AN INFORMATION MODELING FRAMEWORK FOR BRIDGE MONITORING

Seongwoon Jeong!, Rui Hou?, Jerome P. Lynch?, Hoon Sohn®, Kincho H. Law!

"Department of Civil and Environmental Engineering, Stanford University,
473 Via Ortega, Stanford, CA 94305-4020, USA
2Department of Civil and Environmental Engineering, University of Michigan,
2350 Hayward St., Ann Arbor, MI 48109-2125, USA
*Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and
Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

ABSTRACT

Bridge management involves a variety of information from different data sources, including geometric model,
analysis model, bridge management system (BMS) and structural health monitoring (SHM) system. Current
practice of bridge management typically handles these diverse types of data using isolated systems and
operates with limited use of the data. Sharing and integration of such information would facilitate meaningful
use of the information and improve bridge management, as well as enhance bridge operation and maintenance
and public safety. In many industries, information models and interoperability standards have been developed
and employed to facilitate information sharing and collaboration. Given the success of building information
modeling (BIM) in the Architecture, Engineering and Construction (AEC) industry, efforts have been
initiated to develop frameworks and standards for bridge information modeling (BrIM). Current
developments of BrIM focus primarily on the physical descriptions of bridge structures, such as geometry
and material properties. This paper presents an information modeling framework for supporting bridge
monitoring applications. The framework augments and extends the prior work on the OpenBrIM standards
to further capture the information relevant to engineering analysis and sensor network. Implementation of
the framework employs an open-source NoSQL database system for scalability, flexibility and performance.
The framework is demonstrated using bridge information and sensor data collected from the Telegraph Road
Bridge located in Monroe, Michigan. The results show that the bridge information modeling framework can
potentially facilitate the integration of information involved in bridge monitoring applications, and
effectively support and provide services to retrieve and utilize the information.

Keywords: Bridge information modeling, bridge management, bridge monitoring, NoSQL database

1. INTRODUCTION

Bridge management involves copious and diverse information, including geometry, engineering model,
inspection reports and monitoring data. Current practice of bridge management employs isolated systems to
manage and process different types of information wherein information managed in one system is neither
shared among other systems nor integrated with information managed by other systems. However, as bridge
monitoring and management technologies advance and the number of bridge monitoring and management
applications increases, the demand for efficient information sharing and data exchange will grow. Sharing
and integration of such information would enable meaningful uses of information and improve bridge
management services, as well as enhance bridge operation, maintenance and public safety.

Much research has been conducted in developing data exchange and interoperability standards in
many industry domains to avoid error-prone and time-consuming manual data conversion as well as to
facilitate automated exchange of information and machine-to-machine interaction (Nagel et al. 1980, ISO
1994). In the architecture, engineering and construction (AEC) industry, building information modeling
(BIM) has been widely adopted as a means to support integrated project delivery process and data exchange

throughout the project lifecycle (Eastman et al. 2011). One of the de facto BIM standard data models is the
Industry Foundation Classes (IFC) (buildingSMART 2016). The IFC standard specifies platform-neutral file
format using EXPRESS modeling language to enable digital data exchange among building design and
analysis systems. The IFC-EXPRESS schema has been translated into XML (eXtensible Markup Language)
format, a commonly used representation of industry standards. (buildingSMART 2016).

Given the success of BIM, research efforts have been initiated to develop frameworks and standards
for bridge information modeling (BrIM). The main objectives of BrIM research are twofold: enabling an
integrated bridge data repository and developing electronic data exchange standards for bridge applications
(Chen and Shirolé 2006). Focusing on the spatial and physical entities of bridge structures, IFC-Bridge for
bridge modeling has been proposed (Yabuki et al. 2006). There have also been research efforts towards
developing information modeling framework for bridge management. Marzouk and Hisham (2011) proposed
a BrIM framework to support bridge management by connecting a 3-dimensional bridge model, inspection
sheets and structural condition assessment modules. Samec ef al. (2014) developed a BrIM system, along
with a 3-dimensional visualization tool and a mobile application, to manage bridge life cycle information
that includes inspection and maintenance data. To facilitate information interoperability in the bridge domain,
one of the most notable efforts for developing software-neutral BrIM data schema is the OpenBrIM standards
(Chen and Shirol¢ 2013). Supported by the US Federal Highway Administration (FHWA), OpenBrIM is “a
bridge industry consensus standard for engineering data description, modeling, and interoperability for
integrated structural design, construction, and lifecycle management of bridges” (see
https://collaboration.fhwa.dot.gov/dot/thwa/ascbt/brim/). OpenBrIM uses XML as the basic syntax to define
object-based information model (ParamML 2016). OpenBrIM (version 1.0 and version 2.0) was originally
developed by the research team at the State University of New York at Buffalo (Chen 2013). The current
version (version 3.0) of OpenBrIM is led by CH2M Hill and sponsored by FHWA (Bartholomew 2015). The
efforts so far have been focused mostly on the 3-dimensional representation of bridge structures. As such,
current OpenBrIM standards lack the data entities for representing the information pertinent to bridge
monitoring applications. In our framework, we use the OpenBrIM as the base schema and extend it to include
data entities for capturing bridge monitoring information. Specifically, we extend the standard OpenBrIM
schema to include engineering entities for analysis modeling and sensor information.

Relational database (RDB) systems are often employed as the primary data storage for bridge
modeling, bridge management and bridge monitoring applications (Lee and Jeong. 2006, Marzouk and
Hisham 2011, Robert et al. 2003, Wang et al. 2009, Li et al. 2006, Zhou et al. 2006). However, the tabular
structure of RDB is not convenient for handling semi-structured data (e.g., XML document and tagged-text)
and unstructured data (e.g., text and image), which are commonly found in engineering applications. For
bridge monitoring, the collected sensor data need to be managed and processed efficiently. Because of the
variable lengths in the data records, the data sets are not conveniently structured in a RDB system. Research
has shown that RDB systems have fundamental drawbacks in satisfying the performance and scalability
requirements for the new era of “big data” with a variety of formats and a large volume of data (Stonebraker
et al. 2007). To overcome the shortcomings of RDB systems for handling big data, NoSQL (Not-Only-SQL)
database systems have been widely adopted in applications such as real-time analysis, knowledge
representation and large-scale data management (Hecht and Jablonski 2011). Recent studies have shown that,
in comparing to RDB systems, NoSQL systems enable higher scalability, better flexibility and faster
performance by reducing some of the consistency requirements and supporting more flexible data schemas
(Li and Manoharan 2013, Grolinger ef al. 2013). Because of their flexibility, scalability and performance,
NoSQL database systems can be an effective alternative for handling bridge monitoring and management
data and supporting bridge monitoring applications (Jeong ef al. 2016).

In this paper, we present a bridge information modeling (BrIM) framework for bridge monitoring
applications. The framework facilitates data exchange and integration of information involved in bridge
management applications. The BrIM framework adopts and extends the data schema of the OpenBrIM
standards to facilitate data interoperability among bridge monitoring and management applications. We
define data entities to capture information that is needed for bridge engineering analysis, sensor description
and bridge monitoring. The BrIM framework also provides data link to the time-series sensor data and image
data so as to allow users to locate the data via the information model. Apache Cassandra database (Lakshman
and Malik 2010), an open-source column family NoSQL database, is employed as the backend database

system to guarantee flexibility and scalability of the framework. Scripts are written to illustrate data exchange
between different data formats, such as Cassandra data schema, BrIM model and data model required by
bridge monitoring applications. To demonstrate the NoSQL-based BrIM framework, the bridge model and
the sensor data collected from the Telegraph Road Bridge (TRB) located in Monroe, Michigan are employed
in this study.

2. BRIDGE INFORMATION MODEL

This section describes a bridge information model designed for bridge monitoring applications. Engineering
information modeling, such as BIM, typically adopts an object-based approach in which an information
model is composed of objects, each of which contains attributes about the object (Eastman 1999). Information
modeling standards and tools specify a predefined set of object families that are used to capture the data
entities involved in the targeted domain. For instance, the OpenBrIM standards include object families for
describing 3-dimensional geometry of bridge structure (Bartholomew ef al. 2015). The bridge information
modeling (BrIM) schema described herein extends the OpenBrIM schema with newly defined objects for
representing engineering analysis model and sensor information. New objects are identified based on relevant
standards and software tools. Specifically, we examine CSI Bridge (a structural modeling and analysis
software tool) and SensorML (an open standard for sensor description) to ensure that the BrIM is capable of
supporting typical applications in bridge engineering.

2.1 OpenBrIM

The OpenBrIM standards describe a bridge structure as a collection of hierarchical objects and their
parameters (Bartholomew ef al. 2015). Each object represents either a physical entity (e.g., beam, column
and deck) or a conceptual entity (e.g., project, group and unit system) of a bridge structure. On the other hand,
each parameter either represents a property (e.g., length, width and thickness) of an object or refers to another
object. Figure 1(a) and (b) show the schema definitions of a basic “Object” entity and a “Parameter”
entity, respectively, in OpenBrIM (OpenBrIM 2016). The data schema of the basic “Object” entity includes
attributes, such as N (name), X, Y and Z (coordinates), RX, RY and RZ (angles of rotation), and AX, AY and
AZ (angles of rotation about the origin of the 3-dimensional workspace). Similarly, the data schema of basic
“Parameter” entity includes attributes, such as V (value), T (type), D (description), UC (name of unit
system), UT (type of unit), Category (category of the parameter) and Role (specifying whether a user can
edit the parameter). The data schema of any other data entities in OpenBrIM is defined by extending the basic
“Object” and “Parameter” entities.

