
Detection and Segmentation of Manufacturing Defects with
Convolutional Neural Networks and Transfer Learning

Max Ferguson1 Ronay Ak2 Yung-Tsun Tina Lee2 and Kincho. H. Law1

Abstract— Automatic detection of defects in metal castings is
a challenging task, owing to the rare occurrence and variation
in appearance of defects. However, automatic defect detection
systems can lead to significant increases in final product quality.
Convolutional neural networks (CNNs) have shown outstanding
performance in both image classification and localization tasks.
In this work, a system is proposed for the identification of
casting defects in X-ray images, based on the mask region-
based CNN architecture. The proposed defect detection system
simultaneously performs defect detection and segmentation on
input images, making it suitable for a range of defect detection
tasks. It is shown that training the network to simultaneously
perform defect detection and defect instance segmentation,
results in a higher defect detection accuracy than training
on defect detection alone. Transfer learning is leveraged to
reduce the training data demands and increase the prediction
accuracy of the trained model. More specifically, the model
is first trained with two large openly-available image datasets
before fine-tuning on a relatively small metal casting X-ray
dataset. The accuracy of the trained model exceeds state-of-
the art performance on the GDXray Castings dataset and is
fast enough to be used in a production setting. The system
also performs well on the GDXray Welds dataset. A number
of in-depth studies are conducted to explore how transfer
learning, multi-task learning, and multi-class learning influence
the performance of the trained system.

I. INTRODUCTION
Quality management is a fundamental component of a

manufacturing process [1]. To meet growth targets, man-
ufacturers must increase their production rate while main-
taining stringent quality control limits. In a recent report,
the development of better quality management systems was
described as the most important technology advancement for
manufacturing business performance [2]. In order to meet
the growing demand for high-quality products, the use of
intelligent visual inspection systems is becoming essential
in production lines.
Processes such as casting and welding can introduce defects
in the product which are detrimental to the final product qual-
ity [3]. Common casting defects include air holes, foreign-
particle inclusions, shrinkage cavities, cracks, wrinkles, and
casting fins [4]. Early detection of these defects can allow
faulty products to be identified early in the manufacturing
process, leading to time and cost savings [5]. Automated
quality control can be used to facilitate consistent and
cost-effective inspection. The primary drivers for automated
inspection systems include faster inspection rates, higher
quality demands, and the need for more quantitative product
evaluation that is not hampered by the effects of human
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fatigue.
Nondestructive examination techniques allow a product to be
tested during the manufacturing process without jeopardizing
the quality of the product. There are a number of non-
destructive examination techniques available for producing
two-dimensional and three-dimensional images of an object.
Real-time X-ray imaging technology is widely used in defect
detection systems in industry, such as on-line weld defect
inspection [5]. Ultrasonic inspection and magnetic particle
inspection can also be used to measure the size and posi-
tion of casting defects in cast components [6], [7]. X-ray
Computed Tomography (CT) can be used to visualize the
internal structure of materials. Recent developments in high
resolution X-ray computed tomography have made it possible
to gain a three-dimensional characterization of porosity [8],
[9]. However, automatically identifying casting defects in X-
ray images still remains a challenging task in the automated
inspection and computer vision domains.
The defect detection process can be framed as either an
object detection task or an instance segmentation task. In
the object detection approach, the goal is to place a tight-
fitting bounding box around each defect in the image. In
the image segmentation approach, the problem is essentially
one of pixel classification, where the goal is to classify
each image pixel as a defect or not. Instance segmentation
is a more difficult variant of image segmentation, where
each segmented pixel must be assigned to a particular
casting defect. A comparison of these computer vision tasks
is provided in Figure 1. In general, object detection and
instance segmentation are difficult tasks, as each object can
cast an infinite number of different 2-D images onto the retina
[10]. Additionally, the number of instances in a particular
image is unknown and often unbounded. Variation of the
object’s position, pose, lighting, and background can also
vary relative to the viewer.
Many state-of-the-art object detection systems have been de-
veloped using the region-based convolutional neural network
(R-CNN) architecture [11]. R-CNN creates bounding boxes,
or region proposals, using a process called selective search.
At a high level, selective search looks at the image through
windows of different sizes and, for each size, tries to group
together adjacent pixels by texture, color, or intensity to
identify objects. Once the proposals are created, R-CNN
warps the region to a standard square size and passes it
through a feature extractor. A support vector machine (SVM)
classifier is then used to predict what object is present in the
image, if any. In more recent object detection architectures,
such as region-based fully convolutional networks (R-FCN),



each component of the object detection network is replaced
by a deep neural network [12].
In this work, a fast and accurate defect detection system
is developed by leveraging recent advances in computer
vision. The proposed defect detection system is based on the
mask region-based CNN (Mask R-CNN) architecture [11].
This architecture simultaneously performs object detection
and instance segmentation, making it useful for a range of
automated inspection tasks. The proposed system is trained
and evaluated on the GRIMA database of X-ray images
(GDXray) dataset, published by Grupo de Inteligencia de
Mquina (GRIMA) [13]. Some examples from the GDXray
dataset are shown in 2.
The remainder of this article is organized as follows: The
first section provides an overview of related works, and the
second section provides a brief introduction to CNNs. A
detailed description of the proposed defect detection system
is provided in the Defect Detection System section. The
Implementation Details and Experimental Results section
explains how the system is trained to detect casting defects,
and provides the main experimental results, as well as a
comparison with similar systems in the literature. The article
is concluded with a number of in-depth studies, a thorough
discussion of the results, and a brief conclusion.

Fig. 1. Examples of different computer vision tasks for casting defect
detection.

