
 

 

The 14th International Symposium on Structural Engineering 

 

CLOUD-BASED CYBER INFRASTRUCTURE FOR BRIDGE MONITORING 

Seongwoon Jeong1, Rui Hou2, Jerome P. Lynch2, Hoon Sohn3, and Kincho H. Law1 
¹ Dept. of Civil & Environmental Eng., Stanford University, Stanford, CA, USA 94305 
² Dept. of Civil & Environmental Eng., University of Michigan, Ann Arbor, MI, USA, 48109 
³ Dept. of Civil & Environmental Eng., KAIST, Daejeon 305-701, Republic of Korea 
 
 
Abstract: 
This paper describes a cloud-based cyber infrastructure for the management of information involved 
in bridge monitoring applications. Recent years have seen an emergence and increasing use of sensor 
technologies for bridge monitoring. In addition to the measurement data from the sensors, bridge 
monitoring and management systems require many different types of information including bridge 
geometries, engineering analytical models and the metadata about the sensors. In this study, we 
employ cloud computing services and have implemented a cloud-based cyber infrastructure platform 
to effectively manage the information involved in bridge monitoring applications. Furthermore, 
NoSQL database systems are deployed for scalable and flexible data storage. To facilitate 
interoperability, a bridge information model is designed based on open standards and bridge 
engineering analysis and design tools. For demonstration purposes, the model of the Telegraph Road 
Bridge located in Michigan and the sensor data collected on the bridge are employed to illustrate the 
use of the cyber infrastructure system for bridge monitoring. 
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1 INTRODUCTION 

Cloud computing, where application services are 
delivered over advanced communication 
networks, has emerged as a new computing 
paradigm that promises to have significant 
impact to engineering practices. The cloud 
computing model enables ubiquitous and 
convenient access of information and 
applications. Focusing on bridge monitoring and 
management applications, this paper discusses 
the development of a cloud-based cyber 
infrastructure that provides ubiquitous access of 
information and supports interoperability among 
engineering services.  

In recent years, there has been an emergence 
and increasing use of sensor and sensor network 
technologies for bridge monitoring. As sensing 
and communication technologies continue to 
advance and their costs continue to decrease, the 
deployment of sensors and sensor networks for 
bridge monitoring will continue to grow. While 
most current research efforts deal with 
continuing development of advanced sensing 
devices and instrumentation strategies to afford 
better assessment of structural conditions, 
relatively few efforts have been reported on the 

data issues involved in bridge monitoring and 
management (Law et al. 2014). The amount of 
data to be collected will continue to grow as 
bridges are being instrumented with dense 
networks of sensors, some of them with very 
high sampling rates. In addition to the 
voluminous measurement data collected from 
the sensors, many different types of information, 
including bridge geometry and engineering 
models, are needed for bridge management. In 
this study, we focus on the development of a 
flexible and scalable data management 
infrastructure that, on one hand, can potentially 
handle the large volume of data sets and that, on 
the other hand, can support easy access by 
engineering applications and a wide variety of 
devices.  

Traditionally, relational database management 
systems (RDBMSs) have become a de facto 
approach for storing data in businesses as well as 
in engineering applications, including bridge 
monitoring (McNeill, 2009). However, recent 
studies have shown that RDBMSs have 
fundamental limitations in terms of flexibility 
and scalability and are not efficient in dealing 
with time series data streams (Han et al., 2011). 
For instance, sensor measurement data are 
typically organized rigidly in tabular form or 



 

 

stored separately in files and they are not 
explicitly integrated with engineering entities. 

NoSQL database management systems have 
been shown capable of overcoming some of the 
limitations of RDBMSs (Han et al., 2011). In 
addition, bridge information models can be 
easily mapped into NoSQL data schemas, and 
thus facilitate information interoperability and 
access by engineering application services. 
Furthermore, recent emergence of cloud 
computing technologies provides a cost-effective 
and scalable platform to handle large volumes of 
data and information (Marston et al., 2011). 

