational power [9]. 

Researchers have previously demonstrated that 
the condition of a machine tool can be inferred 
from features of the vibration and audio signals 
[10,11]. A number of researchers have attempted 
to use the skew and kurtosis coefficients of the 
audio and acceleration time-series to predict the 
condition of the tool, but with mixed results [11–
13]. Bukkapatnam et al. developed a tool wear 
prediction technique using an artificial neural 
network (ANN) with features inspired by the 
principles of nonlinear dynamics [14]. Sanjay et al. 
developed a model for predicting tool flank wear 
using ANNs [15]. The feed rates, spindle speeds, 
torques, machining times, and thrust forces were 
used to train the ANN model. Wu et al. reviewed 
these methods and demonstrated an alternative 
approach using random forests with a set of 
manually selected features [3]. A wide range of 
tool monitoring techniques have been reviewed by 
Dimla et al [16]. They concluded that existing 
techniques perform well on carefully selected 
experimental data, but there is a need for a multi-
level system capable of handling unprocessed data. 

While the application of machine learning to 
continuous time series data brings about its own 
difficulties, there are several characteristics of 

manufacturing that make it a perfect match for 
machine learning. First, manufacturing tends to be 
a repetitive process, and hence the time series 
signals from manufacturing often tend to be 
repetitive. Second, faults in the manufacturing 
process are likely to produce a different signal, and 
can be identified by comparing the time series 
signal against that from an operational product line. 

In this paper, we outline a methodology for 
extracting information from a time series data 
source, with emphasis on generalizability. In this 
method, the time series signals are aggregated, 
transformed, and then classified.  In the first step, 
we break the time series into a series of blocks, 
using instructions from the machine controller. In 
the tool wear example, each block corresponds to a 
single cutting action of the milling machine. 
However, the method only requires that the blocks 
represent a signal from some repeated part of the 
process. In the second step, we calculate the power 
spectral density (PSD) of each time series block 
using Fast Fourier Transform (FFT). Finally, we 
train a Gaussian Process Regression (GPR) model 
to predict tool condition based on the PSD vectors.  

The remainder of the paper is organized as 
follows: In the first section, we review how time 
series audio and vibration data are collected from a 
Computer Numeric Control (CNC) machine, 
namely a Mori Seiki NVD1500DCG. In the next 
section, we describe how the time series data is 
divided into blocks using information from the 
machine controller. We then discuss how feature 
vectors are developed to represent the frequency 
content of the audio and acceleration sensors. We 
conclude by demonstrating that the frequency 
vectors contain information about the tool 
condition, and subsequently show that they can be 
used to predict tool condition using a GPR 
algorithm.  

TIME SERIES DATA COLLECTION 
In this section, we describe how time series 

acceleration and acoustic data were collected from 
a CNC milling machine, namely a Mori Seiki 
NVD1500DCG. As shown in Figure 1, a 
waterproof sensor unit from Infinite Uptime was 
attached to the vise of the milling machine.           
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The sensor unit was capable of measuring both the 
audio and triaxial acceleration signals inside the 
milling machine. The acceleration signal was 
recorded in the x-, y- and z-directions at 1000 Hz. 
The audio signal was recorded at 8000 Hz. Data 
was streamed from the sensor to a laptop computer 
using a Universal Serial Bus (USB) connection. 

The milling machine was programmed to 
produce a number of simple ‘parts’ by removing 
material from a solid steel block. Each part 
consisted of 20 separate cutting actions performed 
by the milling machine. Figure 2 shows a section 
of acceleration time series data recorded using the 
sensor unit. 

The machining data, such as tool position and 
rotation speed, were recorded from the FANUC 

controller. An MTConnect agent was used to 
synchronize the data from the milling machine and 
stream it to a laptop computer, along with a 
timestamp. A post-processing step was used to 
convert the machining data into a set of operations 
performed by the machine. The post-processing 
involved a simulation step, which is previously 
described in an earlier paper [17].  
 