II. RELATED WORKS

The detection and segmentation of casting defects using
traditional computer vision techniques has been relatively
well-studied. One popular method is background subtraction,
where an estimated background image (which does not
contain the defects) is subtracted from the preprocessed
image to leave a residual image containing the defects and
random noise [14], [15]. Background subtraction has also
been applied to the welding defect detection task, with vary-
ing levels of success [16], [17], [18], [19], [20]. However,
background subtraction tends to be very sensitive to the
positioning of the image, as well as random image noise

[14]. A range of matched filtering techniques have also been
proposed, with modified median (MODAN) filtering being
a popular choice [21]. The MODANFilter is a median filter
with adapted filter masks, that is designed to differentiate
structural contours of the casting piece from casting de-
fects [22]. A number of researchers have proposed wavelet-
based techniques with varying levels of success [15], [23].
In wavelet-based and frequency-based approaches, defects
are commonly identified as high-frequency regions of the
image, when compared to the comparatively lower frequency
background [24]. Many of these approaches fail to combine
local and global information from the image when classifying
defects, making them unable to separate design features like
holes and edges from casting defects.
In many traditional computer vision approaches, it is com-
mon to manually identify a number of features which can
be used to classify individual pixels. Each image pixel is
classified as a defect or treated as not being a defect,
depending on the features that are computed from a local
neighborhood around the pixel. Common features include
statistical descriptors (mean, standard deviation, skewness,
kurtosis) and localized wavelet decomposition [4]. Several
fuzzy logic approaches have also been proposed, but these
techniques have been largely superseded by modern CNN-
based computer vision techniques [25]. The related task of
automated surface inspection (ASI) is also well-documented
in the literature. In ASI, surface defects are generally de-
scribed as local anomalies in homogeneous textures. Depend-
ing on the properties of surface texture, ASI methods can be
divided into four approaches [26]. One approach is structural
methods that model the texture primitives and displacements.
This approach is usually applied to repetitive patterns such as
textiles [27] and fabrics [28]. Popular structural approaches
include primitive measurement [29], edge features [30],
skeleton representation [27], and morphological operations
[28], [29]. The second approach is the statistical methods
which measure the distribution of pixel values. The statistical
approach is efficient for stochastic textures, such as ceramic
tiles, castings, and wood. Popular statistical methods include
histogram-based method [31], local binary pattern (LBP)
[32], and co-occurrence matrix [33]. The third approach
is filter-based methods that apply filter banks on texture
images. The filter-based methods can be divided into spatial-
domain [34], frequency-domain [35], and spatial-frequency
domain [36], [37]. Finally, model-based approaches construct
representations of images by modeling multiple properties of
defects [38], [39].
The research community, including this work, is greatly
benefited from well-archived experimental datasets, such as
the GRIMA database of X-ray images (GDXray) [13]. The
performance of several simple methods for defect segmenta-
tion are compared in [40] using the GDXray Welds series, but
each method is only evaluated qualitatively. A comprehensive
study of casting defect detection using various computer
vision techniques is provided in [41], where patches of size
32×32 pixels are cropped from GDXray Castings series and
used to train and test a number of different classifiers. The



Fig. 2. Examples of X-ray images in the GDXray Castings dataset. The colored boxes show the ground-truth labels for casting defects.

best performance is achieved by a simple LBP descriptor
with a linear SVM classifier [41]. Several deep learning
approaches are also evaluated, obtaining up to 86.4 % patch
classification accuracy. When applying the deep learning
techniques, the authors resize the 32 × 32 × 3 pixel patches
to a size of 244 × 244 × 3 pixels so that they can be feed
into pretrained neural networks [41], [42]. A deep CNN is
used for weld defect segmentation in [43] obtaining 90.5 %
accuracy on the binary classification of 25 × 25 pixel patches.

In recent times, a number of machine learning techniques
have been successfully applied to the object detection task.
Two notable neural network approaches are Faster Region-
Based CNN (Faster R-CNN) [44] and Single Shot Multibox
Detector (SSD) [45]. These approaches share many similar-
ities, but the latter is designed to prioritize evaluation speed
over accuracy. A comparison of different object detection
networks is provided in [46]. Mask R-CNN is an extension of
Faster R-CNN that simultaneously performs object detection
and instance segmentation [11]. In previous research, it
has been demonstrated that Faster R-CNN can be used as
the basis for a fast and accurate defect detection system
[47]. This work builds on that progress by developing a
defect detection system that simultaneously performs object
detection and instance segmentation.

III. CONVOLUTIONAL NEURAL NETWORKS

There has been significant progress in the field of computer
vision, particularly in image classification, object detection
and image segmentation. The development of deep CNNs has
led to vast improvements in many image processing tasks.
This section provides a brief overview of CNNs. For a more
comprehensive description, the reader is referred to [48].
In a CNN, pixels from each image are converted to a
featurized representation through series of mathematical op-
erations. Images can be represented as an order 3 tensor I ∈
�H×W×D with height H, width W, and D color channels [48].
The input sequentially goes through a number of processing
steps, commonly referred to as layers. Each layer i, can be
viewed as an arbitrary transformation xi+1 = f (xi; θi) with
inputs xi, outputs xi+1, and parameters θi. The outputs of a
layer are often referred to as a feature map. By combining
multiple layers it is possible to develop a complex nonlinear

function which can map high-dimensional data (such as
images) to useful outputs (such as classification labels) [48].
More formally, a CNN can be thought of as the composition
of number of functions:

f (x) = fN( f2( f1(x1; θ1); θ2)); θN), (1)

where x1 is the input to the CNN and f (x) is the output.
There are several layer types which are common to most
modern CNNs, including convolution layers, pooling layers
and batch normalization layers. A convolution layer is a
function fi(xi; θi) that convolves one or more parameterized
kernels with the input tensor, xi. Suppose the input xi is an
order 3 tensor with size Hi ×Wi × Di. A convolution kernel
is also an order 3 tensor with size H ×W × Di. The kernel
is convolved with the input by taking the dot product of the
kernel with the input at each spatial location in the input.
The convolution of a H × W × 1 kernel with an image is
shown diagrammatically in Figure 3. By convolving certain
types of kernels with the input image, it is possible to obtain
meaningful outputs, such as the image gradients [49]. In most
modern CNN architectures, the first few convolutional layers
extract features like edges and textures. Convolutional layers
deeper in the network can extract features that span a greater
spatial area of the image, such as object shapes.