In this paper, a cloud-based cyber 
infrastructure for management of the 
information in bridge monitoring applications is 
presented. Section 2 describes the infrastructure 
framework including cloud computing services 
and NoSQL database technologies. Data 
schemas for representing sensor data and other 
information pertinent to bridge monitoring are 
discussed in Section 3. In Section 4, the 
utilization of the cyber-infrastructure framework 
is demonstrated using the sensor data and the 
bridge model of the Telegraph Road Bridge 
(located in Monroe, Michigan).   

2 CLOUD-BASED CYBER 
INFRASTRUCTURE FRAMEWORK 

Broadly speaking, a bridge monitoring system 
typically involves several computing 
components: onsite computer (or DAQ system), 
main server and local computer (Law et al., 
2014). Connecting to the sensor network, the 
onsite computer (or DAQ system) receives and 
temporarily stores the sensor data, and sends 
them to the main server. The main server stores 
the sensor data permanently along with other 
information, such as the bridge model and the 
metadata about the sensors. Users’ local 
computers, or mobile devices, periodically 
retrieve sensor data and other relevant bridge 
information from the main server (or 
occasionally directly from the onsite computer) 
and performs data analysis. This section 
describes the development of a main server by 
deploying NoSQL data management 
technologies and cloud computing services.  

2.1 Cloud computing service 

Cloud computing can be broadly defined as a 
utility over a network model that enables 

efficient access (e.g., via Internet connection) to 
cost-effective computing resources, such as 
servers, storages, applications and services (Law 
et al., 2016). According to the US National 
Institute of Standards and Technology (NIST), 
cloud computing services can be broadly 
categorized into three basic models, namely, 
Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS) and Software as a Service (SaaS) 
(Mell and Grance, 2011). As described by 
Remde (2011) and illustrated in Figure 1, the 
service models are defined by computing 
resources provided by the service vendors.  

The deployment of cloud services depends on 
the provisioning of the cloud infrastructure 
whether the infrastructure is publicly available, 
privately owned by an organization, shared by a 
community of users, or a hybrid combination of 
the former three provisioning types (Mell and 
Grance, 2011). Using a public cloud service 
model can have many benefits, particularly for 
research purposes (Marston et al., 2011). First, 
public cloud services alleviate the need to 
purchase or to manage server machines. 
Furthermore, users can use an optimal amount of 
computing resource based on demand, thereby 
minimizing expenses on unnecessary resources. 
Last, but not least, the computing resources can 
be flexibly scaled according to the amount of 
sensor data that need to be stored.  

In this work, we employ the IaaS service 
model implemented on a public cloud. The 
hardware and O/S are provided by the cloud 
service vendor, while the database systems and 
applications are self-incorporated to the service. 
The cloud service vendor employed herein is 
Microsoft Azure, which is a widely used cloud 
service. To implement the cloud-based platform, 
we create a virtual machine (Linux Ubuntu 
14.04 LTS, Standard A1 Tier: 1 core, 1.75GB 
memory) on Azure. 

 

 
 
Figure 1. Cloud computing service models  

2.2 NoSQL database system 

Because of their scalability and flexibility 
compared to relational database management 
systems (RDBMSs), NoSQL database systems 
have been applied to handle “big data” 
applications (Han et al., 2011). There exist many 



 

 

NoSQL database systems each having their own 
features and performance advantages. In this 
study, Apache Cassandra is selected as the 
persistent store for the bridge monitoring data. 
Cassandra is known to be effective for handling 
extremely large amounts of data. For example, 
for scaling with computing resources, Cassandra 
exhibits linear performance as new computing 
nodes are added to the existing system (Han et 
al., 2011). Moreover, the database system can 
easily be scaled outwardly from an existing 
system since Cassandra can automatically 
rebalance the allocation of data when additional 
computing nodes are added (Hewitt, 2013). 
Lastly, the master-less architecture of Cassandra 
prevents single point of failure and thus ensures 
high availability as a database system (Hewitt, 
2013).  