To encode bridge information, OpenBrIM standards use ParamML, which is a variation of the
extensible markup language (XML) for engineering applications (Bartholomew et al. 2015). For example,
Figure 2(a) shows the data schema of the Shape object written in the XML schema definition (XSD) format
(OpenBrIM 2016). In the schema definition, xs refers to the XML schema namespace
(http://www.w3.0rg/2001/XMLSchema). The definitions of the data components from the XML schema
namespace are as follows (http://www.w3schools.com/xml).

e xs:complexType includes other elements and/or attributes.

e xs:complexContent specifies extensions or restrictions ona xs:complexType
element.

e xs:extension extends xs:complexType element.

e xs:sequence defines the child elements that can occur.

e xs:element defines an XML element.

e xs:alternative dynamically assigns the type of its parent xs:element based on the
specified test condition.

e xs:attribute contains data related to its parent entity.

e xs:assert specifies the condition used to validate XML data entity.

<xs:complexType name="Object" abstract="true" mixed="false">
<xs:attribute name="N" type="xs:string" />
<xs:attribute name="X" type="xs:string" />
<xs:attribute name="Y" type="xs:string" />
<xs:attribute name="Z" type="xs:string" />
<xs:attribute name="RX" type="xs:string" />
<xs:attribute name="RY" type="xs:string" />
<xs:attribute name="RZ" type="xs:string" />
<xs:attribute name="AX" type="xs:string" />
<xs:attribute name="AY" type="xs:string" />
<xs:attribute name="AZ" type="xs:string" />
<!-- The rest is omitted-->

</xs:complexType>

(a) Object definition

<xs:complexType name="Parameter" abstract="true">
<xs:attribute name="V" type="xs:string" use="required" />
<xs:attribute name="T" type="xs:string" default="Expr" />
<xs:attribute name="D" type="xs:string" />
<xs:attribute name="UC" type="xs:string" />
<xs:attribute name="UT" type="xs:string" />
<xs:attribute name="Category" type="xs:string" />
<xs:attribute name="Role" type="xs:string" />

</xs:complexType>

(b) Parameter definition
Figure 1. Definition of a fundamental Object and Parameters (OpenBrIM 2016)

Given the definitions of the data components, the schema definition for a Shape object as shown in Figure
2(a) specifies the following. The xs : extension indicates that Shape is a subtype of “Object” entity. The
xs:sequence component contains the eligible child objects and parameters using “O” and “P” tags,
respectively. As shown in the xs:alternative element, the type of child objects is assigned based on
the T (type) attribute of the objects. Similarly, the type of child parameters is assigned based on the N (name)
attribute of the parameters. Furthermore, the data schema allows rules to be specified for the object. For
example, the use="required" option in xs:attribute enforces that every Shape object must
include the T (type) attribute, which has value “shape”. Another example is the xs:assert element that
specifies the condition that the “A Shape object must contain at least 3 Point objects.”

The schema structure in XSD format can be displayed as an XSD diagram using visualization tools,
such as Liquid XML Studio (https://www.liquid-technologies.com/xml-studio) and XMLSpy
(https://www.altova.com/xmlspy.html). For example, the schema structure of the Shape object as shown in
Figure 2(a) can be displayed by an XSD diagram as shown in Figure 2(b). It should be noted that the names
of the data components are abbreviated in the diagram. In addition, the numbers written at the left side of
the XML components represent the possible numbers of the components. For example, “0 . . *”” next to the
“0” element in Figure 2(b) means that its parent component (i.e., Shape object) can have zero to any number
of child “O” elements (i.e., child objects). In the following sections, we will describe XML data schema using
the XSD diagrams for readability purpose. Specifically, we use Liquid XML Studio to display XML schema.

The current OpenBrIM standards include schema definitions for a collection of objects and
parameters with particular emphasis on the geometry information of a bridge, but with few entities related to
engineering model and material for structural analysis and structural monitoring.

<xs:complexType name="Shape" mixed="false">
<xs:complexContent>
<xs:extension base="Object">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="0" minOccurs="0" maxOccurs="unbounded">
<xs:alternative test="Q@T='Point'" type="Point" />
<xs:alternative test="Q@T='Shape'" type="Shape" />
<xs:alternative test="Q@T='Circle'" type="Circle" />
<xs:alternative type="xs:error" />
</xs:element>
<xs:element name="P" minOccurs="0" maxOccurs="unbounded">
<xs:alternative test="@N='Material'" type="ParamMaterial" />
<xs:alternative type="xs:error" />
</xs:element>
</xs:sequence>
<xs:attribute name="Material" type="xs:string" />
<!-- omitted -->
<xs:attribute name="T" type="xs:string" fixed="Shape" use="required" />
<xs:assert test="count (O[Q@T='Point']) ge 3"
xerces:message="Shape object must contain minimum 3 Point object(s)." />
<!-- omitted -->
</xs:extension>
</xs:complexContent>
</xs:complexType>

(a) Data schema in XSD format

@r : string
@ Object : <None>
o Eo : <None>
=® @T='Point' : Point
0.* =® @T="Shape' : Shape
.E 2 . .
E® shape : Object =® @T="Circle' : Circle
=9 : error
o Elp : <None>

=® @N="Material' : ParamMaterial
=® : error
& count(O[@T="Point']) ge 3
(b) XSD diagram

Figure 2. Data schema of the Shape object (OpenBrIM 2016)

2.2 Finite Element modeling

The OpenBrIM standards currently include only a few basic objects for finite element (FE) modeling
(OpenBrIM 2016). The objects defined in the OpenBrIM standards are insufficient for FE modeling because
structural analysis software tools often involve much more complex data entities. Using CSI Bridge, one of
the widely used commercial bridge modeling and analysis tools (Computer & Structures, Inc. 2016), as an
example, an FE model for an overpass bridge would consist of about fifty tables, where each table contains
several attributes, many of which are not defined in the current OpenBrIM standards. For the representation
of FE model, we extend the OpenBrIM standards’ model by adding the data entities required by CSI Bridge
software to OpenBrIM standards’ data schema definition.

While information models for finite element analysis exist (such as STEP Part 104 (ISO 2000) and
Industry Foundation Classes (buildingSMART 2016)), the existing models usually lack data entities to
represent complex load and analysis conditions (such as time-variant vehicle load) required in bridge
engineering applications. This study focuses specifically on FE model for bridge engineering applications.
In this work, the data entities for FE modeling are divided mainly into two categories: data entities for
representing bridge structure and data entities for representing load and analysis conditions. The OpenBrIM
standards include some of the objects that can be extended to represent bridge structure information. On the
other hand, the OpenBrIM standards include very limited objects for representing load and analysis
conditions. Therefore, we focus on enhancing the data entities of existing objects with new parameters and
child objects for data entities for representing a bridge structure, as well as on defining new objects for
representing the load and analysis conditions.

2.2.1 Data entities for representing bridge structure

The OpenBrIM standards include Node, FELine, FESurface and Material objects that can be used
for the representation of the geometry and material properties of bridge structures. However, the current
OpenBrIM schema definitions of these objects are not sufficient for describing an FE model for a typical
software tool. A Node object, which is the most fundamental data entity in FE modeling, specifies the nodal
coordinates and restraints. The Node object as currently defined in the OpenBrIM standards, however, lacks
parameters necessary for defining a reference coordinate system, which is convenient for creating models by
using multiple coordinate systems. To augment the Node object in OpenBrIM, we create a new object
FECoordniateSystem that includes information about the coordinate type and the origin of the reference
system. We add to the data schema of Node object a reference to FECoordniateSystemas shown in the
XSD diagram in Figure 3.

@ar : string

€ Object : <None>

0. 0. .
of Elp : <None> New data entity

® @N='FECoordinateSystem' : ParamFECoordinateSystem

©® Node : Object
® @N="X': ParamX

= @N='Y' : ParamY * Data entities for nodal
restraint are omitted for
= @N='Z' : ParamZ space

& count(P[@N="FECoordinateType']) le 1
Figure 3. Entity: Node

@rT : string
@ FELine : Object -+ (€ Object : <None>
[0.* .
o] Elp : <None> New data entity

® @N='FELineMesh' : ParamFELineMesh
® @N='FELineRelease' : ParamFELineRelease

¥ @N='FELineSection' : ParamFELineSection

=® @N='Node1' : ParamNode1
" ...
& @N="Node2' : ParamNode2 " Data entities for
line offsets are
=® @N="Section' : ParamSection - omitted for space
=P : error

Figure 4. Entity: FELine

An FELine object represents an element that consists of two nodes and section information in an
FE model. The current definition of FELine object in OpenBrIM includes data entities for describing the
two Nodes and Section, but the object definition does not include data entities to represent information

about discretization and member-end-release. In addition, the Section object, while it is suitable to
represent user-defined section shape composed of many section points, does not allow representing standard
section shapes that are described by other parameter types. We extend the description of FEL1ine by creating
new objects, namely FELineMesh, FELineRelease and FELineSection to represent mesh
information, member-end release information and standard section shapes, respectively. The data schema
diagram of the FELine object that includes parameters referring to the new objects is shown in Figure 4.

Similarly, the current definition of FESurface object in OpenBrIM represents an element consists
of vertices, thickness and material types, such as shell and wall, but the schema does not include discretization
information, section information (e.g., surface type and material angle) and surface-constraint information
(e.g., edge constraint). Furthermore, the current FESur face object can only have up to four vertices, while
elements such as shell element can compose of more than four vertices. To extend the description of the
FESurface object, we create new objects, namely FESurfaceMesh, FESurfaceSection and
FESurfaceConstraint, to represent, respectively, the discretization information, section information,
and surface constraint information. We also increase the number of vertices (i.e., Nodes) that an
FESurface object can contain up to thirty vertices. (It should be noted that the number can easily be
modified. Furthermore, as discussed later, a NoSQL database allows variable length records to easily handle
any number of vertices in an element.) The data schema diagram of the enhanced FESurface object is
shown in Figure 5.