Deep neural networks are, by design, parameterized non-
linear functions [48]. An activation function is applied to
the output of a neural network layer to introduce this
nonlinearity. Traditionally, the sigmoid function was used
as the nonlinear activation function in neural networks. In
modern architectures, the Rectified Linear Unit (ReLU) is
more commonly used as the neuron activation function, as
it performs best with respect to runtime and generalization
error [51]. The nonlinear ReLU function follows the formula-
tion f (z) = max(0, z) for each value, z, in the input tensor xi.
Unless otherwise specified, the ReLU activation function is
used as the activation function in the defect detection system
described in this article.
Pooling layers are also common in most modern CNN archi-
tectures [48], [52]. The primary function of pooling layers is
to progressively reduce the spatial size of the representation
to reduce the number of parameters in the network, and hence
control overfitting. Pooling layers typically apply a max or



Fig. 3. Convolution of an image with a kernel to produce a feature map. Zero-padding is used to ensure that the spatial dimensions of the input layer
are preserved [50].

average operation over the spatial dimensions of the input
tensor. The pooling operation is typically performed over a
2 × 2 or 3 × 3 area of the input tensor. By stacking pooling
and convolutional layers, it is possible to build a network
that allows a hierarchical and evolutionary development of
raw pixel data towards powerful feature representations.
Training a neural network is performed by minimizing a loss
function [48]. The loss function is normally a measure of the
difference between the current output of the neural network
and the ground truth. As long as each layer of the neural
network is differentiable, it is possible to calculate the gradi-
ent of the loss function with respect to the parameters. The
backpropagation algorithm allows the numerical gradients to
be calculated efficiently [53]. A gradient-based optimization
algorithm such as stochastic gradient descent (SGD) can be
used to find the parameters that minimize the loss function.

A. Residual Networks

The properties of a neural network are characterized by
choice and arrangement of the layers, often referred to as the
architecture. Deeper networks generally allow more complex
features to be computed from the input image. However,
increasing the depth of a neural network often makes it more
difficult to train, due to the vanishing gradient problem [54].
The residual network (ResNet) architecture was designed to
avoid many of the issues that plagued very deep neural net-
works. Most predominately, the use of residual connections
helps to overcome the vanishing gradient problem [54]. A
cell from the ResNet architecture is shown in Figure 4. There
are a number of standard variants of the ResNet architecture,
containing between 18 and 152 layers. In this work, the
relatively large ResNet-101 variant with 101 trainable layers
is used as the neural network backbone [54].

While ResNet was designed primarily to solve the image
classification problem, it can also be used for a wider range
of image processing tasks. More specifically, the outputs
from the intermediate layers can be used as high-level
representations of the image. When used this way, ResNet is
referred to as a feature extractor, rather than a classification
network.

Fig. 4. A cell from the Residual Network architecture. The identity
connection helps to reduce the vanishing gradient problem by enabling
gradient corrections to flow back through the network more easily.

IV. DEFECT DETECTION SYSTEM
In this section, a defect detection system is proposed

to identify casting defects in X-ray images. The proposed
system simultaneously performs defect detection and defect
segmentation, making it useful for a range of automated
inspection applications. The design of the defect detection
system is based on the Mask R-CNN architecture [11]. As
depicted in Figure 5, the defect detection system is composed
of four modules. The first module is a feature extraction
module that generates a high-level featurized representation
of the input image. The second module is a CNN that
proposes regions of interest (RoIs) in the image, based on the
featurized image. The third module is a CNN that attempts
to classify the objects in each RoI [44]. The fourth module
performs image segmentation, with the goal of generating a
binary mask for each region. Each module is described in
detail throughout the remainder of this section.

A. Feature Extraction

The first module in the proposed defect detection system
transforms the image pixels into a high-level featurized
representation. Many CNN-based object detection systems
use the VGG-16 architecture to extract features from the
input image [55], [44], [56]. However, recent work has
demonstrated that better results can be obtained with more



Fig. 5. The neural network architecture of the proposed defect detection system. The system consists of four convolutional neural networks, namely
the ResNet-101 feature extractor, region proposal network, region-based detector and the mask prediction network. The output of the system is the class,
bounding box coordinates and instance segmentation module for each detected casting defect.

modern feature extractors [46]. In a related work, we have
shown that an object detection network with the ResNet-101
feature extractor results in a higher bounding-box prediction
accuracy on the GDXray Castings dataset, than the same
object detection network with a VGG-16 feature extractor
[47]. Therefore, the ResNet-101 architecture is chosen as
the backbone for the feature extraction module. The neural-
network architecture of the feature extraction module is
shown in Table 1. Some feature maps from the feature
extraction module are shown in Figure 6.

The ResNet-101 feature extractor is a very deep convolu-
tional neural network with 101 trainable layers and approx-
imately 27 million parameters. Hence, it is unlikely that the
network can be trained to extract meaningful features from
input images, using the relatively small GDXray dataset. One
interesting property of CNN-based feature extractors is that
the features they generate often transfer well across different
image processing tasks. This property is leveraged when
training the proposed casting defect detection system, by first
training the feature extractor on the large ImageNet dataset
[57]. Throughout the training process the feature extractor
learns to extract many different types of features, only some
of which are useful on the comparatively simpler casting
defect detection task. When training the object detection
network on the GDXray Castings dataset, the system learns
which features correlate well with casting defects and dis-
cards unneeded features. This process tends to work well, as
it is much easier to discard unneeded features than it is to
learn entirely new features.