2.3 Cyber infrastructure framework 

Based on the cloud computing service model 
and the NoSQL database system, a cyber 
infrastructure framework for bridge monitoring 
applications is designed. Figure 2 shows the 
overall configuration of the cloud-based cyber 
infrastructure framework. A set of virtual 
machines provided by Microsoft Azure serves as 
the main server for the bridge monitoring 
system. On the cloud computing platform, 
Apache Cassandra is installed to manage the 
sensor data along with other pertinent 
information including the bridge geometry and 
engineering model. Due to the scalability of 
Azure and Cassandra, the number of virtual 
machines can be easily adjusted according to the 
demand. 

Python scripts are developed for the onsite 
computer to enable seamless data flow from the 
sensor network to the cloud-based main server. 
When measurement data are received from 
sensor network by the onsite computer, the 
scripts automatically parse the data and store 
them locally in MongoDB (a document-oriented 
NoSQL database system) for temporary storage 
of the data on the onsite computer. When the 
Cassandra database system is ready, the scripts 
also parse and send the data to the main server. 
Application Program Interfaces (API) (such as 
PyMongo and Cassandra driver) are utilized to 
connect the DAQ file on the system with 
MongoDB on the onsite computer and the 
Cassandra on the cloud server. 

The local computers (such as desktop or 
laptop computers of system end-users) serve as 
the computational platform of the system. In the 

current implementation, the analysis modules are 
installed on local computers and are separated 
from the main server so that the main server can 
guarantee consistent performance as a data 
management platform. APIs (such as Matlab 
Engine (for Matlab) and rpy2 (for R)) have been 
deployed to retrieve the data from the main 
server to the analysis modules on the local 
computers.  

Additionally, a web server module has been 
developed based on the HTTP protocol to handle 
users’ request to the main server. The web server 
module includes functions for converting a 
user’s request into a Cassandra query and 
returning the query results to the user’s device 
(such as a web browser on the mobile device). 

 

 
 
Figure 2. Cloud and NoSQL based data 
management framework for bridge monitoring 

3 DATA SCHEMAS AND DATA 
MANAGEMENT 

3.1 Data schema for bridge information  

In order to support a broad spectrum of potential 
usages of the data for bridge monitoring 
applications, the data schema needs to include 
information such as bridge geometry, finite 
element model parameters, and metadata about 
the sensors (e.g., type, sensitivities, locations, 
orientations). The information in the main server 
needs to be properly organized as much as 
possible and should adhere to open standards for 
interoperability purposes. The bridge 



 

 

information model (BrIM) developed in this 
work is built upon the OpenBrIM standards, 
which is an open standard established as an 
integrated bridge structure model throughout the 
project lifecycle (Chen, 2013). The bridge data 
stored in the main server can be mapped to the 
OpenBrIM schema and then be utilized by 
applications supporting OpenBrIM.  

While the current OpenBrIM standards 
capture the geometry of a bridge, the standards 
do not have any entities for describing sensors 
and lacks many data entities that are necessary to 
represent an engineering analysis model. The 
BrIM model thus enriches the OpenBrIM 
standards with additional user-defined objects 
and parameters. For example, to include 
metadata for the sensors, BrIM adopts 
SensorML which is a widely used standard for 
sensor description (Open Geospatial 
Consortium, 2014). Also introduced are the data 
entities derived from CSI Bridge (a software tool 
for bridge modelling and analysis) to support an 
analysis model. Figure 3 shows the BrIM 
schema developed in this study.  

 

 
 
Figure 3. BrIM model for bridge monitoring 

 
Figure 4 shows an example of a BrIM 

document and the corresponding Cassandra 
database instance. The BrIM document consists 
of a hierarchical set of objects and their 
parameters where an object represents a physical 
or a conceptual element of a bridge while the 
parameters are the attributes of each object. In 
the Cassandra database, each row stores the 
information of an object, its parameters as well 

as the object hierarchy by including the 
information about the parent and the children 
entities of the object. 