GENERIC FEATURE VECTORS 

In machine learning, the process of 
featurization involves converting raw data into a 
vector form that is suitable for the chosen machine 
learning model. The featurization process often 
reduces the dimensionality of the data, which in 
turn reduces the computational burden of training 
the predictive model. In this section, we describe 
how the time series data is split into blocks using 
the controller data, and then converted into feature 
vectors. 

In a more traditional application of machine 
learning, we would attempt to identify a range of 
different measures that correlate strongly with the 
target value of interest, which, in this study, is tool 
condition. A number of researchers have attempted 
to use the skew and kurtosis coefficients of the 
audio and acceleration time series to predict the 
condition of the tool with mixed results [11–13]. 
While this approach is valuable, it can also limit the 
application of the model to a very specific scenario. 
Instead, we create relatively large feature vectors, 
and use an optimization algorithm to assign a 
weight to each feature.  

 
FIGURE 1. A MORI SEIKI NVD1500DCG MILLING 

MACHINE WITH CUTTING TOOL (1) AND SENSOR UNIT 
FROM INFINITE UPTIME (2)  

 
FIGURE 2. MEASURED ACCELERATION SIGNAL 

IN THE X-DIRECTION WHILE PRODUCING A SINGLE 
PART 

 

 
FIGURE 3. ACCELERATION SIGNAL IN THE X-

DIRECTION, AFTER BEING AUTOMATICALLY LABELED 
USING THE CONTROLLER DATA.  
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Discretizing Time Series Data 

The first step of preprocessing a time series 
data is to divide the data into blocks, according to 
the type of operation performed by the machine. 
The data from the milling machine controller is 
used to automatically label the time series data. 
Labelling the time series makes the dataset more 
structured, and thus makes the dataset more 
suitable for use with machine learning algorithms. 
The milling machine performs a number of 
different operations to produce a part. Figure 3 
shows the time series data in the production of a 
part that involves 10 climb-cutting operations and 
10 conventional-cutting operations. Each cutting 
operation is separated by a brief “air cutting” 
operation, in which the machine pauses briefly 
between cuts. We use the terms “climb cutting” and 
“conventional cutting” to refer to the relationship 
between the rotation direction to the feed direction. 
A detailed description of these operations has been 
discussed earlier [17]. 

The audio and vibration signals produced are 
dependent on the type of cutting operation being 
performed by the milling machine, as illustrated in 
Figure 3.  

Estimating the Power Spectral Density 
Next, we estimate the power spectral density 

(PSD) of each time series block. As the audio and 
acceleration signals are periodic, the PSD provides 
an elegant way to summarize the information about 
the signals. In many cases, comparing the PSD of 
different blocks can reveal information about the 
underlying physical process. 

FFT is used to estimate the PSD of each time 
series block. For each acceleration or audio signal, 
𝑠 ∈ ℝ$, the PSD is given by: 

𝑠 𝜔 =
1
𝑁

𝑠 𝑛 𝑒+,-.
$+/

.01

2

, (1) 

where 𝑠(𝜔) is the PSD of the signal at angular 
frequency 𝜔. The PSD is computed at a discrete set 
of frequencies 𝜔 = 2𝜋𝑘/𝑇 for 𝑘 ∈ {1…𝑁}, where 𝑇 
is the sampling period of the signal.  

When the PSD is estimated in this manner the 
PSD vector 𝑠 ∈ ℝ$,	has the same length as the 

input time series signal 𝑠 ∈ ℝ$. Because 
inconsistencies exist in manufacturing processes, 
the length of each time series block varies slightly. 
This variation is typical of most manufacturing 
processes, where small variations tend to occur in 
each iteration of a repetitive process [18]. On the 
other hand, in machine learning it is expected that 
the length of the feature vectors is the same. 
Therefore, we calculate the PSD over sequential 
windows of constant length, and average the 
results. Specifically, the time series is broken into 
M consecutive segments, where each segment has 
a length of 256 points. The PSD is calculated for 
each of the M segments. The PSD for the entire 
block is obtained by averaging the PSDs for each 
segment. There are several benefits of computing 
the PSD in this manner. First, the length of the 
frequency coefficient vector is now the same across 
all time series blocks. Second, the averaging 
process helps to reduce noise in the PSD, while still 
providing a consistent estimate of the PSD [19].  