B. Region Proposal Network

The second module in the proposed defect detection
system is the region proposal network (RPN). The RPN
takes a feature map of any size as input and outputs a set of
rectangular object proposals, each with a score describing

TABLE I
The neural network architecture used for feature extraction. The
architecture is based on the ResNet-101 architecture, but excludes the

”conv5 x” block which is primarily designed for image classification [52].
The term stride refers to the step size of the convolution operation.

Layer Name Filter Size Output Size

conv1 7 × 7, 64, stride 2 112 × 112 × 64

conv2 x


1 × 1, 64

3 × 3, 64

1 × 1, 256

 × 3 112 × 112 × 64

conv3 x


1 × 1, 128

3 × 3, 128

1 × 1, 512

 × 4 112 × 112 × 64

conv4 x


1 × 1, 256

3 × 3, 256

1 × 1, 1024

 × 23 112 × 112 × 64

the likelihood that the region contains an object. To generate
region proposals, a small CNN is convolved with the output
of the ResNet-101 feature extractor. The input to this small
CNN is an nn spatial window of the ResNet-101 feature
map. At a high-level, the output of the RPN is a vector
describing the bounding box coordinates and likeliness of
objects at the current sliding position. An example output
containing 50 region proposals is shown in Figure 7.

Anchor Boxes: Casting defects come in a range of
different scales and aspect ratios. To accurately identify
casting defects, it is necessary to evaluate boxes with a



Fig. 6. Feature maps from the last layer of the ”conv 4” ResNet feature extractor. Clockwise from the top left image: (a) the resized and padded X-ray
image, (b) a feature map which appears to capture horizontal gradients (c) a feature map which appears to capture long straight vertical edges, (d) a feature
map which appears to capture hole-shaped objects.

Fig. 7. Ground truth casting defect locations (left). The top 50 region
proposals from the RPN for the same X-Ray image (right).

range of box shapes, at every location in the image. These
boxes are commonly referred to as anchor boxes. Anchors
vary in aspect-ratio and scale, so as to contain any potential
object in the image. At each sliding location, the RPN
estimates the likelihood that each anchor box contains an
object. The anchor boxes for one position in the feature
map are shown in Figure 8. In this work, anchor boxes with
3 scales and 5 aspect ratios are used, yielding 15 anchors at

each sliding position. The total number of anchors in each
image depends on the size of the image. For a convolutional
feature map of a size W × H (typically ˜42,400), there are
15WH anchors in total.

Fig. 8. Anchor Boxes at a certain position in the feature map. There are 15
anchor boxes defined at each sliding window position in the feature map.

The size and scale of the anchor boxes are chosen to match
the size and scale of objects in the dataset. It is common
to use anchor boxes with areas of 1282 , 2562, and 5122
pixels and aspect ratios of 1:1, 1:2, and 2:1, for detection of
common objects like people and cars [44]. However, many of
the casting defects in the GDXray dataset are on the scale of
20 x 20 pixels. Therefore, the smallest anchor box is chosen
to be 16×16 pixels. Aspect ratios 1:1, 1:2, and 2:1 are used.
Scale factors of 1, 2, 4, 8, and 16 are used. Most defects in the
dataset are smaller than 64× 64 pixels, so using scales 1, 2,
and 4 could be considered sufficient for the defect detection
task. However, the object detection network is pretrained on
a dataset with many large objects, so the larger scales are
included to avoid restricting the system during the pretraining
phase.

Region Proposal Network Architecture The RPN pre-



Fig. 9. The geometry of an anchor, a predicted bounding box, and a ground
truth box.

dicts the bounding box coordinates and probability that the
box contains an object, for all k anchor boxes at each sliding
position. The n n input from the feature extractor is first
mapped to a lower-dimensional feature vector (512-d) using
a fully connected neural network layer. This feature vector is
fed into two sibling fully-connected layers: a box-regression
layer (loc) and a box-classification layer (cls). The class layer
outputs 2k scores that estimate the probability of object and
not object for each anchor box. The loc layer has 4k outputs,
which encode the coordinate adjustments for each of the k
boxes. The reader is referred to [44] for a detailed description
of the neural network architecture. The probability that an
anchor box contains an object is referred to as the objectness
score of the anchor box. This objectness score can be thought
of as a way to distinguish objects in the image from the
background. At the end of the region proposal stage, the top
n anchor boxes are selected by objectness score as the region
proposals.

Training: Training the RPN involves minimizing a
combined classification and regression loss, that is now
described. For each anchor, a, the best matching defect
bounding box b is selected using the intersection over union
(IoU) metric. If such a match is found, then a is assumed to
contain a defect and it is assigned a ground-truth class label
p∗a = 1. In this case, a vector encoding of box b with respect
to anchor a is created, and denoted φ(b; a). If no match is
found, then a does not contain a defect and the class label
is set p∗a = 0. At training time, the location loss function
Lloc captures the distance between the true location of a
bounding box and the location of the region proposal [44].
The location-based loss for a is expressed as a function of
the predicted box encoding floc(I; a, θ) and ground truth
φ(ba; a):

Lloc(a,I; θ) = p∗a · `smoothL1
(
φ(ba; a) − floc(I; a, θ)

)
, (2)

where I is the image, θ is the model parameters, and
`smoothL1 is the smooth L1 loss function, as defined in [56].
The box encoding of box b with respect to a is a vector:

φ(b; a) =

[ xc

wa
,

yc

ha
, log w, log h

]T
, (3)

where xc and yc are the center coordinates of the box, w
is the box width, and h is the box height. wa and ha are
the width and height of the anchor a. The geometry of an
anchor, a predicted bounding box, and a ground truth box is
shown diagrammatically in Figure 9. The classification loss
is expressed as a function of the predicted class fcls(I; a, θ)
and p∗a:

Lcls(a,I; θ) = LCE(p∗a, ( f )cls(I; a, θ)), (4)

where LC E is the cross-entropy loss function. The total loss
for a is expressed as the weighted sum of the location-based
loss and the classification loss [46]:

I; θ) = α · Lloc(a,I; θ) + β · Lcls(a,I; θ), (5)

where α, β are weights chosen to balance localization and
classification losses [46]. To train the object detection model,
(5) is averaged over the set of anchors and minimized with
respect to parameters θ.
Region Proposal Network Transfer Learning: The RPN
is an ideal candidate for the application of transfer learning,
as it identifies regions of interest (RoIs) in images, rather
than identifying particular types of objects. Transfer learning
is a machine learning technique where information that is
learned in one setting is exploited to improve generalization
in another setting. When training an object detection network
on a large dataset with many classes, the RPN learns to
identify subsections of the image that likely contain an
object, without discriminating by object class. This property
is leveraged by first pretraining the object detection system
on a large dataset with many classes of objects, namely
the Microsoft Common Objects in Context (COCO) dataset
[58]. Interestingly, when the RPN from the trained object
detection system is applied to an X-ray image, it immediately
identifies casting defects amongst other interesting regions of
the image. The output of the RPN after training solely on
the COCO dataset is shown in Figure 10.

C. Region-Based Detector

Thus far the defect detection system is able to select a
fixed number of region proposals from the original image.
This section describes how a region-based detector (RBD)
is used to classify the casting defects in each region, and
fine-tune the bounding box coordinates. The RBD is based
on the Faster R-CNN object detection network [44].
The input to the RBD is cropped from the output of
ResNet-101 feature extractor, according to the shape of
the regressed bounding box. Unfortunately, the size of the
input is dependent on the size of the bounding box. To
address this issue, an RoIAlign layer is used to convert the
input to a fixed-length feature vector [11]. RoIAlign works



Fig. 10. The top 50 regions of interest, as predicted by a region proposal
network trained on the Microsoft Common Objects in Context dataset. The
predicted regions of interest are shown in blue, and the ground-truth casting
defect locations are shown in red.

by dividing the h × w RoI window into an H W grid of
sub-windows of size h/H ×w/W. Bilinear interpolation [59]
is used to compute the exact values of the input features at
four regularly sampled locations in each sub-window. The
reader is referred to [56] for a more detailed description of
the RoIAlign layer. The resulting feature vector has spatial
dimensions H ×W, regardless of the input size.
Each feature vector from the RoIAlign layer is fed into a
sequence of convolutional and fully connected layers. In
the proposed defect detection system, the RBD contains
two convolutional layers and two fully connected layers.
The last fully connected layer produces two output vectors:
The first vector contains probability estimates for each of
the K object classes plus a catch-all background class. The
second vector encodes refined bounding-box positions for
one of the K classes. The RBD is trained by minimizing a
joint regression and classification loss function, similar to
the one used for the RPN. The reader is referred to [56]
for a detailed description of the loss function and training
process. The output of the RBD for a single image is shown
in Figure 11.

Defect Segmentation: Instance segmentation is performed
by predicting a segmentation mask for each RoI. The predic-
tion of segmentation masks is performed using another CNN,
referred to as the instance segmentation network. The input to
the segmentation network is a block of features cropped from
the output of the feature extractor. The instance segmentation
network has a 2828K dimensional output for each RoI, which
encodes M binary masks of resolution 2828, one for each of
the K classes. The instance segmentation network is shown
alongside the RBD in Figure 12.
At training time a per-pixel sigmoid function is applied to
the output of the instance segmentation network. The loss
function Lmask is defined as the average binary cross-entropy
loss. For an RoI associated with ground-truth class i, Lmask

is only defined on the i-th mask (other mask outputs do not
contribute to the loss). This definition of Lmask allows the
network to generate masks for every class without competi-

Fig. 11. Output from the region-based detector (RBD) for an image
with three casting defects. The original proposals are shown as dotted
rectangles, and the corrected bounding boxes are shown as solid rectangles.
The bounding boxes are all placed correctly but the green and yellow
bounding boxes are placed on the same defect.

tion among classes. It follows that the instance segmentation
network can be trained by minimizing the joint RBD and
mask loss. At test time, one mask is predicted for each class
(K masks in total). However, only the i-th mask is used,
where i is the predicted class by the classification branch of
the RBD. The 28 × 28 floating-number mask output is then
resized to the RoI size, and binarized at a threshold of 0.5.
Some example masks are shown in Figure 13.

Fig. 12. Head architecture of the proposed defect detection network.
Numbers denote spatial resolution and channels. Arrows denote either
convolution, deconvolution, or fully connected layers as can be inferred
from context (convolution preserves spatial dimension while deconvolution
increases it). All convolution layers are 3×3, except the output convolution
layer which is 1×1. Deconvolution layers are 2×2 with stride 2. The ReLU
activation function is used in hidden layers.

V. IMPLEMENTANTION DETAILS AND
EXPERIMENTAL RESULTS

This section describes the implementation of the casting
defect detection system described in the previous section.
The model is primarily trained and evaluated using images
from the GDXray dataset [13]. The Castings series of this
dataset contains 2727 X-ray images mainly from automotive
parts, including aluminum wheels and knuckles. The casting



Fig. 13. Examples of floating point masks. The top row shows predicted bounding boxes, and the bottom row shows the corresponding predicted
segmentation masks. Masks are shown here at 28 x 28 pixel resolution, as predicted by the instance segmentation module. In the proposed defect detection
system, the segmentation masks are resized to the shape and size of the predicted bounding box.

defects in each image are labelled with tight fitting bounding-
boxes. The size of the images in the dataset ranges from
256 × 256 pixels to 768 × 572 pixels. To ensure the results
are consistent with previous work, the training and testing
data is divided in the same way as described in [47].