@r : string
(©@® FESurface : Object -+ (€0 Object : <None>
0 o8 0" Elp . <None> New data entity

= @N='FESurfaceMesh' : ParamFESurfaceMesh
® @N="FESurfaceSection' : ParamFESurfaceSection

¥ @N='FESurfaceConstraint' : ParamFESurfaceConstraint

® @N='Node1' : ParamNode1
® @N='Node2' : ParamNode2
® @N='Node3' : ParamNode3

=® @N='Noded4' : ParamNode4

= @N='Node5' : ParamNode5 New data entity

® @N='Node6' : ParamNode6

® @N='"Node30' : ParamNode30

=® @N='Thickness' : ParamThickness = * Data entities for
surface offsets are
iy @N="Material' : ParamMaterial omitted for space

=9 : error

Figure 5. Entity: FESurface

A Material object defined in OpenBrIM is used to represent material property data for concrete
and steel elements. The Material object includes basic material properties, such as modulus of elasticity,
Poisson ratio, density, steel yield stress and concrete 28-day strength. To further enhance the definition of
the Material object for structural analysis purpose, we add new parameters, such as Symmetricity,
TemperatureDependency, ShearModulus and various damping properties. The enhanced
Material object can describe uniaxial and isotropic materials in linear analyses. Currently, the definition
of Material object does not include material properties for describing orthotropic materials and for
performing nonlinear structural analysis. Figure 6 shows the data schema diagram of the enhanced
Material object.

In addition to the entities described above, new data entities and their parameters are defined, as
summarized in Table 1, to complete the schema definitions of the Node, FELine, FESurface and
Material objects in OpenBrIM.

@rT : string

& Material : Object @ Object : <None>
0. 0.7,
8 (Elp :<None> New data entity

® @N="Symmetricity' : ParamSymmetricity

® @N='"TemperatureDependency' : ParamTemperatureDependency
® @N='ShearModulus' : ParamShearModulus

® @N="ModalDampingRatio' : ParamModalDampingRatio

® @N="EffectiveYieldStress' : ParamEffectiveYieldStress

® @N='EffectiveUltimateStress' : ParamEffectiveUltimateStress

® @N='ViscousDampingMass' : ParamViscousDampingMass

® @N='ViscousDampingStiffness' : ParamViscousDampingStiffness

= @N="E' : ParamE

® @N='Nu' : ParamNu

= @N='d' : Paramd

® @N='a' : Parama

® @N='Fy' : ParamFy

= @N="Fu' : ParamFu

® @N='Fc28' : ParamFc28
= @N='Type' : ParamType
=P : error

Figure 6. Entity: Material

Table 1. Objects added to the OpenBrIM model for representing structural elements

Object Parameters
FECoordinateSystem FECoordinateType, OriginX, OriginY, OriginZ, OriginRX, OriginRY, OriginRZ
FELineMesh AutoMesh, MeshAtJoints, MeshAtFrames, NumberOfSegments, MaxMeshLength,
MaxMeshDegree
FELineSection Material, Shape, Width, Height, WebThickness, FlangeThickness
FELineRelease NodeV1, Nodel1V2, NodelV3, NodelM1, Node1M2, Node1M3,
NodeV1, Node2V2, Node2V3, Node2M1, Node2M2, Node2M3
FESurfaceMesh Meshtype, MeshGroup, NumberOfObject, NumberOfObject2,
MaxSizel, MaxSize2, MeshFromSelectedLine, MeshFromSelectedPoint,
ConstraintEdge, ConstraintFace
FESurfaceSection Material, Material Angle, SurfaceType, Thickness, BendThickness
FESurfaceConstraint EdgeConstraint

2.2.2 Data entities for representing load and analysis conditions

OpenBrIM standards include AnalysisCase, NodeLoad and Combination objects for the
representation of load conditions and analysis conditions (OpenBrIM 2016). While these objects are able to
describe simple load conditions, they do not have sufficient detailed information to describe complex load
conditions (e.g., time-variant loading) and detailed analysis conditions (e.g., convergence tolerance). CSI
Bridge, for example, describes load conditions and analysis conditions using “load patterns” and “load cases”,
respectively (CSI Bridge 2016). The load patterns are the spatial distribution of forces and other effects acting
on a structure, while the load cases are the analysis options that include applied load pattern, type of response,
and type of analysis. The load patterns and load cases are further divided into many different types of loads

(e.g., dead load, wind load and moving load) and different cases of analyses (e.g., static analysis, modal
analysis, multi-step static analysis and time history analysis). Instead of extending the existing objects, we
define a set of new objects based on the data entities defined in CSI Bridge software to describe practical
load and analysis conditions.

We create a new object FELoadPattern to represent data corresponding to load patterns. The
data schema of the FELoadPattern object is shown in Figure 7. The new object FELoadPattern has
parameters representing the types of a load (LoadType) and the self-weight factor (SelfWeightFactor).
The FELoadPattern may have child objects that contain the details of specific load patterns. For example,
a new child object FEMultiStep is created to contain information about the vehicle crossing the bridge,
its traveling lane and speed. Furthermore, a new object FELane is created to describe the vehicle lane
information, including referencing objects, stations (i.e., longitudinal distance from the referencing objects)
and width of the lane. We also create FEVehicle object and its child object FEVehicleLoad to capture
vehicle axle load data. FEVehicle object includes parameters for the name of the vehicle, a scale factor
and the number of axle loads, and FEVehicleLoad object includes parameters such as the type of load
(e.g., uniform load, axle load), width of an axle, and distance between axles.

For the representation of analysis conditions, we create a new object FEAnalysisCase. Figure 8
shows the schema diagram of FEAnalysisCase. The FEAnalysisCase object contains descriptions
for different types of analysis. The parameters are LoadType (e.g., dead load and live load),
AnalysisCaseType (e.g., static, modal, multistep-static and direct integration time history analysis) and
InitialCondition. Furthermore, FEAnalysisCase consists of child objects for specific analysis
cases. For instance, FEStatic contains data entities for representing a static analysis case and the
FEModal contains data entities for representing a modal analysis case. The object FEMultiStepStatic
includes data entities for representing the applied vehicle and the object
FEDirectIntegrationHistory includes data entities about the time-step information. Table 2
summarizes the new data entities created under the FELoadPattern and FEAnalysisCase objects to
represent load and analysis conditions.

Table 2. Objects added to the base OpenBrIM model for representing load and analysis conditions

Object Parameters Child object
FEMultiStep LoadDuration, LoadDiscretization, Vehicle, Lane, Station, StartTime, -
Direction, Speed
FEVehicle VehicleName, NumLoad FEVehicleLoad
FEVehicleLoad LoadType, UniformLoad, UniformType, AxleLoad, AxleType, -
AxleWidth, MinDistance, MaxDistance
FEVehicleClass VehicleName, ScaleFactor -
FELane LaneFrom, ReferenceLayout, ReferenceFrame, Station, Width, Offset, -

Radius, DiscretizationAlongLane, DiscretizationAcrossLane,
LeftEdgeType, RightEdgeType

FEStatic LoadType, LoadName, ScaleFactor -
FEModal ModeType, MaxNumModes, MinNumModes, FrequencyShift, -
CutoftfFrequency, ConvergenceTolerance
FEMultiStepStatic LoadType, LoadName, ScaleFactor -
FEDirect- NumStep, LoadType, LoadName, Function, ScaleFactor, -
IntegrationHistory TimeFactor, ArrivalTime, IntegrationMethod, Alpha/Beta/Gamma
(Integration parameters)

@rT : string

(€ Object : <None>

FELoadPattern : Object 0
(Elo : <None>
0.*
o 9 @T='"FEMultiStep' : FEMultiStep
o+
Ep : <None>

£® @N='LoadType' : ParamLoadType
#® @N='SelfWeightFactor' : ParamSelfWeightFactor
=9 : error

Figure 7. New entity: FELoadPattern

@rT : string
(€ Object : <None>

¥

Iy .
FEAnalysisCase : Object @O0 :<None>
9 @N='FEStatic' : FEStatic

o ® @N='FEModal' : FEModal
£® @N='FEMultiStepStatic' : FEMultiStepStatic

£? @N='FEDirectIntegrationHistory' : FEDirectIntegrationHistory

Ep : <None>
#® @N='AnalysisCaseType' : ParamAnalysisCaseType
£® @N='"InitialCondition' : ParamInitialCondition
£® @N='LoadType' : ParamLoadType
? : error

Figure 8. New entity: FEAnalysisCase

2.3 Sensor description

There have been several standards developed to describe sensor information and measurement data (Lee
2000, Pschorr et al. 2010). The Sensor Web Enablement (SWE) standards by the Open Geospatial
Consortium (OGC) are among the most common suites adopted by the sensor web community. The SWE
includes suites of standards such as Sensor Model Language (SensorML), Observation & Measurement
(O&M) and Sensor Observation Service (SOS). Among these standards, SensorML standards provide XML-
based data format for the description of sensor metadata as well as processes and processing components
associated with the sensors (Open Geospatial Consortium 2014). In this work, we draw on the data entities
defined by the SensorML standards to enable the BrIM schema to include the sensor information. Specifically,
we import SensorML’s schema and namespace to the BrIM schema by adding XSD codes as shown in Figure
9. The “sm1” prefix in the figure refers to the namespace of SensorML standards.