To create a generic feature vector, the PSD 
vectors of each signal are combined. Let 𝒂 be the 
audio PSD and 𝒗A, 𝒗B and 𝒗C be the vibration PSD. 
We denote the generic feature vector as: 

𝒙, =
𝒂

𝒗A + 𝒗B +	𝒗C
	, (2) 

where the generic feature vector 𝒙, contains the 
PSD from the audio and vibration signals. The PSD 
vector for the vibration data in each direction are 
added. By Parseval’s theorem the result will 
always have the same signal energy as the sum of 
energies of the components [20]. In this way, the 
vibration component of the generic feature vector 
is largely invariant to the rotation of the 
accelerometer. 

To demonstrate that the generic feature vector 
contains relevant information about the physical 
process, several feature vectors are compared. 
Figure 4 compares the feature vectors from 
operations with different cutting strategies. Figure 
5 compares the coefficients from a new tool and a 
worn tool. 
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FIGURE 4. COMPARISON OF FEATURE VECTORS 

WHILE THE MACHINE WAS PERFORMING DIFFERENT 
CUTTING OPERATIONS.  

 
FIGURE 5. COMPARISON OF FEATURE VECTORS FOR 

A NEW TOOL AND A WORN TOOL, WHILE A CLIMB 
CUTTING OPERATION WAS BEING COMPLETED 

TOOL CONDITION PREDICTION MODEL 
In this section, we develop a GPR model to 

predict tool condition using the generic frequency 
feature vectors. A number of alternative techniques 
such as k-Nearest Neighbors and Support Vector 
Regression were considered. GPR is chosen as it 
performs particularly well with noisy data. An 
additional benefit of GPR is that it provides a 
distribution on the target value, as opposed to a 
scalar estimate.  

GPR has been used to develop models for a 
range of manufacturing problems. In [21], GPR 
was used to predict the energy consumption of a 

CNC milling machine using features such as 
spindle speed and cutting type. A variant of GPR 
called Local Gaussian Process Regression (LGPR) 
was used in [4] to develop a model for real-time 
robot control. The Predictive Model Markup 
Language (PMML) was recently extended to offer 
GPR support, as described in [22] and [23], 
providing a standardized format to save and 
transport GPR models.  

Data Collection 
The Mori Seiki milling machine was used to 

produce parts until the cutting tool became severely 
damaged, or the cutting tool broke. A total of 14 
tools were used to produce 56 parts. The audio and 
vibration time series were recorded as described 
earlier. 

In a typical manufacturing environment, 
machine tools tend to last several days. To 
accelerate the testing process, the operating 
parameters of the machine were adjusted to 
increase the rate of tool-wear by increasing the feed 
rate and reducing the rotation speed. With the 
adjusted operating parameters, the operating 
lifetime of a cutting tool was reduced to about 30 
minutes in this experiment.  

Defining Tool Condition 
A number of different methods have been 

proposed to measure the condition of a machine 
tool. While quantitative measurements such as the 
wear depth have been proposed as tool condition 
measures, these measures often fail to accurately 
capture wear when the blade becomes chipped. 

In this study, we define the condition of the 
milling machine tool 𝑦G ∈ [0,1], based on the 
remaining lifetime of the tool, as estimated after 
manually examining the tool with a microscope. 
The scale is defined such that 100 % indicates a 
new tool in perfect condition, and 50 % indicates 
the condition at which the tool would be replaced 
in a commercial manufacturing operation. Figure 6 
illustrates four different states of the machine tool 
flute.  
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FIGURE 6. TOOL FLUTE IN DIFFERENT STATES OF 
CONDITION. A LOWER VALUE OF 𝑦 INDICATES MORE 
WEAR 

Gaussian Process Model 
In GPR, a Gaussian Process (GP) is used as a 

prior to describe the distribution on the target 
function 𝑦 = 𝑓(𝑥). A GP is a generalization of the 
Gaussian probability distribution  for which any 
finite linear combination of samples has a joint 
Gaussian distribution [24]. 