A. Training
The model is trained in a manner similar to many other

modern object detection networks, such as Faster R-CNN
and Mask R-CNN [44], [11]. However, several adjustments
are made to account for the small size of casting defects,
and the limited number of images in the GDXray dataset.
Images are scaled so that the longest edge is no larger than
768 pixels. Images are then padded with black pixels to a size
of 768 × 768 pixels. Additionally, the images are randomly
flipped horizontally and vertically at training time. No other
form of preprocessing is applied to the images at training or
testing time.
Transfer learning is used to reduce the total training time and
improve the accuracy of the trained models. The ResNet-101
feature extractor is initialized using weights from a ResNet-
101 network that was trained on the ImageNet dataset. The
defect detection system is then trained on the COCO dataset
[58]. When pretraining the model, the learning rates are
adjusted to the schedule outlined in [46]. Training on the
relatively large COCO dataset ensures that each model is
initialized to localize common objects before it is trained to
localize defects. Training on the COCO dataset is conducted
using 8 NVIDIA K80 GPUs. Each mini-batch has 2 images
per GPU and each image has 100 sampled RoIs, with a ratio
of 1:3 of positive to negatives. As in Faster R-CNN, an RoI
is considered positive if it has IoU with a ground-truth box
of at least 0.5 and negative otherwise.
The defect detection system is then fine-tuned on the
GDXray dataset as follows: The output layers of the RBD
and instance segmentation layers are resized, as they return
predictions for the 80 object classes in the COCO dataset.
More specifically, the output shape of these layers is resized
to accommodate for two output classes, namely Casting

Defect and Background. The weights of the resized layers are
initialized randomly using a Gaussian distribution with zero
mean and a 0.01 standard deviation. The defect detection
system is trained on the GDXray dataset for 80 epochs,
holding all parameters fixed except those of the output layers.
The defect detection system is then trained further for an
additional 80 epochs, without holding any weights fixed.

B. Inference

The defect detection system is evaluated on a 3.6 GHz
Intel Xeon E5 desktop computer machine with 8 CPU
cores, 32 GB RAM, and a single NVIDIA GTX 1080
Ti GPU. The models are evaluated with the GPU being
enabled and disabled. For each image, the top 600 region
proposals are selected by objectness score from the RPN and
evaluated using the RBD. Masks are only predicted for the
top 100 bounding boxes from the RBD. The proposed defect
detection system is trained with and without the instance
segmentation module, to investigate whether the inclusion
of the instance segmentation module changes bounding box
prediction accuracy. The accuracy of the system is evaluated
using the GDXray Castings dataset. Every image in the
testing data set is processed individually (no batching). The
accuracy of each model is evaluated using the mean of
average precision (mAP) as a metric [60]. The IoU metric is
used to determine whether a bounding box prediction is to
be considered correct. To be considered a correct detection,
the area of overlap ao between the predicted bounding box
Bp and ground truth bounding box Bgt must exceed 0.5
according to the formula:

C. Main Results

As shown in Table 2, the speed and accuracy of the
defect detection system is compared to similar systems
from previous research [47]. The proposed defect detection
system exceeds the previous state-of-the-art performance on
casting defect detection reaching an mAPbbox of 0.957. Some
example outputs from the trained defect detection system are
shown in 14. The proposed defect detection system exceeds



Fig. 14. Example detections of casting defects from the proposed defect detection system.

the Faster R-CNN model from [47] in terms of accuracy and
evaluation time. The improvement in accuracy is thought to
be largely due to benefits arising from joint prediction of
bounding boxes and segmentation masks. Both systems take
a similar amount of time to evaluate on the CPU, but the
proposed system is faster than the Faster R-CNN system
when evaluated on a GPU. This difference arises probably
because our implementation of Mask R-CNN is more ef-
ficient at leveraging the parallel processing capabilities of
the GPU than the Faster R-CNN implementation used in
[47]. It should be noted that single stage detection systems
such as the SSD ResNet-101 system proposed in [47] have a
significantly faster evaluation time than the defect detection
system proposed in this article.
When the proposed defect detection system is trained with-
out the segmentation module, the system only reaches an
mAPbbox of 0.931. That is, the bounding-box prediction
accuracy of the proposed defect detection system is higher
when the system is trained simultaneously on casting defect
detection and casting defect instance segmentation tasks.
This is a common benefit of multi-task learning which
is well-documented in the literature [11], [44], [56]. The
accuracy is improved when both tasks are learned in parallel,
as the bounding box and segmentation modules use a shared
representation of the input image (from the feature extractor)
[?]. However, it should be noted that the proposed system is
approximately 12 % slower when simultaneously performing
object detection and image segmentation. The memory re-
quirements at training and testing time are also higher, when
object detection and instance segmentation are performed
simultaneously compared to pure object detection. For infer-
ence, the GPU memory requirement for simultaneous object
detection and instance segmentation is 9.72 Gigabytes, which
is 9 % higher than that for object detection alone.

D. Error Analysis

The proposed system makes very few misclassifications on
GDXray Castings test dataset. In this section two example
misclassifications are presented and discussed. Figure 15
provides an example where the defect detection system
produces a false positive detection. In this case, the proposed
defect detection system identifies a region of the X-ray image

Fig. 15. An example of a false positive casting defect label, where a
casting defect is incorrectly detected in the X-ray machine itself. This label
is considered a false positive as ground-truth defects should only be labeled
on the object being scanned.