<xs:schema_id="openbrim3" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:sml="http://www.opengis.net/sensorml/2.0" Importing
xmlns:swe="http://www.opengis.net/swe/2.0" SensorML
xmlns:vc= p://WWWw.wW3.0rg chema-versioning" Schema

xmlns:xerces="http://xerces.apache.org"
elementFormDefault="qualified" vc:minVersion="1.1">

<xs:import namespace="http://www.opengis.net/sensorml/2.0"
schemaLocation="http://schemas.opengis.net/sensorML/2.0/sensorML.xsd" />
<xs:import namespace="http://www.opengis.net/swe/2.0"
schemaLocation="http://schemas.opengis.net/sweCommon/2.0/swe.xsd" />

</xs:schema>

Figure 9. Importing SensorML’s schema

For the description of sensors, we mainly use two SensorML elements, namely
DescribedObjectType and PositionUnionPropertyType. The DescribedObjectType
contains a rich set of data entities to encode common sensor information as follows (Open Geospatial
Consortium 2014).

e keywords are short strings that can be understood by the general users or certain community of
users.

e identification includes the terms (e.g., long name, short name, serial number and manufacturer) that
are used to identify sensors.

o classification includes terms (e.g., sensor type and intended application) that can be used to classify
Sensors.

e validTime denotes the time period during which the sensor information is valid.

o securityConstraints describe security tags for the sensor description document.

e JegalConstraints define the legal terms (e.g., privacy acts, intellectual property rights and copyrights)
for the sensor information.

e characteristics represent the physical properties (e.g., dimension and weight) and the electrical
requirements (e.g., voltage and current) of the sensor.

e capabilities are the properties (e.g., sensing range, sensitivity and threshold) that describe the sensor
measurement outputs.

e contacts refer to the information about the person or group (e.g., manufacturers, experts and
equipment owner) with knowledge of the sensor.

e documentation refers to the additional information (e.g., manual, datasheets and images) from
external sources

e history records the list of events (e.g., calibration event and maintenance event) related to the sensor.

Additionally, the PositionUnionPropertyType includes data entities to describe the sensor location
in a number of formats (e.g., textual form, coordinate and vector), so that users can choose the most
appropriate way to describe the sensor location.

Based on the DescribedObjectType and PositionUnionPropertyType defined in
SensorML, we define SensorMetadata and SensorLocation objects to describe sensor metadata and
sensor location, respectively. While we define the SensorMetadata object by simply referring to the
DescribedObjectType, we add optional data entities to the PositionUnionPropertyType to
enable SensorLocation object to describe the sensor location in a structural monitoring system. One of
the added entities is the TargetObject, whose value type is string to refer to the ID of geometric element
that the sensor is attached to. Another entity added is the FENode, whose value type is also string, to include
the ID of finite element model’s node in the case that the sensor position coincides with the node.

To describe a complete sensor that includes both the metadata and location information, we create
an object called Sensor. A Sensor object includes parameters referring to the SensorMetadata and
SensorLocation objects. The data schema diagram of the Sensor object is shown in Figure 10.

@@ Object : <None>
(€® sensor : Object |+ g.= T
] Elp : <None>
=® @N='SensorMetadata' : ParamSensorMetadata
= @N='SensorLocation' : ParamSensorLocation

=® : error

Figure 10. New entity: Sensor

Sensor : Object
(@) Object : <None>

SingleAxisAccelerometer : Sensor |

0.1 - ‘
[E] Input : SingleAxisAccelerometerlinputType -]

0.1 :
[E] Output : SingleAxisAccelerometerOutputType |-
i Sao VNSO M S

.1
[E] Parameter : SingleAxisAccelerometerParameterType |-

0.1
[E] DataLink : anyType =

@arT : string

Sensor : Object
(€D Object : <None>

TriAxisAccelerometer : Sensor |

0.1
[E] Input : TriAxisAccelerometerinputType

0.1
0.* ' [E] Output : TriAxisAccelerometerOutputType -

@rT : string
Sensor : Object
/(€ Object : <None>

StrainGauge : Sensor

0.1
[E] Input : StrainGaugelnputType -

0.1 e
[E] Output : StrainGaugeOutputType -

e8| 0.1
[E] Parameter : StrainGaugeParameterType

@r : string

Sensor : Object

/(@) Object : <None>
Thermistor : Sensor

0.1
[E] Input : ThermistorinputType |-

0.1
[E] Output : ThermistorOutputType -

. I R
; [E] Parameter : ThermistorParameterType -

@rT : string
Sensor : Object
/(€ Object : <None>

VideoCamera : Sensor

0.1 -
[E] Output : VideoCameraOutputType -

0.* | 0.1 o= =--====--------------------=-

Figure 11. New entities: Sensor subtype objects

As shown in Figure 11, the sensors, such as SingleAxisAccelerometer,
TriAxisAccelerometer, StrainGauge, Thermistor and VideoCamera that are commonly
employed in bridge monitoring, are defined as subtypes for the Sensor object. Furthermore, each of the
subtype objects contains data entities describing the input, output, parameters and data link for the particular
sensors. Table 3 summarizes the new data entities for the different sensor types. The data entities (as denoted
as grandchild elements in Table 3) of the subtype objects are designed to reflect the features of each object.
For example, the SingleAxisAccelerometer object has a single input element and a single output
element, while the TriAxisAccelerometer object has three inputs and three outputs to represent 3-
dimensional acceleration measurements. Last but not least, the DataLink entity is defined to allow linking
to the data storages of the sensor measurements.

Table 3. Data entities included in the Sensor subtype objects.

Sensor subtype object Child element Grandchild elements

SingleAxisAccelerometer Input RawAccelerationData
Output Acceleration
Parameter Gain, ConversionFactor, SamplingRate
Datalink -

TridAxisAccelerometer Input RawAccelerationDataX, RawAccelerationDataY,

RawAccelerationDataZ

Output AccelerationX, AccelerationY, AccelerationZ
Parameter Gain, ConversionFactor, SamplingRate
Datalink -

StrainGauge Input RawStrainData
Output Strain
Parameter Gain, ConversionFactor, SamplingRate
Datalink -

Thermistor Input RawTemperatureData
Output Temperature
Parameter C1/C2/C3 (J-Curve Coefficient), SamplingRate
Datalink -

VideoCamera Output Image
Parameter FramePerSecond, Resolution
Datalink -

3. A BRIDGE INFORMATION REPOSITORY FRAMEWORK

This section discusses the data repository framework for managing the bridge model and monitoring
information. The overall bridge information management framework is shown in Figure 12. The bridge
information model is mapped to the database schema and stored in the main server. An onsite computer
receives sensor data from the sensor network and transmits the data to the server. An inspection tool records
the information from bridge inspectors and sends the information to the database system. A database system
is implemented on the main server to store the sensor data and inspection data according to the bridge
information model.

Given the large volume of modeling and measurement data and the wide variety of data types, it is
important to select an appropriate database system so as to facilitate efficient storage, sharing, retrieval and
utilization of the bridge information. For scalable and flexible bridge information management, Jeong et al.
(2016) have proposed a NoSQL-based data management framework for bridge monitoring applications. In
this study, we use Apache Cassandra column-oriented NoSQL database (Lakshman and Malik 2009) for the
data store. As for the applications, we use CSI Bridge (version 2015) as an engineering analysis tool. Python
programming language is employed for implementing the interface among the software components as well
as the scripts for data mapping. Interfaces utilizing data manipulation language (DML) and application
programming interfaces (APIs) of the Cassandra database system are developed to support data retrieval. In
addition, the data mapping scripts are written to ensure seamless data exchange between the bridge
information model and the database models.

Bridge Main server Applications

information
& o /\ CAD soft
software
Geometry j
BriM
designer Engineering é NoSQL database system Interfaces
model
Sensor Database Engineering
) information - - APl analysis tool
i = Engineering
Onsite Geometry model Wb 1_'\
p e
: computer Sensor server rV Sensor data
dat . . dat i
nseirxgrrk Sensor data information Sensor data analysis module
Inspection Inspection ngi)aer
(—) recording tool information Web & mobile
Bridge Inspection user interface
inspector information)

Figure 12. Bridge information management framework

3.1 Data schema definition

For the column-oriented Cassandra system, the basic feature for defining a database consists of “key space,”
“column family,” “row” and “column,” which are analogous to, respectively, “database,” “table,” “row” and
“column” of relational database (RDB) (Hewitt 2010). The column-oriented data store is known to be more
flexible than the tabular structure of RDB. In the column-oriented data model, each row can have different
sets of columns and new columns can be dynamically added to a row without changing the data schema of
other rows, whereas RDB requires the rows in a table having the same schema (i.e., same number of column
attributes). Each row in a column family has a row key as a unique identifier, and each column stores the
data using a name-value pair. The flexible data model is particularly suitable to manage the bridge
information captured by the object-oriented BrIM schema, where the objects contain different sets of
information. Using the data definition language (DDL) of Cassandra database, we define column families
and their schema based on the object definitions of the BrIM schema. In the current framework, we store all
the data entities of an object in a single Cassandra column family. For example, Figure 13 shows data
mapping between the BrIM object FEAnalysisCase and the corresponding Cassandra column family
FEAnalysisCase. The column family contains all the data entities corresponding to the data entities of
FEAnalysisCase object in BrIM with additional data entities defined for unique ID (uid) and the
hierarchical relation (parent and child).

@rT : string
(@ Object : <None>
0."
£l o : <None>
@® FEAnalysisC : Object
nalysistase wee =® @N='FEStatic' : FEStatic <<ColumnFamily>> FEAnalysisCase
w® @N="FEModal' : FEModal uid uuID Primary Key
o g @® @N="FEMultiStepStati : FEMultiStepStati N TEXT
< LT TEXT
® @N="FEDirectintegrati : FEDirectIntegrationHis AnaIysisCaseType TEXT
onHistory' tory
0. InitialCondition TEXT
Ep : <None> .
— DesignType TEXT
E N='AnalysisCaseTyp : P. AnalysisCaseT:
@ AnalysisCaselTyp « ParamAnalysisCaseTy || parent MAP<UUID,TEXT>
= @N='InitialCondition' : ParamInitialCondition Child MAP<UUID,TEXT>

® @N="DesignType' : ParamDesignType

=P : error

Figure 13. Data mapping between BrIM object and Cassandra column family

In our approach, a single row stores the information corresponding to a single object of bridge
information model using a series of columns, each of which stores an attribute or a parameter of the object.
Figure 14 shows an example of storing BrIM objects to the Cassandra database. In this example, two
FESurface objects contain different numbers of Node parameters. Although these two objects have
different sets of data entities, the Cassandra database can store the FESurface objects in the same column
family without requiring two separate rows having the same schema. In addition to the data entities defined
for an object, the bridge information model composes hierarchical relationships among the objects. Figure
15 shows a database schema example for storing a hierarchy of objects, where a single Shape object has
four child Point objects specifying the four vertices of the shape. To store the information of the Shape
object while maintaining the hierarchical relationship, we define the parent and child columns to store
the row keys and the object type corresponding to the parent object and child objects, respectively. In Figure
15, the row for storing the Shape object has a child column that contains the row keys of the Point
objects, namely, pt001, pt002, pt003 and pt004. The rows for the Point objects have the parent column
storing the row key of the Shape object “shp001”.