A GP can be fully specified by its                    
mean function m(⋅) and covariance kernel      
function k(⋅,⋅): 

𝑝 𝑓/:. = 𝐺𝑃 𝑚 ∙ , 𝑘 ∙,∙ . 
 

(3) 
 

The mean function 𝑚 ∙  captures the overall trend 
in the target function value and the kernel function 
𝑘 ∙,∙  is used to approximate the covariance by 
representing the similarity between the data points 
[24]. For the tool condition model, we choose to 
use the zero function as the mean function.  

In general, we denote the input as 𝒙, ∈ ℝ𝒏 and 
the target value as 𝑦 ∈ ℝ. In the proposed data 
processing method, the input 𝒙, is the generic 
feature vector. A GP is used as a prior to describe 
the distribution on the target function 𝑦, = 𝑓(𝒙𝒊). 
We attempt to learn the target function by 
incorporating prior knowledge captured in 
historical data. Suppose the current data set is 
denoted by 𝑫 = {(𝒙,, 𝑦,)|𝑖 = 1,…𝑛}. With GPR, 
the measured output 𝑦.\] = 𝑓 𝒙.\]  

corresponding to the new feature vector 𝑥.\] and 
the historical outputs 𝑦/:. in the training data set 
follow a multivariate Gaussian distribution: 

𝒚/:.
𝑓.\] ~𝑁 𝟎, 𝐊 𝒌

𝒌c 𝑘 𝒙.\], 𝒙.\] , 
 
(4) 

 
where the entries in  the vector 𝒌, and the 
covariance kernel matrix 𝐊, are defined 
respectively as: 

𝒌, 	= 	𝑘 𝒙,, 𝒙.\] ,	 (5) 

𝐊,d 	= 𝑘 𝒙,, 𝒙d .	 (6) 

The covariance kernel matrix 𝐊 is often 
precomputed on the training data, allowing new 
predictions to be computed efficiently. 

Selecting a Kernel Function 
The covariance kernel function provides an 

efficient method to compute the similarity between 
two generic feature vectors. In GPR, the kernel 
function is used to estimate the covariance between 
two input vectors, 𝒙e and 𝒙d. 

The Automatic Relevance Determination 
(ARD) squared exponential kernel is often used 
with GPR, as it automates the selection of feature 
weights. The ARD squared exponential function 
can be expressed as: 
𝑘 𝒙,, 𝒙d = 

𝛾exp −
1
2
𝒙, − 𝒙d cdiag 𝝀 +2 𝒙, − 𝒙d , (7) 

where the kernel function is described by the 
hyper-parameters, 𝛾 and 𝝀. The signal variance 
hyper-parameter 𝛾 quantifies the overall 
magnitude of the covariance value. The hyper-
parameter 𝜆q	where 𝑘 ∈ {1… |𝝀|} is used to 
quantify the relevancy of the input feature 𝑥q, 	when 
predicting the response 𝑦. During the training 
process, an optimization problem is constructed to 
maximize the likelihood of the training data, 
relative to the hyper-parameters 𝛾 and 𝝀 [24]. 

Noise Model 

Each tool condition label 𝑦, is likely to contain 
random noise due to the complex nature of tool 
wear and the manual labelling method. To account 
for this random noise we assume that each 

 
𝑎)						𝑦 = 0.9  

 
𝑏)									𝑦 = 0.4 

 
𝑐)								𝑦 = 0.6 𝑑)							𝑦 = 0.1 
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observed value contains some random noise ϵ, such 
that 𝑦 = 𝑓 𝒙 + 𝜖. We assume that this noise 
follows an independent, identically distributed 
Gaussian distribution with zero mean and variance 
𝜎𝜖2: 

𝜖~𝒩 0, 𝜎}2 . (8) 

It follows from the independence assumption that 
the noise model can be represented by adding a 
noise term to the kernel function [24]: 
 

𝑘 𝒙,, 𝒙d = 

𝛾exp −
1
2
𝒙, − 𝒙d cdiag 𝝀 +2 𝒙, − 𝒙d + 𝜎}2𝛿,d, 

(9) 
 

where 𝛿,d represents Kronecker delta function 
which serves to selectively add the noise variance 
𝜎𝜖2 to the covariance value.  
Model Regularization 

The size of the hyperparameter vector is 
dependent on the choice of kernel and the length of 
the input vector 𝒙,. With the ARD squared 
exponential kernel, the number of hyperparameters 
can become reasonably large: 

𝜽 = 𝛾 + |𝝀| = 1 + |𝒙𝒊|.  
 
