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ABSTRACT 
 

     The purpose of this paper is to explore the potential use of machine learning 
techniques to build data-driven models for diagnostic analysis of civil infrastructures. 
The discussion will focus on the reconstruction of sensor data collected from a bridge 
monitoring system using Support Vector Regression (SVR). The methodology can be 
used for constructing missing data from faulty sensors, as well as for checking the 
integrity of the sensor data, thereby potentially revealing issues, if any, on a target 
structure. The proposed approach is validated using the sensor data sets acquired from 
the Telegraph Road Bridge located in the state of Michigan. 
 
 
1. INTRODUCTION 
 
     The purpose of bridge monitoring is to ensure that a target bridge structure is in a 
healthy and reliable state. Sensor data provides valuable information about the 
structural state of a bridge as well as to detect the onset of damage and to understand 
the long-term health of a bridge. The sensor data collected, however, may be corrupted 
or erroneous due to various causes, such as faulty sensor, battery problem and 
incomplete data transmission. Problematic sensors and erroneous or missing data 
could lead to incorrect bridge management decision. A procedure that can validate the 
correctness of the sensor data and that possibly construct missing data can be valuable 
to ensure the integrity of the monitoring system.  
     There have been research efforts targeted to reconstruct missing data collected 
from infrastructure monitoring systems. A Kalman filter-based approach has been 
proposed to predict missing data based on the state vector (Cipar and Romera 1997). 
For example, Kim et al. (2011) adopt the Kalman filter algorithm to recover missing 
vibration data measured from a bridge monitoring system. Compressive sensing has 
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also been used to cope with missing data due to the packet loss during data 
transmission (Zou et al. 2014). Most approaches have been focused on the information 
of a single sensor. In this study, we explore the possibility of validating sensor data or 
reconstructing missing data utilizing multiple sensors in the bridge monitoring system.  
 In this paper, we explre the potential use of machine learning techniques to 
build data-driven models for diagnostic analysis of civil infrastructures with an emphasis 
on the reconstruction of sensor data. We adopt Support Vector Regression (SVR) 
algorithm for the data reconstruction. The reconstructed data can be used not only for 
constructing missing data from faulty sensors, as well as for cross checking the integrity 
of the sensor data. The proposed method is tested using the sensor data sets acquired 
from the Telegraph Road Bridge located in Monroe, Michigan.  
 
 
2. EPSILON SUPPORT VECTOR REGRESSION 
 
     The proposed sensor data reconstruction approach aims to build a data-driven 
model that predicts the data of a sensor based on the data collected by other sensors. 
In this exploratory study, we adopt Support Vector Regression (SVR). Detailed 
description of SVR can be found in Schölkopf and Smola (2002). Here, we briefly 

summarize the formulation of Epsilon Support Vector Regression (𝜖 -SVR) for the 
sensor data reconstruction. 

     The target sensor data is described as a simple linear regression function f(𝑥, 𝑤) 
of sensor data sets 𝑥 and regression weights 𝑤 as:  
 

f(𝑥, w) = 𝑤𝑇𝑥 + 𝑏 (1) 
 

where 𝑏 is the intercept term of the linear regression. One way to find the parameters 
𝑤 and the coefficients 𝑏 is to minimize the error E over the training data set P. Here, 
the error E is defined as: 
 

E = ∑
1

2
(f(𝑥𝑝, 𝑤) − 𝑦𝑝)

2

p∈P

 (2) 

 
where 𝑦𝑝 is the measured value of the target sensor data. An alternative approach that 

can provide more modeling flexibility is the Epsilon Support Vector Regression (𝜖-SVR) 

in which an allowable error 𝜖 is specified as (Vapnik, 1995): 
 

|𝑦 − f(𝑥, 𝑤)|ϵ = max(0, |𝑦 − f(𝑥, 𝑤)| − 𝜖 ) (3) 
 

Eq (3) implies that only the values beyond the specified margin 𝜖 will be penalized. By 
introducing 𝜖, the loss function for training set is defined as:  
 

𝐿(𝑤, 𝑏) =
1

2
||𝑤||

2
+ 𝐶 ∑|𝑦𝑖 − 𝑓(𝑥𝑖, 𝑤)|𝜖

𝑛

𝑖=1

 (4) 



  

 

where 𝐶 is termed regularization parameter. For simplification, slack variables ξ and 
ξ∗ are introduced as follows: 
 

𝜉𝑖
∗  =  |𝑦𝑖  −  𝑓(𝑥𝑖, 𝑤)|  −  𝜀  for data ‘above’ an ε-tube (5) 

 
𝜉𝑖 = |𝑦𝑖  −  𝑓(𝑥𝑖, 𝑤)|  −  𝜀  for data ‘below’ an ε-tube (6) 

 
The minimization of the loss function shown in Eq (4) can be state as: 
 

 min
𝒘,𝑏

  
1

2
||𝑤||

2
+ 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 (7) 

where 
 

𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜖 + 𝜉𝑖,       𝑖 = 1, … , 𝑛 

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗,       𝑖 = 1, … , 𝑛 

𝜉𝑖,  𝜉𝑖
∗  ≥ 0     𝑖 = 1, … , 𝑛 

 
The optimization problem can be expressed as a Lagrangian dual problem. The 

objective is to find the model parameters 𝑤  and 𝑏 , which can then be used to 
reconstruct sensor data. 
 