BrIM Objects: FESurface

<O N="1" T="FESurface'">

<P N="nodel" Type="Expr" V="301" />

<P N="node3" Type="Expr" V="977" /> Column family: FESurface
<P N="node2" Type="Expr" V="971" /> ~ ™\
<P N="node4" Type="Expr" V="899" /> nodel | node2 | node3 | node4
Ce W 1
</0> ¥ "301" | "977 | "971" | "gg9"
<O N="183" T="FESurface"> nodel | node2 | node3 | node4 | node5 | node6 | node7
s 183
< Ne"nodel" Type="Expz" V="645" /> N v | 2 |"1060" | "38" | '35 | "ag" | "12a"
<P N="node2" Type="Expr" V="2" /> L)

<P N="node3" Type="Expr" V="1060" />
<P N="node4" Type="Expr" V="38" />
<P N="node5" Type="Expr" V="35" />
<P N="node6" Type="Expr" V="39" />
<P N="node7" Type="Expr" V="124" />

</0>
N J

Figure 14. Storing BrIM objects to Cassandra database

. T Child
Shape object shp001
- "Shape" |["pt001", "pt002", "pt003", "pt004"]
<0 T="Shape'"> : s
P Point objects I X | Y | Parent
[<o T="Point" X="-10" Y="-10 />} P "Point” |"-10"["-10"|"shp001"
[<o T="Point" X="-10" Y="10" />]\ T X Y | Parent

pt002

[<O T="Point" X="10" Yy="10" /> } "Point" |"-10"| "10" |"shp001"

((O T="Point" X="10" Y="-10" />)\% pt003 T X Y Parent

"point" ["10" ["10" ["shpoo1" Information
\</o>) P about

T X Y Parent hierarchical

ptoo4 relationship

"Point" | "10" ["-10"|"shp001"

Figure 15. Storing hierarchical BrIM objects to Cassandra database

For sensor data, a column family sensordata is defined. The most important consideration when
dealing with sensor data is that the sensor data typically involves range query for retrieving a sequence of
time-series data. For efficient performance, we use the time-series data modeling strategy of Cassandra
database (DataStax 2016b). The timestamp of sensor data is assigned to a clustering key of the database so
that the sensor measurements are stored in contiguous locations within a disk in a sorted order. In addition,
we use part of the timestamp (such as year and month) in the row key to partition the row according to the
date that the data collected, thereby preventing excessive amount of data stored in a single row. Similarly, a
column family imagedata is defined to manage image data collected from video cameras. Here, the image

data which is converted to binary format is stored as binary large object (BLOB). The data schema of
sensordata and imagedata column families are shown in Figure 16. The sensor measurements and the
images stored in the column families can be accessed via the DataLink entities defined in the subtypes for
the Sensor object.

<<ColumnFamily>> sensordata <<ColumnFamily>>imagedata
sensor_id TEXT Primary Key | [camera_id TEXT Primary Key
month TEXT Primary Key | [date TEXT Primary Key
event_time TIMESTAMP Clustering Key | [event_time TIMESTAMP Clustering Key
data LIST<DOUBLE> image BLOB

Figure 16. data schema of sensordata and imagedata column families

3.2 Query and mapping

Once the data schema is defined, bridge information can be stored and retrieved using the Cassandra query
language (CQL) (DataStax 2016a), which is similar to the structural query language (SQL) of RDB.
Specifically, CQL uses INSERT-INTO-VALUE statement for data insertion and SELECT-FROM-WHERE
statement for data retrieval. Figure 17 shows an insert query and a retrieval query. The query statement in
Figure 17(a) inserts a row, which has uid, N, T, %, y, z values, to the Node column family, and the query
in Figure 17(b) retrieves the uid from the Node column family where the N (Name) of the Node is “100”.
Data insertion and retrieval request can be carried out by sending the query statements to Cassandra database
system via either the CQL shell (CQLSH) interface or Cassandra Driver API. However, CQL has limited
query possibilities comparing to SQL. One limitation is that CQL does not support complex query, such as
to combine two or more column families, through “join” operation. To implement complex query, an
application script can be used to encode the queries and to pass the query result from one query onto another.

INSERT INTO Node (uid, N, T, x, y, z) SELECT uid FROM Node
VALUES (UUID(),'100’,'Node','0','0','0"); WHERE N = '100';
(a) Insert query (b) Retrieval query

Figure 17. Cassandra query example

The bridge information described in BrIM data model needs to be mapped to the data schema of the
Cassandra database, and vice versa. For data mapping, we develop scripts using Cassandra driver API
(DataStax 2016c¢) to interact with Cassandra database and an XML parser (such as xml.etree.ElementTree
package (Python Software Foundation 2016a)) for parsing and modifying the information written in XML.
Figure 18 shows an example of data mapping from BrIM file to Cassandra database. First, the BrIM file
written in XML is parsed into an object-tree using the XML parser. The parsed objects include information
about its attributes, parameters, and parent and child objects. The mapping script then accesses the root object
in the object-tree, which is the Project object in the example, and maps the information of the object into
the data model of Cassandra database. The mapped information is then used to create an INSERT query
request. Finally, the query request is sent to the Cassandra database using Cassandra driver API. The process
is performed recursively for the child objects in the object-tree until child objects have been processed.

Data mapping from Cassandra database to BrIM file can be done by reversing the mapping process
for translating the BrIM file to Cassandra database. Figure 19 shows an example that retrieves the Project
object and its child objects, which are stored through the mapping process shown in Figure 18. For the
retrieval of the bridge information, we first execute a SELECT query to obtain the root object (i.e., Project
object in this example) using the Cassandra Driver API. The query result is then mapped into the XML object
using the XML parser. Using the child object list in the child column, the process is performed recursively
for all the child objects in the object-tree. Once the data retrieval process is complete, the object-tree is parsed
as XML string and stored in an XML file.

XML file Object-tree

object
<0 N="MyProject" T="Project"> T=Point
<0 N="Beam" T="Line"> object object X=0Y=02=0
<0 T="Point" X="0" y="0" z="0"/> T=Project I T=Line >
<0 T="Point" X="0" ¥="10" 2="0"/>| 1) parse XML file N=MyProject N=Beam ?:{J%Ci;t
c to object-tree X=0 Y=10 Z=0

using XML parser
@ Map an object to

‘ Cassandra data
schema

(® Repeat for the
child objects

Insert query statement Mapping for single object
INSERT INTO PROJECT (uid, T, N, child) { uid: UUID(),
Cdassabndra « VALUE (UUID(), 'Project’, 'MyProject’, « T: Project, N: MyProject,
atabase 'Beam001":'Line'}) child: {Beam001:Line

® Send query { () Create ¢)

statement to the Insert query

database using statement

Cassandra Driver

API

Figure 18. Data mapping from BrIM schema to Cassandra database schema

Select query statement Cassandra data row

* .
SELECT * Cassandra <uidl> T N Child
FROM Project L T o o

database Project”|"MyProject"| {<uid2>:"Line"}

WHERE N = MyProject

@ Receive resdults in

@ Send select query Cassandra data row @ Map arow to
statement for an object format BrIM object and
using Cassandra API ‘ attach it to object-
tree using XML
" @ Repeat for parser
XML file .)
— the child objects Mapping for single object
<0 N="MyProject" T="Project"> =
<0 N="Beam" T="Line"> object List of child
<0 T="Point" X="0" y="0" 2="0"/> -l(lz—li\;l(;]s:;ject [| | objects
<O T="Point” X=T0T ¥=r10% 2=707/> ® Print object-tree to
XML file using XML

parser

Figure 19. Data mapping from Cassandra database schema to BrIM schema

4. CASE EXAMPLE

This section describes a case example using the Telegraph Road Bridge (TRB) located in Monroe, Michigan,
to demonstrate the utilization of the bridge information model and the information repository. Two scenarios
involving different types of bridge information are presented. The first scenario compares the bridge response
collected by the sensors with that obtained from a structural analysis software. The second scenario illustrates
the retrieval of sensor data along with the corresponding traffic-image data.

The TRB, as shown in Figure 20(a), is a 224 feet long (about 68 meters) steel girder bridge along
the I-275 corridor in Michigan. The TRB is instrumented with wireless sensor network that consists of 60
sensors, including accelerometers, strain gauges and thermistors, as shown in Figure 20(b) (Zhang et al.
2016). In addition, there is a public traffic monitoring system managed by the Michigan Department of
Transportation (MDOT) (http://mdotnetpublic.state.mi.us/drive). In this study, we create an XML-based
bridge information model of the TRB that covers the geometry, engineering model and sensor description as
follows:

o Geometry: Based on the 2-dimensional drawings of the TRB, a 3-dimensional geometric model is
constructed following the OpenBrIM data schema (ParamML 2016). The geometric model is created
in XML using a text editor.

o Engineering model: The engineering analysis model is created by converting the finite element (FE)
model of TRB created using the CSI Bridge software (Hou et al, 2015). To convert FE model to the
BrIM model, the CSI Bridge file is first exported to Microsoft Excel Spreadsheets using the “export”
function of the software. The exported Excel Spreadsheets are then mapped into the BrIM model by
using an Excel data parser (namely, the openpyxI package (Gazoni and Clark 2016)), an XML parser
(the xml.etree.ElementTree package (Python Software Foundation 2016a)) and a data mapping
script specifying the mapping rules between CSI Bridge’s Excel data and the BrIM data model.

e Sensor description: Based on the sensor information of the TRB, Sensor objects are created. In
the object-tree, a Sensor object is assigned as a child object of the geometry object where the
sensor is attached. For the demonstration purpose, Sensor objects include an FENode entity to
refer to the closest node in the engineering model, although their locations may not coincide exactly
with each other.