(10) 
 

The large number of hyperparameters increases the 
flexibility of the model, allowing it to represent 
high-dimensional relationships. The increased 
model complexity also makes it prone to 
overfitting. In machine learning, regularization is 
commonly used to limit the parameter space of the 
model. Bayesian model selection is an alternative 
approach to regularization, used to constrain the 
model complexity, as described in [25]. We start 
by defining a prior 𝑝(𝜽) on the hyperparameters 𝜽, 
to restrict the hyperparameter space. Hereafter we 
will refer to 𝑝(𝜽) as the hyperprior, as is common 
in existing literature [24]. In the proposed 
methodology, we choose the hyperprior to 
minimize the weights in 𝜽. 

𝑝 𝜽 ~𝒩 0, 𝛼2𝑰 , 
 
(11) 
 

where 𝛼 is a regularization parameter which 
controls the flexibility of the model. For a large 𝛼, 

the model will tend to fit to the training data well, 
but is unlikely to generalize well to the unseen test 
data. As the value of 𝛼 is decreased the model will 
become more constrained, and the generalization 
error will tend to decrease. The optimum value of 
𝛼 is found through cross-validation.  
Training Procedure 

In the training procedure a GP is fitted to the 
training data set. Suppose we denote the dataset 
𝑫 = {(𝒙,, 𝑦,)|𝑖 = 1,…𝑛} for time series block 𝑖. 
The GPR training procedure involves selecting a 
set of hyperparameters to maximize the marginal 
likelihood of the training data. The marginal 
distribution of the observations can be expressed 
as: 

𝑝 𝒚/:.|𝜽 = 𝑝 𝒚/:.|𝒇/:. 𝑝 𝜽 𝑝 𝒇/:.|𝜽 	𝑑𝒇/:.. 
 
(12) 
 

The unknown function 𝒇 can be marginalized out 
of (12) to obtain the marginal likelihood of the 
training observations. The hyperparameters	𝜽	are 
chosen to maximize the marginal likelihood of 
observations in a given training data set 𝑫. An 
optimization equation is formed to maximize the 
marginal likelihood, and obtain to the optimum 
hyperparameters 𝜽∗: 

𝜽∗ = arg	max
�

log 𝑝 𝐲/:�|𝜽	 . 
 
(13) 
 

Finding the optimum hyperparameters using (13) 
requires an iterative approach as the value of the 
kernel matrix K is inherently dependent on the 
hyperparameters. The process for obtaining the 
optimum hyperparameters is well documented in 
the literature [24]. The MATLAB library GPML 
[25] is chosen to optimize the hyperparameters. 

Scoring Procedure 
In GPR, the aim of the scoring procedure is to 

obtain a posterior distribution 𝑓.\] on the output 
value, based on the previously unseen observation 
𝒙.\]. In the case where the mean function is zero, 
the posterior distribution on the response 𝑓.\] for 
the newly observed input 𝒙.\] can be expressed as 
a Gaussian distribution: 
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𝑓.\]~𝒩 𝜇 𝒙.\]|𝑫. , 𝜎	2 𝒙.\]|𝑫. . 
 
(14) 
 

The posterior mean 𝜇 𝒙.\]|𝑫. , and associated 
variance 𝜎2 𝒙.\]|𝑫. , can be calculated directly. 
As the posterior distribution is 1D Gaussian, the 
posterior mean and variance are sufficient to fully 
describe the posterior distribution. That is, the 
posterior distribution can be expressed as [24]:  

𝜇 𝒙.\]|𝑫. = 𝒌c 𝐊 + 𝜎}2𝐈 +/𝒚/:., (15) 

𝜎	2 𝒙.\]|𝑫. = 𝑘 𝒙.\], 𝒙.\] − 𝒌c 𝐊 + 𝜎}2𝐈 +/𝒌.	 (16) 

MODEL PERFORMANCE 
When evaluating machine learning models, it is 

common practice to divide the data set into a 
training set and testing set. The model is trained on 
the training set and then tested on the previous 
unseen data in the testing set. Data points from 
three cutting tools were randomly selected for the 
testing set. Two GP models are trained to predict 
tool condition; the first is trained with the generic 
feature vectors from the climb-cutting blocks, and 
the second is trained with the feature vectors from 
the conventional-cutting blocks. 