Fig. 16. Casting defect misclassification due to bounding box regression
error. In this instance, the defect detection system failed to regress the correct
bounding box coordinates resulting in a misclassification according to the
IoU metric.

which appears to be a defect in the X-ray machine itself.
This defect is not included GDXray castings dataset, and
hence is labelled as a misclassification. Similar errors could
be avoided in future systems by removing bounding box
predictions which lie outside the object being imaged. Figure
16 provides an example where the bounding box coordinates
are incorrectly predicted, resulting in a misclassification
according to the IoU metric. However, it should be noted that
the label in this case is particularly subjective; the ground
truth could alternatively be labelled as two small defects
rather than one large one.

VI. Discussion

During the development of the proposed casting defect
detection system, a number of experiments were conducted
to better understand the system. This section presents the
results of these experiments, and discusses the properties of
the proposed system.



TABLE II
Comparison of the accuracy and performance of each model on the defect detection task. Results are compared to the previous state-of-the-art results,

presented in [47].

Method Evaluation time /
image using CPU [s]

Evaluation time /
image using GPU [s] mAPbbox mAPbbox

Defect detection system
(Object detection only) 5.340 0.145 0.931 -

Defect detection system
(Detection & segmentation) 6.240 0.165 0.957 0.930

Faster RCNN 6.319 0.512 0.921 -

SSD ResNet101 0.141 0.051 0.762 -

Fig. 17. Relationship between casting defect detection accuracy, evaluation
speed, and the number of region proposals.

A. Speed / Accuracy Tradeoff

There is an inherent tradeoff between speed and accuracy
in most modern object detection systems [46]. The number
of region proposals selected for the RBD is known to affect
the speed and accuracy of object detection networks based
on the Faster R-CNN framework [11], [44], [56]. Increasing
the number of region proposals decreases the chance that
an object will be missed, but it increases the computational
demand when evaluating the network. Researchers typically
achieve good results on complex object detection tasks using
3000 region proposals. A number of tests were conducted to
find a suitable number of region proposals for the defect
detection task. Figure 17 shows the relationship between ac-
curacy, evaluation time and the number of region proposals.
Based on these results, the use of 600 region proposals is
considered to provide a good balance between speed and
accuracy.

B. Data Requirements

As with many deep learning tasks, it takes a large amount
of labelled data to train an accurate classifier. To evaluate
how the size of the training dataset influences the model
accuracy, the defect detection system is trained several times,

Fig. 18. Mean average precision (mAP) on the test set, given different sized
training sets. The object detection accuracy (mAPbbox) and segmentation
accuracy (mAPmask) are both shown.

each time with a different amount of training data. The
mAPbbox and mAPmask performance of each trained system is
observed. Figure 18 shows how the amount of training data
affects the accuracy of the trained defect detection system.
The object detection accuracy (mAPbbox) and segmentation
accuracy mAPmask improve significantly when the size of the
training dataset is increased from ∼1100 to 2308 images. It
also appears that a large amount of training data is required
to obtain satisfactory instance segmentation performance
compared to defect detection performance. Extrapolating
from Figure 18 suggests that a higher mAP could be achieved
with a larger training dataset.

C. Training Set Augmentation

It is well-documented that training data augmentation can
be used to artificially increase the size of training datasets,
and in some cases, lead to increased prediction accuracy
[11], [56]. The effect of several common image augmentation
techniques on testing accuracy is evaluated in this section.
Randomly horizontally flipping images is a technique where
images are horizontally flipped at training time. This tech-
nique tends to be beneficial when training CNNs, as the label
of an object is agnostic to horizontal flipping. On the other
hand, vertical flipping is less common as many objects, such



as cars and trains, seldomly appear upside-down. Gaussian
blur is a common technique in image processing as it helps
to reduce random noise that may have been introduced by
the camera or image compression algorithm [61]. In this
study, the Gaussian blur augmentation technique involved
convolving each training image with a Gaussian kernel using
a standard deviation of 1.0 pixels. Adding Gaussian noise
to the training images is also a common technique for
improving the robustness of the trained model to noise in the
input images. In this study, zero-mean Gaussian noise with a
standard deviation equal to 0.05 of the image dynamic range,
is added to each image. In this context, the dynamic range
of the image is defined as the range between the darkest
pixel and the lightest pixel in the image. The augmentation
techniques are applied during the training phase only, with
the original images being used at test time.

D. Transfer Learning

This study hypothesized that transfer learning is largely
responsible for the high prediction accuracy obtained by
the proposed defect detection system. The system is able
to generate meaningful image features and good region
proposals for GDXray casting images, before it is trained
on the GDXray Casting dataset. This is made possible
by initializing the ResNet feature extractor using weights
pretrained on the ImageNet dataset and subsequently training
the defect detection system on the COCO dataset. To test
the influence of transfer learning, three training schemes are
tested: In training scheme (a) the proposed defect detection
system is trained on the GDXray Castings dataset without
pretraining on the ImageNet or COCO datasets. Xavier
initialization [62] is used to randomly assign the initial
weights to the feature extraction layers. In training scheme
(b) the same training process is repeated but the feature
extractor weights are initialized using weights pretrained on
the ImageNet dataset. Training scheme (c) uses pretrained
ImageNet weights COCO pretraining, as described in the
”Defect Detection System” section.
In Table 4, each trained system is evaluated on the GDXray
Castings test dataset. Training scheme (a) does not leverage
transfer learning, and hence the resulting system obtains a
low mAPbbox of 0.651 on the GDXray Castings test dataset.
In training scheme (b), the feature extractor is initialized
using pretrained ImageNet, and hence the system obtains
a higher mAPbbox of 0.874 on the same dataset. By fully
leveraging transfer learning, training scheme (c) leads to a
system that obtains a mAPbbox of 0.957, as described earlier.
In Table 4, the mAP of the trained systems is also reported on
the GDXray Castings training dataset. In all cases, the model
fits the training data closely, demonstrating that transfer
learning affects the systems ability to generalize predictions
to unseen images rather than its ability to fit to the training
dataset.