140'

Neutral axis ID Pin & hanger degredation Deck cracking Server station
(3 metal foil strain gages) , (5 metal foil strain gages) % (1BDIstrain transducer) m (1 PC-104 computer)
(1 BD!I strain transucer) (1 rosette 0-45-90) (1 thermistor) (1 CC2420 transceiver)
(2 Narada) (2 Narada) (1 Narada) (1 Solar controller)

FE model updating
® (1accelerometer) ==
(1 Narada)

(b) Sensor layout (Zhang et al. 2016)
Figure 20. Telegraph road bridge (located in Monroe, Michigan)

The created bridge information model is loaded onto the Cassandra database using the data mapping process
from BrIM to Cassandra as described earlier and illustrated in Figure 18. In addition to the information
described in BrIM model, sensor data and traffic monitoring images are also collected and stored in the
database. The wireless sensor network installed on TRB collects acceleration, strain and temperature
measurements for one-minute durations every two hours. The sampling rates vary from 100Hz for strain

gauges and thermistors to 200Hz for accelerometers. Traffic monitoring images are collected every 2 to 5
seconds from the MiDrive system (http://mdotnetpublic.state.mi.us/drive) by MDOT.

4.1 Example scenario 1: Comparison of sensor data and analytically computed bridge response

In the first example scenario, we compare the bridge response measurements collected by the accelerometers
with the bridge responses computed at the FE nodes corresponding the accelerometer locations. Since the
bridge information, the sensor information and the FE model are integrated in the database, scripts can be
written to automate the process. Figure 21 shows the basic steps implemented for this example scenario.

[STEP1] Retrieve sensor
information of accelerometers

[STEP3] Retrieve and parse FE model
objects according to BriIM model

N s "4

Bridge information

> [STEP2] Retrieve acceleration data [—»|

repository (Cassandra)

[STEP4] Convert FE model to format

[STEP6] Compare results [«— [STEPS5] Run structural analysis .
that analysis tools can read

Figure 21. Workflow of scenario 1

As shown in Figure 21, the comparison of measurement and computed data are implemented in six
steps. In step 1, we retrieve sensor information from the Cassandra database using CQL and Cassandra API.
As shown in Figure 22, CQL query statement is issued to retrieve the sensor id and the FENode from the
sensor column family, which stores the metadata and position information of all the sensors. The WHERE
statement specifies the query for the SingleAxisAccelerometers attached on the bridge. The query is
transmitted to the Cassandra database and the (selected) query results are shown in Figure 22. The query
results include the id of the accelerometers and their corresponding FENodes. This information will be
used in step 2 and step 5.

In step 2, we retrieve acceleration data from the database. Figure 23 shows the query requesting the
retrieval of sensor data collected from sensors whose IDs are in the list retrieved from step 1. The WHERE
clause of the query specifies the time range from 2014-08-01 00:00:00 to 2014-08-01 02:00:00. As shown in
Figure 23, the query results are presented in sorted order according to their timestamp. The query results are
stored and will be used in step 6 where the sensor data and analysis results are compared.

Query statement

SELECT id, FENode
FROM sensor
WHERE sensor_type = 'SingleAxisAccelerometer';

Query result

id FENode
Ll ul3icho 718
184cho id FENode
“ ¢ ul84ch0 626
... more rows ...

Figure 22. Step 1: Retrieving sensor information

Query statement

SELECT sensor_id, event_time, data

FROM sensordata

WHERE sensor_id IN <ids retrieved in step 1>
AND month = '201408'
AND event_time >= '2014-08-01T00:00:00'
AND event_time <= '2014-08-01T02:00:00';

Query result

2014-08-01T00:48:24 2014-08-01T00:48:25 ... more columns ...
A [1.37121836e-04, 1.06604258e-04,...]|[4.88073985e-04, 3.50744883e-04, ...]
2014-08-01T00:48:24 2014-08-01T00:48:25 ... more columns ...
LRERE [-1.18145498e-03 -8.15244039e-04, ...]| [1.42779795e-03 1.58038584e-03, ...]
... more rows ...

Figure 23. Step 2: Retrieving sensor data

In step 3, the FE model of the bridge is retrieved from the Cassandra database. Using the hierarchical
relationship between objects using child and parent columns, we can automate the process to rebuild the
XML-based BrIM model. Figure 24 shows the pseudo code for retrieving and rebuilding BrIM model using
the recursive function RetrieveDataByKey (lines 1 to 10), which includes the query (see lines 2-4) to
(recursively) retrieve the FE model information. If retrieved object contains child column, the function
RetrieveDataByKey calls itself with input argument specifying the uid and column family of child
objects (line 9). As shown in line 14, the recursive function starts from the root object of FE model whose
uidis 448f641e-8e04-11e6-8£f0d-3cl5c2e54eal and column family is Project. The query
results are received in the Python Dictionary data format and then converted into hierarchical XML object
using xml.etree.ElementTree package (Python Software Foundation 2016a), as illustrated in Figure 25.

In step 4, the XML-based BrIM model created in step 3 is mapped to the Microsoft Excel
spreadsheet file that can be processed by the CSI Bridge software. Figure 26 shows the pseudo code for the
data mapping from BrIM to the Excel spreadsheet. The pseudo code has a recursive function to explore every
object in hierarchical object-tree structure. Specifically, the recursive function parses attributes, parameters
and child objects of a single object (lines 2-4), and then maps the parsed data entities onto an Excel
spreadsheet (line 5). Specifically, we develop a mapping dictionary that matches BrIM object type with
corresponding spreadsheet name (see Figure 27). The xml.etree.ElementTree package (Python Software
Foundation 2016a) and openpyxI package (Gazoni and Clark 2016) are employed for parsing XML and Excel
spreadsheet files.

Pseudo code

1 def RetrieveDataByKey(key, columnfamily):
2 Query = “SELECT *

3 FROM columnfamily

4 WHERE uid = key”

5 Object = RunQuery(Query)
6
7
8

if RetrievedObject[“child”] is not None:
children = Object[*“child”]
for child in children:

9 Object.attach(RetrieveDataByKey (child, children[child])) # Recursive Function
10 return Object

11

12 def main():

13 # Start recursive function from the root object

14 RetrieveDataByKey(“urn:uuid:448f641e-8e04-11e6-8£f0d-3cl5c2e54eal”, “Project”)

Figure 24. Step 3: Pseudo code of a recursive function for FE model retrieval

Query result
| 448f641e-8e04-11e6- N T child

8f0d-3c15c2e54eald | TRB_FEM Project |{4491b23d-8e04-11e6-a49c-3c15c2e54ea0: 'Group'}
T

v
4491b23d-8e04-11e6- N T child
| | a49c-3c15c2e54ea0 FEM Group [{4491b400-8e04-11e6-a056-3c15c2e54ea0: 'Group', ...}
- more objects ... —
4657e1c2-8e04-11e6- N T coordinatesystem| x y z ... more columns ...
| | 8660-3c15c2e54ea 7 Node GLOBAL -137.7| 213 | -27
BrIM model

> | <O n="TRB" t="Project">
»<O n="FEM" t="Group">

» <O n="7" t="Node">
Mapping <P N="coordinatesystem" Type="Expr" V="GLOBAL" />
(xml.etree.ElementTree) <P N="coordinatetype" Type="Expr" V="Cartesian" />
<P N="x" V="-137.7" />
<P N="y" V="213.0" />
<P N="z" V="-27.0" />
<P N="tx" Type="Expr" V="Yes" />
<P N="ty" Type="Expr" V="Yes" />
<P N="tz" Type="Expr" V="Yes" />
<P N="rx" Type="Expr" V="Yes" />
<P N="ry" Type="Expr" V="Yes" />
<P N="rz" Type="Expr" V="Yes" />
</0>

Figure 25. Step 3: Data mapping from query result to hierarchical BrIM model

Pseudo code

def ParseObject(object):
attribute = GetAttribute(object)
parameter = GetParameter (object)
childObject = GetChildObj(object)
ParseDataUsingMappingDictionary(attribute, parameter)
for child in childObject:
ParseObject (child)

=

def main():
Start recursive function from the root object
PareObject (getroot (inputXMLFile))

O WVWENOU S WN

o

Figure 26. Step 4: Pseudo code for FE model mapping from BrIM to Excel spreadsheet

Mapping dictionary (BrIM — Excel)

{'Node': {'Joint Coordinates': {'coordinatesystem': 'CoordSys',
'N': 'Joint', 'x': 'XorR', 'y': 'Y', 'z': 'Z'},
'Joint Restraint Assignments': {'tz': 'U3', ‘'tx': 'Ul', 'ty': 'u2’',
'rx': 'R1', 'ry': 'R2', 'rz': 'R3', 'N': 'Joint'}},
'FELine': {'Connectivity - Frame': {'nodel': 'JointI', 'node2': 'JointJ',
'\ 'iscurved': 'IsCurved', 'N': 'Frame'}, ...},
. Excel spreadsheet BrIM attribute Excel spreadsheet
‘ BrlM object type ‘ | P | / P
name arameter name column name
... more mapping dictionary ... }

Figure 27. Step 4: Mapping dictionary from BrIM to Excel spreadsheet

In step 5, the FE model created in step 4 is analyzed. To automate the analysis process, we develop
two Visual Basic for Application (VBA) scripts using CSI Bridge’s APIs. As shown in Figure 28, Python
script calls the VBA scripts using Python extensions for Windows (pywin32) package (Python Software
Foundation 2016b). The first script accepts the list of FENodes as an input argument called “nodeList ().