 
3. APPLICATION TO SENSOR DATA RECONSTRUCTION 
 
     To illustrate the sensor data reconstruction, we use the acceleration data sets 
collected from the wireless sensor network on the Telegraph Road Bridge (Fig. 1(a)) 
located in the state of Michigan (Zhang et al. 2016). Accelerometers are installed along 
Girder 1 and Girder 7 of the bridge as shown in Fig 1(b). The accelerometers measure 
the bridge vibration for one minute duration every 2 hours with 200Hz sampling rate. In 
this study, we use the acceleration data collected from the six accelerometers labeled 
as A0 to A5 along Girder 1 of the bridge. 
     We select 80,000 sequentially sampled acceleration data from each of the 
sensors. The data are collected over 400 second period. The first half (i.e., 40,000 data 
points measured in the first 200 seconds) of the data set are assigned as the training 
data set, while the second half of the data set are assigned as the testing data set as 
summarized below. 
 

Training data set: 𝒙(𝑖) = [𝑥0
(𝑖)

, 𝑥1
(𝑖)

, … , 𝑥5
(𝑖)

]    𝑖 = 1, … ,40,000 

 
(8) 

Testing data set: 𝒙(𝑖) = [𝑥0
(𝑖)

, 𝑥1
(𝑖)

, … , 𝑥5
(𝑖)

]    𝑖 = 40,001, … ,80,000 (9) 

 

where 𝑥𝑗
(𝑖)

 denotes the acceleration measurement data by sensor 𝑗 at time step 𝑖. 

Figure 2 shows the sensor data sets including both the training set and the testing set.  



  

 

  
(a) Side view (b) Sensor layout 

Fig. 1 Telegraph road bridge (Monroe, Michigan) 
 

 

Fig. 2 Training set and testing set of acceleration data 
 
     We select the accelerometer A3 located at the mid-span as the target sensor 

whose data is to be reconstructed by 𝜖-SVR. To construct the acceleration data for 

accelerometer A3, the input 𝒙(𝑖) and the target feature 𝑦(𝑖) are as follows. 
 

𝒙(𝑖) = [𝑥0
(𝑖)

, 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, 𝑥4
(𝑖)

, 𝑥5
(𝑖)

]  (10) 

 

𝑦(𝑖) = 𝑥3
(𝑖)

  (11) 

 

Given the input data and the target feature, we first train the 𝜖 -SVR model for 

prediction target 𝑦(𝑖)  based on the input 𝒙(𝑖)  by solving the optimization problem 
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described in Eq (7) using the training data set. Once the model is built, we construct 

𝑦(𝑖) using the input data 𝒙(𝑖) from testing data set based on the 𝜖-SVR model. Here, 
we use scikit-learn (http://scikit-learn.org/), a machine learning package for Python, to 
perform training and testing (Pedregosa et al. 2011). Fig. 3 compares the measured 
acceleration data and the reconstructed acceleration in both the time and frequency 
domains. By comparing the measured acceleration data shown in Figure 3(a) and the 
reconstructed acceleration data shown in Figure 3 (c), it can be seen that the 𝜖-SVR 
model is able to reconstruct the sensor data with very good precision. Furthermore, as 
can be seen from the Fourier spectra of the measured and reconstructed data, shown 
in Figure 3(b) and 3(d), respectively, dominant frequencies obtained from reconstructed 
data match well with the measurement data. 
 

 
 

(a) Observed acceleration (b) Observed acceleration (Fourier 
spectra) 

  
(c) Reconstructed acceleration (d) Reconstructed acceleration (Fourier 

spectra) 

Fig. 3 Comparison of observed acceleration and the reconstructed acceleration 
 
 
4. DISCUSSION 
 
     In this paper, we explore the potential use of machine learning techniques to build 
data-driven models for bridge monitoring applications. The discussion focuses on the 

reconstruction of sensor data using the 𝜖-SVR algorithm. The application results show 



  

that the proposed approach can reconstruct the sensor data with very good precision. 
Continuing research will be conducted to extend this preliminary finding for cross 
validating the integrity of the sensor data, thereby potentially revealing issues on a 
target structure.  
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