 

 
 
Figure 4. Example of a BrIM document and the 
corresponding Cassandra database instance 

3.2 Sensor data management 

A very large portion of the data in a structural 
monitoring system is the time-series 
measurement data collected from the sensors. 
The time-series data need to be stored 
contiguously in a sequentially sorted order to 
minimize disk seek time. For distributed storage 
systems, the partitioning feature of Cassandra 
may result in distribution of the time-series data 
to many different computing nodes, causing 
excessive disk seek time. Figure 5(a) shows an 
example where the time-series data d:<d1, d2, 
d3> is distributed over multiple Cassandra 
database nodes. In this case, a database query 
not only needs to retrieve the data from all three 
nodes, but also needs to sort the data according 
to their timestamps.  
 

  
(a) Time-series data 
distributed over 
multiple nodes 

(b) Time-series data 
that stored in the same 
node in sorted order 

 
Figure 5. Time-series data stored in a 
distributed system 



 

 

 
To reduce data access time, we employ a 

strategy for handling time-series data in 
Cassandra as shown in Figure 6 (McFadin, 
2015). First, the partitioning key is defined as 
the combination of sensor ID and date (such as 
year and month of the data acquisition), so that 
the time-series data measured by a single sensor 
in a specific time span (such as a month) are 
stored in a single node. Second, the clustering 
key is defined to be the timestamp when the data 
is measured, so that the time-series data can be 
written to the disk in a sorted order. Figure 5(b) 
shows the example that time-series data d:<d1, 
d2, d3> are stored in a single node in sorted 
order.  
 

 
 
Figure 6. Data schema for time-series data 

4 IMPLEMENTATION 

For demonstration purpose, we use the bridge 
model of the Telegraph Road Bridge (TRB) 
located in Monroe, Michigan and the sensor data 
collected on that bridge to illustrate the 
cloud-based cyber infrastructure system (Zhang 
et al. 2016). The sensor data are collected by 14 
accelerometers, 40 strain gauges, and 6 
thermistors and are acquired between August 
2014 and February 2015. For this example, the 
finite element model is created using CSI Bridge 
(version 2015).  

We first create a virtual machine on the 
Microsoft Azure cloud platform and set up the 
Apache Cassandra database along with the 
defined data schema. For illustration purposes, 
we use a laptop computer as the onsite 
computer. The Python scripts on the onsite 
computer start to execute and to store the sensor 
data temporarily in MongoDB which is installed 
on the onsite computer. Furthermore, sensor data 
is also parsed and sent to the main server which 
is on Azure. In addition to the sensor data, the 
finite element model, bridge geometry and 
sensor metadata are also stored in the Cassandra 
database. 

The data stored in the Cassandra database can 
be retrieved using the Cassandra Driver API. 
The API provides a SQL-like query language 
that supports SELECT, FROM and WHERE 

statements. For example, Figure 7 shows an 
example of the query statement for retrieving 
sensor data and the corresponding query result 
plotted using the matplotlib (Python library for 
plotting). Based on the Cassandra Driver API, 
users can also build query scripts to retrieve the 
FE model of the bridge structure. Figure 8 shows 
the retrieved FE model of the TRB and the 
modal analysis results. 

 

 
 
Figure 7. Query statement to retrieve sensor 
data and corresponding query result plotted 
using matplotlib 
 

 
 
Figure 8. Finite element model retrieved from 
the main server and modal analysis results 

5. SUMMARY AND CONCLUSION 

In this study, a cloud-based cyber infrastructure 
framework for bridge monitoring application is 
discussed. The main server of the framework 
utilizes a cloud platform service and a NoSQL 
database system to enable a cost-effective, 
scalable and flexible data management platform. 
APIs and scripts are implemented to allow 
seamless data flow among the onsite computer, 
the main server and the tools residing on a local 



 

 

computer. For time-series sensor data and the 
complex bridge information, data schemas for 
SHM are defined. The developed framework and 
data schema are tested using the data collected 
from the TRB. While the implementation 
presented employs the public cloud service 
platform, the methodology is general and can be 
deployed in other public or private cloud 
services and web service environment. 
Implementation results show that the cyber 
infrastructure framework can elegantly manage 
the bridge monitoring data and allow users to 
easily retrieve data for data analysis. 
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