E. Weld defect segmentation with multi-class learning

The ability to generalize a model to multiple tasks is
highly beneficial in a number of applications. The pro-

Fig. 19. Comparison of weld defect detections to ground truth data, using
one image from the GDXray Welds series. The task is primarily an instance
segmentation task, so the ground truth bounding boxes are not shown.

posed defect detection system was retrained on both the
GDXray Castings dataset and the GDXray Welds dataset.
The GDXray Welds dataset contains 88 annotated high-
resolution X-ray images of welds, ranging from 3176 to 4998
pixels wide. Each high-resolution image is divided horizon-
tally into 8 smaller images for testing and training, yielding
a total of 704 images. 80 % of the images are randomly
assigned to the training set, with the remaining 20 % assigned
to the testing set. Unlike the GDXray Castings dataset, the
GDXray Welds dataset is only annotated with segmentation
masks. Bounding boxes are fitted to the segmentation masks
by identifying closed shapes in the mask using a binary
border following algorithm [64], and wrapping each shape in
a tightly fitting bounding box. The defect detection system
is simultaneously trained on images from the Castings and
Welds training sets. The defect detection system is able to
simultaneously identify casting defects and welding defects,
reaching a segmentation accuracy mAPmask of 0.850 on the
GDXray Welds test dataset. Some example predictions are
shown in Figure 19. The detection and segmentation of
welding defects can be considered very accurate, especially
given the small size of the GDXray Welds dataset with
only 88 high-resolution images. Unfortunately, there is no
measurable improvement on the accuracy of casting defect
detection when jointly training on both datasets



TABLE III
Influence of data augmentation techniques on test accuracy. The bounding box prediction accuracy (mAPbbox and instance segmentation accuracy mAPmask

are reported on the GDXray Castings test set.

Horizontal Flip Vertical Flip Gaussian Blur Gaussian Noise Random
Cropping mAPbbox mAPmask

- - - - - 0.907 0.889

Yes - - - - 0.936 0.920

Yes Yes - - - 0.957 0.930

Yes Yes Yes - - 0.854 0.832

Yes Yes - Yes - 0.897 0.883

Yes Yes - - Yes 0.950 0.931

TABLE IV
Quantitative results indicating the influence of transfer learning on the accuracy of the trained defect detection system. The bounding box prediction
accuracy mAPbbox and instance segmentation accuracy mAPmask are reported on the GDXray Castings training dataset and GDXray Castings test dataset.

GDXRay Castings Training Set GDXRay Castings Test Set

Training
Scheme

Feature Extractor
Initialization

Pretraining on MS
COCO Dataset mAPbbox mAPmask mAPbbox mAPmask

a Xavier Initialization
[63] (Random) No 0.970 0.960 0.651 0.420

b Pretrained ImageNet
Weights No 1.00 0.981 0.874 0.721

c Pretrained ImageNet
Weights Yes 1.00 0.991 0.957 0.930

F. Defect Detection on Other Datasets Using Zero-Shot
Learning

A good defect detection system should be able to classify
defects for a wide range of different objects. The defect
detection system can be said to generalize well if it is
able to detect defects in objects that do not appear in the
training dataset. In the field of machine learning, zero-shot
transfer is the process of taking a trained model, and using
it, without retraining, to make predictions on an entirely
different dataset. To test the generalization properties of
the proposed defect detection system, the trained system
is tested on a range of X-ray images from other sources.
The system correctly identifies a number of defects in a
previously unseen X-ray image of a jet turbine blade, as
shown in Figure 20. The jet turbine blade contains five
casting defects, of which four are identified correctly. It
is unsurprising that the system fails to identify one of the
casting defects in the image, as there are no jet engine turbine
blades in the GDXray dataset. Nonetheless, the fact that the
system can identify defects in images from different datasets
demonstrates its potential for generalizability and robustness.

VII. Summary and Conclusion

This work presents a defect detection system for simulta-
neous detection and segmentation of defects in metal cast-
ings. This ability to simultaneously perform defect detection
and segmentation makes the proposed system suitable for

Fig. 20. Defect detection and segmentation results on an X-ray image of a
jet turbine blade. The training set did not contain any turbine blade images.
The defect detection system correctly identifies four out of the 5 five defects
in the image. The top right defect is incorrectly classified as both a Casting
Defect and a Welding Defect.

a range of automated quality control applications. The pro-
posed defect detection system exceeds state-of-the-art perfor-
mance for defect detection on the GDXray Castings dataset
obtaining a mean average precision (mAPbbox) of 0.957, and
establishes a new benchmark for instance segmentation on
the same dataset. This high-accuracy system is developed
by leveraging a number of powerful paradigms in machine
learning, including transfer learning, dataset augmentation,
and multi-task learning. The benefit of the application of
each of these paradigms was evaluated quantitatively through



extensive ablation testing.
The defect detection system described in this work is able to
detect casting and welding defects with very high accuracy.
Future work could involve training the same network to
detect defects in other materials such as wood or glass. The
proposed defect detection system was designed for multi-
class detection, so the system could naturally be extended
detect a range of different defect types in multiple materials.
The defect detection system described in this work could
also be trained to detect defects in additive manufacturing
applications.
The proposed defect detection system is accurate and per-
formant enough to be useful in a real manufacturing setting.
However, the training process for the system is complex
and computationally expensive. Future work could focus
on developing a standardized method of representing these
models, making it easier to distribute the trained models.
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