The script then reads the FE model file created in step 4, runs the analysis, and records the response at the
specified FENodes to spreadsheets. Here, for demonstration purpose, we set a moving truck load at the
middle lane of the bridge and perform a time-history analysis. The results are then parsed with the second

VBA script to retrieve the analysis results for the specified FENodes.

Python Script
x1 = win32com.client.Dispatch("Excel.Application")
x1.Workbooks.Open (filepath, ReadOnly=1)

Run lst VBA script
+x1l.Application.Run(“FEanalysis”, filename, node)

Run 2nd VBA script
rresult = xl.Application.Run("GetReturn")

VBA Script 1: FEanalysis

Public Sub Feanalysis (filename As String, nodeList() As Variant)

Dim myCSIObject As cOAPI ‘Create CSI Bridge Instance

. Omitted ..
ret = mySapModel.File.OpenFile(filename) ‘Open FE model
ret = mySapModel.Analyze.RunAnalysis ‘Run analysis

. Omitted ..
‘Get response at specific node in node list
For i = 0 To UBound(nodeList, 1)

‘Record result to active spreasheet
For j = LBound(StepNum) To UBound(StepNum)
ThisWorkbook.ActiveSheet.Cells(j + 1, i + 1) = U3(J)
Next j
Next I
End Sub

ret = mySapModel.Results.JointAcc(CStr(nodeList(i)), .. StepNum, ..,

U3, ..)

—— VBA Script 2: GetReturn

Public Function GetReturn() As Variant
Dim nRow, nCol As Integer
nRow = Sheets("Sheetl").Cells (Rows.Count, 1).End(xlUp).Row
nCol = Sheets("Sheetl").Cells(l, Columns.Count).End(xlToLeft).Column
‘Return computed response
GetReturn = ThisWorkbook.ActiveSheet.Range(Cells(l, 1), Cells(nRow,
End Function

nCol)).vValue

Figure 28. Step 5: Running FEA using CSI Bridge and its APIs

|— ul31cho - - FE_MAX FE_MIN|

40+ B

30

20

10

0

Acceleration (mg)

00:48:24 00:48:29 00:48:34 00:48:39 00:48:44 00:48:49
Timestamp (HH:MM:SS)

Figure 29. Step 6: Plotting retrieved sensor measurement (ul31ch0) along with the maximum and

minimum values of the response obtained from FE simulation

Finally, in step 6, the sensor data retrieved from step 2 and the analysis results obtained in step 5 are
compared. In this example scenario, we calculate the minimum and maximum values of the computed
response and plot them with the sensor measurements as shown in Figure 29. The sensor “ul31ch0” is an
accelerometer that measures vertical vibration at the leftmost girder of the bridge. The sensor measurements
range from -31.28mg to 36.66mg, while the minimum and maximum values of computed response are
—35.92mg and 37.48mg. The results show that the bridge structure behaves within the range of the
analytically computed responses during the specified time period.

4.2 Example scenario 2: Retrieval of sensor data along with traffic-image data

In the second example scenario, we retrieve the sensor measurement data along with the traffic-image data.
This example illustrates the retrieval of not only bridge response data collected by a sensor, but also the traffic
information that causes the bridge response. Figure 30 shows the basic steps for implementing the data
retrieval process.

[STEP1] Retrieve acceleration data [—» [STEP2] Retrieve image data —> [STEP3] Parse image data

Ry o

Bridge information
repository (Cassandra)

Figure 30. Workflow of scenario 2

In step 1, the sensor measurements are retrieved using CQL. As shown in Figure 31, the acceleration
data is selected using the WHERE clause where the sensor ID is “ul31ch0”, the month of the timestamp is
“201608”, and the time period between 2016-08-23 10:02:09 and 2016-08-23 10:03:08.

Query statement for sensor data

SELECT event_time, data

FROM sensordata

WHERE sensor_id = 'ul3lch0'
AND month = '201608'
AND event time >= '2016-08-23T10:02:09'
AND event time <= '2016-08-23T10:03:08';

Figure 31. Step 1: Query statement for retrieving sensor data

Query statement for image data

SELECT event_time, image

FROM imagedata

WHERE camera id = 'telegraph2'
AND date = '20160823'
AND event_ time >= '2016-08-23T10:01:54'
AND event time <= '2016-08-23T10:03:08';

Figure 32. Step 2: Query statement for retrieving image data

In step 2, traffic-monitoring images are retrieved to observe the vehicles that affect the bridge
response retrieved in step 1. Figure 32 shows the query statement for retrieving the image data from the
camera ID “telegraph2”, date “20160823” and the period between 2016-08-23 10:01:54 and 2016-08-23
10:03:08. The time period is extended slightly to capture the vehicles that went over the bridge before the
sensor data period since the traffic flow may affect the initial vibration of the bridge. The images are retrieved
as binary data stored in binary large object (BLOB) format and converted to an image file format, such as
JPEG, in step 3.

60

— weiche] o
1) A C I) I (C) R 7 BN C-) B) B 0 10) B ¢ D ¢ 93
40 | ! ; ; 1] | ! : } 1
20t 3 i Z i ! 3 i 1 |
=) i | i i i i))
E i | i | i . H
5 1 i)
'@ 0
ko i j ;
o | i ‘ ‘]
S 1) 1 1)))
Bt R ® | ([LA L L
L T
60 ' | : | :) :) : | :
10:02:09 10:02:19 10:02:29 10:02:39 10:02:49 10:02:59

Timestamp (HH:MM:SS)

(a) Retrieved acceleration data

(0) 2016-08-23 10:01:58

(1) 2016-08-23 10:02:08 (2) 2016-08-2310:02:13 (3) 2016-08-23 10:02:19

(b) Retrieved traffic-monitoring images
Figure 33. Acceleration response of the TRB from 2016-08-23 10:02:09 to 2016-08-23 10:03:08 collected
by “ul131ch0” and corresponding traffic-monitoring images.

In step 3, the binary data is converted to image, for example, using Python’s StringlO library (Python
2016c¢). Figure 33 shows the retrieved images with the corresponding sensor data. The images shown in
Figure 33(b) are trimmed to show only the northbound lane that we are interested in. In this figure, the sensor
data is divided into twelve segments as labeled from 1 to 12 for matching with the corresponding images.
The image 0 shows the vehicle that crosses the bridge 11 seconds before the data acquisition began. The
initial acceleration (segments 1 and 2 in Figure 33) ranges from -4.48mg to 7.96mg due to the vehicles
captured in image 0. As shown in images 2, 3, 5 and 6 and the corresponding sensor data, the compact cars
and midsize cars increase acceleration only up to 14.82mg, even with cars crossing the bridge at the same
time. On the other hand, as shown in images 4, 8, 10 and 12 and the corresponding segments of sensor data,
trucks and trailers increase the acceleration level significantly and up to 44.57mg.

5. SUMMARY AND CONCLUSION

Bridge monitoring and management involves a wide variety of information from different data sources,
including geometric modeling and engineering analysis tools, bridge management system (BMS) and
structural health monitoring (SHM) system. While the different types of information are related to each other,
current practice of bridge management typically handles them using isolated systems, followed by manual
data conversion. In order to address the data sharing issue, we discuss a bridge information modeling
framework for supporting bridge monitoring and management applications. We use the OpenBrIM data
model (OpenBrIM 2016) as the base model, and augment and extend the base model to capture engineering
model and sensor description, by examining relevant software tools and data modeling standards. Specifically,
we investigate the data entities of CSI Bridge (Computers & Structures, Inc. 2016), a structural analysis
software tool, and SensorML (Open Geospatial Consortium 2014), a standard for sensor description.

To facilitate storage, sharing and utilization of bridge information model, a NoSQL database system
is employed. Since bridge monitoring and management applications will potentially involve a large volume
of data with various data types, an appropriate database system that can guarantee scalability and flexibility
is important. In this study, we employ Apache Cassandra, one of the most commonly used column family
NoSQL databases because of its high scalability and flexible data schema. Data schema for Cassandra
database is defined following the bridge and sensor information models.

The data management framework is demonstrated using the bridge information and sensor data
collected from the Telegraph Road Bridge (TRB) located in Monroe, Michigan. The bridge information
model was built based on 2-dimensional drawings, 3-dimensional engineering model and sensor description
of the TRB. The created bridge information model is stored to the Cassandra database using data mapping
scripts that convert the bridge information model expressed in XML-based tree structure to the column-
oriented data model of Cassandra database. In addition, sensor data and traffic monitoring images are stored
in the Cassandra database. We have presented demonstrative example scenarios that involve different types
of bridge information, which are typically managed by isolated systems in the current practice of bridge
monitoring and management. The first example scenario describes the integrated data retrieval for sensor
information, sensor data and FE model. The second example describes the retrieval of sensor data with the
corresponding image data. The demonstration results show that the bridge information modeling framework
is able to integrate different types of bridge information by linking related data entities.

As a research prototype, the bridge information model, in its current state, considers only a few
standards and applications. Many data entities, which are necessary to fully support other bridge monitoring
and management applications, are lacking. However, the bridge information model can be easily extended
by defining new object type definitions and updating Cassandra database schema as new data entities are
required by new applications. The flexible data structure of Cassandra database system is able to efficiently
handle the dynamic schema modification. Another shortcoming is the limited query possibilities of Cassandra
database, which requires creating data retrieval scripts. For prototyping purpose, performing complex
operations, as illustrated in the scenario example, requires combining and manipulating data from different
data sources. Our current and future study includes developing standardized interfaces and composition tools.
Furthermore, our current work attempts to implement standardized web service for commonly used data

queries in bridge monitoring and management applications to establish a collection of reusable application
services.