The two models are used together to predict the 
condition of the tool, for each point in the testing 
set. Figure 7 and Figure 8 provide a comparison of 
the model predictions with the human labels. In the 
ideal case, the model would predict the same values 
as the human labels, and the plotted points would 
align with the dotted diagonal line. It can be 
observed that the trained model predicts the tool 
conditions comparable to the human labeled 
results. 

The tool condition predicted by the model 
closely aligns with the human labelled tool 
condition for relatively new tools, especially for 
tool condition in the 90-100 % range. This is most 
likely because the new tools provide a very 
consistent audio and vibration signal. Once the tool 
condition drops below 40 % there is a larger 
variation in the audio and vibration signals, making 
tool condition prediction more difficult. For 
example, a cutting tool at 40 % condition may have 
sustained heat damage and worn smooth, or it may 

have undergone brittle failure and chipped. Both 
failure modes would provide different audio and 
vibration signals, but the model is expected to label 
both cases as 40 % wear. The confidence interval 
increases as the condition decreases, indicating that 
it is harder to predict more heavily worn tools, as 
shown in Figure 7 and Figure 8. 

It is likely that the accuracy of the model could 
be improved by increasing the amount of data in 
the training data set. The training data set does not 
contain many time series segments for worn tools, 
as a number of tests had to be stopped before the 
tool condition dropped below 20 %. Increasing the 
number of training data points collected with worn 
tools could reduce the confidence intervals in the 
predictions.   

 
FIGURE 7. TOOL CONDITION PREDICTION FOR THE 

CLIMB CUTTING ACTIONS IN ONE OF THE THREE TEST 
DATASETS. THE ERROR BARS INDICATE ONE STANDARD 
DEVIATION IN THE TARGET DISTRIBUTION. 

 
FIGURE 8. TOOL CONDITION PREDICTION FOR THE 

CONVENTIONAL CUTTING ACTIONS IN ONE OF THE 
THREE TEST DATASETS. THE ERROR BARS INDICATE ONE 
STANDARD DEVIATION IN THE TARGET DISTRIBUTION. 
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However, in an industrial application the cutting 
tool will be replaced before it reaches 50 % wear, 
so the accuracy of the model is less critical for 
heavily worn tools. 

DISCUSSION 
This study demonstrates how information from 

a milling machine controller can be combined with 
sensor data to predict the condition of the milling 
machine tool. Information from the milling 
machine controller was used to aggregate the time 
series data over a set of finite intervals. The 
frequency content in each time series block were 
summarized using a PSD. The PSD from the audio 
and vibration signals were combined to create a 
generic feature vector, containing information 
about each time series block. 

The use of a non-parametric regression model, 
namely GPR, allowed the complex relationship 
between the generic feature vector and the target 
value to be modelled. The ARD squared 
exponential kernel was used to automate the 
feature selection process. The combination of the 
generic feature vectors and automated weighting 
procedure make this technique applicable to a 
range of different modelling tasks in the 
manufacturing domain. However, the cross-
validation training procedure increases the training 
time by an order of magnitude. 

The GP model provides confidence bounds for 
the predictive estimations, which are useful when 
interpreting the reliability of a prediction at some 
arbitrary time. The confidence bounds would likely 
prove useful in a practical application where the 
tool-condition predictions were used to determine 
when to change machine tools. 

FUTURE WORK 
For this method to have practical applications, 

it must generalize well to a range of different 
machines and machine operations. A similar 
technique could be applied to predict tool condition 
on a range of different manufacturing machines. 
The same technique could also be applied to 
correlate time series signals with surface quality or 
bearing failure. 
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