ACKNOWLEDGEMENT

This research is supported by a Grant No. 13SCIPAO] from Smart Civil Infrastructure Research Program
funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency
for Infrastructure Technology Advancement (KAIA). The research is also partially supported by a
collaborative project funded by the US National Science Foundation (Grant No. ECCS-1446330 to Stanford
University and Grant No. CMMI-1362513 and ECCS-1446521 to the University of Michigan). The authors
thank the Michigan Department of Transportation (MDOT) for access to the Telegraph Road Bridge and for
offering support during installation of the wireless monitoring system. The in-kind support by Computers
and Structures, Inc. for providing the CSI Bridge software to the research team at Stanford University is
gratefully appreciated. Any opinions, findings, conclusions or recommendations expressed in this paper are
solely those of the authors and do not necessarily reflect the views of NSF, MOLIT, MDOT, KAIA or any
other organizations and collaborators.

REFERENCE

Bartholomew, M. (2015). “FHWA Bridge Information Modeling Update,” [Online article], Retrieved from:
http://bridges.transportation.org/Documents/2015%20SCOBS%?20presentations/Technical%20Commit
tee/T-19-Mike%20Bartholomew-FHW A%20Bridge%20Information%20Modeling.pdf (accessed on 20
April 2016)

Bartholomew, M., Blasen, B. and Koc, A (2015). “Bridge Information Modeling (BrIM) Using Open
Parametric Objects,” Report No. FHWA-HI F -16-010, Federal Highway Administration.

buildingSMART. “Industry Foundation Classes Version 4 - Addendum 1,” [Online article], Retrieved from:
http://www.buildingsmart-tech.org/ifc/IFC4/Add 1/html/ (accessed on 20 May 2016)

Chen S. S. (2013). “Bridge Data Protocols for Interoperability Local Failure Bridge Data Protocols for
Interoperability and Life Cycle Management,” [Online article], Retrieved from:
http://iug.buildingsmart.org/resources/itm-and-iug-meetings-2013-munich/infra-room/bridge-data-
protocols-for-interoperability-and-life-cycle-management (accessed on 20 April 2016)

Chen, S. S. and Shirolé, A. M. (2006). “Integration of information and automation technologies in bridge
engineering and management: Extending the state of the art,” Transportation Research Record, 1976(1),
pp. 3-12.

Chen, S. S. and Shirol¢, A. M. (2013). “Implementation Roadmap for Bridge Information Modeling (BrIM)
Data Exchange Protocols,” SubTask 12.2 Multi-Year Implementation Roadmap Revised Draft
documenting updates to July 2013.

Computers & Structures, Inc. “Structural Bridge Design Software | CSiBridge,” [Online article], Retrieved
from: https://www.csiamerica.com/products/csibridge (accessed on 20 April 2016)

DataStax. “Introduction to Cassandra Query Language,” [Online article], Retrieved from:
http://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html (accessed on 20 April 2016a)

DataStax. “Getting Started with Time Series Data Modeling,” [Online article], Retrieved from:
https://academy.datastax.com/demos/getting-started-time-series-data-modeling (accessed on 20 April
2016b)

DataStax. “Python Cassandra Driver,” [Online article], Retrieved from: https://datastax.github.io/python-
driver/ (accessed on 20 April 2016¢)

Eastman, C. M. (1999). “Building product models: computer environments, supporting design and
construction,” CRC press.

Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2011). “BIM handbook: a guide to building information
modeling for owners, managers, designers, engineers, and contractors,” John Wiley & Sons, Inc.,
Hoboken, NJ.

Gazoni E. and Clark C. (2016). “openpyxl - A Python library to read/write Excel 2010 xIsx/xlsm files,”
[Online article], Retrieved from: http://openpyxl.readthedocs.org/en/default/ (accessed on 20 April 2016)

Grolinger, K., Higashino, W. A., Tiwari, A. and Capretz, M. A. (2013). “Data management in cloud
environments: NoSQL and NewSQL data stores,” Journal of Cloud Computing: Advances, Systems and
Applications, 2(1), pp. 22-41.

Hecht, R. and Jablonski, S. (2011). “NoSQL Evaluation: A use case oriented survey,” Proceedings of CSC
2011, pp. 336-341.

Hewitt, E. (2010) “Cassandra: the definitive guide,” O'Reilly Media, Inc., [Safari Book Online], Retrieved
from: http://proquest.safaribooksonline.com/9781449399764 (accessed on 20 April 2016)

Hou, R., Zhang, Y., O’Connor, S., Hong, Y. and Lynch, J. P. (2015). “Monitoring and Identification of
Vehicle-Bridge Interaction using Mobile Truck-based Wireless Sensors,” Proceedings of 11th
International Workshop on Advanced Smart Materials and Smart Structures Technology, August 1-2,
2015, University of Illinois, Urbana-Champaign, United States.

ISO. (1994). “ISO 10303:1994 — Industrial Automation Systems and Integration — Product Data
Representation and Exchange,” International Organization for Standardization (ISO), Geneva,
Switzerland.

ISO. (2000). “ISO 10303-104:2000 — Industrial Automation Systems and Integration — Product Data
Representation and Exchange -- Part 104: Integrated application resource: Finite element analysis,”
International Organization for Standardization (ISO), Geneva, Switzerland.

Jeong, S., Zhang, Y., O'Connor, S. M., Lynch, J. P., Sohn, H. and Law, K. H. (2016). “A NoSQL Data
Management Infrastructure for Bridge Monitoring,” Smart Structures and Systems, 17(4), pp. 669-690.

Lakshman, A. and Malik, P. (2010). “Cassandra: a decentralized structured storage system,” Operating
Systems Review (ACM), 44(2), pp. 35-40.

Lee, K. (2000). “IEEE 1451: A standard in support of smart transducer networking,” Proceedings of IEEE
Instrumentation and Measurement Technology Conference, 2, pp. 525-528.

Lee, S.-H. and Jeong, Y .-S. (2006). “A system integration framework through development of ISO 10303-
based product model for steel bridges,” Automation in Construction, 15(2), pp. 212-228.

Li, H., Ou, J., Zhao, X., Zhou, W., Li, H., Zhou, Z. and Yang, Y. (2006). “Structural health monitoring system
for the Shandong Binzhou Yellow River Highway Bridge,” Computer-Aided Civil and Infrastructure
Engineering, 21(4), pp. 306-317.

Li, Y. and Manoharan, S. (2013). “A performance comparison of SQL and NoSQL databases,” Proceedings
of IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing, art. no.
6625441, pp. 15-19.

Marzouk, M. M. and Hisham, M. (2011). “Bridge information modeling in sustainable bridge management,”
Proceedings of the International Conference on Sustainable Design and Construction 2011: Integrating
Sustainability Practices in the Construction Industry, pp. 457-466.

Nagel, R. N., Braithwaite, W. W. and Kennicott, P. R. (1980). “Initial Graphics Exchange Specification IGES
Version 1.0,” Washington DC: National Bureau of Standards, NBSIR 80-1978.

Open Geospatial Consortium (2014). “OGC® SensorML: Model and XML Encoding Standard” [Online
article], Retrieved from: http://www.opengeospatial.org/standards/sensorml (accessed on 20 April 2016)

OpenBrIM, “OpenBrIM V3,” [Online resource], Retrieved from:
https://openbrim.appspot.com/schema.xsd?for=openbrim&v=3&format=xsd&version=1.1 (accessed
on 10 November 2016)

ParamML, “ParamML Author's Guide,” [Online article], Retrieved from:
https://sites.google.com/a/redeqn.com/parammli-author-s-guide/system/app/pages/recentChanges
(accessed on 20 April 2016)

Pschorr, J., Henson, C. A., Patni, H. K. and Sheth, A. P. (2010). “Sensor Discovery on Linked Data,”
Retrieved from: http://corescholar.libraries.wright.edu/knoesis/780 (accessed 2 March, 2016).

Python Software Foundation, “19.7. xml.etree. ElementTree - The ElementTree XML APL,” [Online article],
Retrieved from: https://docs.python.org/2/library/xml.etree.clementtree.html (accessed on 20 April
2016a)

Python Software Foundation, “pywin32 214 : Python Package Index,” [Online article], Retrieved from:
https://pypi.python.org/pypi/pywin32 (accessed on 7 October 2016b)

Python Software Foundation, “7.5. StringlO — Read and write strings as files,” [Online article], Retrieved
from: https://docs.python.org/2/library/stringio.html (accessed on 7 October 2016¢)

Robert, W. E., Marshall, A. R., Shepard, R., and Aldayuz, J. (2003). “The Pontis Bridge management system:
State-of-the-practice in implementation and development,” Proceedings of the 9th International Bridge
Management Conference, pp. 49-60.

Samec, V., Stamper, J., Sorsky, H. and Gilmore, T. W. (2014). “Long span suspension bridges — bridge
information modeling,” Proceedings of 7th International Conference of Bridge Maintenance, Safety and
Management, pp. 1005-1010.

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N. and Helland, P. (2007). “The end
of an architectural era (it's time for a complete rewrite),” Proceedings of the 33rd International
Conference on Very large data bases, pp. 1150-1160.

Wang, L., Tang, A., Cui, Y., Yang, S. and Zhan, Z. (2009). “Study on the Development of Sihui Bridge
Management System,” Proceedings of 2009 WRI World Congress on Software Engineering, IEEE. pp.
487-491.

Yabuki, N., Lebegue, E., Gual, J. and Shitani, T. (2006). “International collaboration for developing the
bridge product model IFC-Bridge,” Proceeding of the 11th International Conference on Computing in
Civil and Building Engineering, pp. 1927-1936.

Zhang, Y., O’Connor, S. M., van der Linden, G., Prakash, A. and Lynch, J. P. (2016). “SenStore: A Scalable
Cyberinfrastructure Platform for Implementation of Data-to-Decision Frameworks for Infrastructure
Health Management,” Journal of Computing in Civil Engineering, 04016012

Zhou, H. F., Chan, T. K., Wang, J. Y. and Ni, Y. Q. (2006). “A structural health monitoring data management
system for instrumented cable-supported bridges,” Proceedings of the Asia-Pacific Workshop on
Structural Health Monitoring, pp. 514-522.

