

The 14th International Symposium on Structural Engineering

CLOUD-BASED CYBER INFRASTRUCTURE FOR BRIDGE MONITORING

Seongwoon Jeong1, Rui Hou2, Jerome P. Lynch2, Hoon Sohn3, and Kincho H. Law1
¹ Dept. of Civil & Environmental Eng., Stanford University, Stanford, CA, USA 94305
² Dept. of Civil & Environmental Eng., University of Michigan, Ann Arbor, MI, USA, 48109
³ Dept. of Civil & Environmental Eng., KAIST, Daejeon 305-701, Republic of Korea

Abstract:
This paper describes a cloud-based cyber infrastructure for the management of information involved
in bridge monitoring applications. Recent years have seen an emergence and increasing use of sensor
technologies for bridge monitoring. In addition to the measurement data from the sensors, bridge
monitoring and management systems require many different types of information including bridge
geometries, engineering analytical models and the metadata about the sensors. In this study, we
employ cloud computing services and have implemented a cloud-based cyber infrastructure platform
to effectively manage the information involved in bridge monitoring applications. Furthermore,
NoSQL database systems are deployed for scalable and flexible data storage. To facilitate
interoperability, a bridge information model is designed based on open standards and bridge
engineering analysis and design tools. For demonstration purposes, the model of the Telegraph Road
Bridge located in Michigan and the sensor data collected on the bridge are employed to illustrate the
use of the cyber infrastructure system for bridge monitoring.
Keywords: Cloud computing, cyber infrastructure, bridge monitoring, NoSQL database

1 INTRODUCTION

Cloud computing, where application services are
delivered over advanced communication
networks, has emerged as a new computing
paradigm that promises to have significant
impact to engineering practices. The cloud
computing model enables ubiquitous and
convenient access of information and
applications. Focusing on bridge monitoring and
management applications, this paper discusses
the development of a cloud-based cyber
infrastructure that provides ubiquitous access of
information and supports interoperability among
engineering services.

In recent years, there has been an emergence
and increasing use of sensor and sensor network
technologies for bridge monitoring. As sensing
and communication technologies continue to
advance and their costs continue to decrease, the
deployment of sensors and sensor networks for
bridge monitoring will continue to grow. While
most current research efforts deal with
continuing development of advanced sensing
devices and instrumentation strategies to afford
better assessment of structural conditions,
relatively few efforts have been reported on the

data issues involved in bridge monitoring and
management (Law et al. 2014). The amount of
data to be collected will continue to grow as
bridges are being instrumented with dense
networks of sensors, some of them with very
high sampling rates. In addition to the
voluminous measurement data collected from
the sensors, many different types of information,
including bridge geometry and engineering
models, are needed for bridge management. In
this study, we focus on the development of a
flexible and scalable data management
infrastructure that, on one hand, can potentially
handle the large volume of data sets and that, on
the other hand, can support easy access by
engineering applications and a wide variety of
devices.

Traditionally, relational database management
systems (RDBMSs) have become a de facto
approach for storing data in businesses as well as
in engineering applications, including bridge
monitoring (McNeill, 2009). However, recent
studies have shown that RDBMSs have
fundamental limitations in terms of flexibility
and scalability and are not efficient in dealing
with time series data streams (Han et al., 2011).
For instance, sensor measurement data are
typically organized rigidly in tabular form or

stored separately in files and they are not
explicitly integrated with engineering entities.

NoSQL database management systems have
been shown capable of overcoming some of the
limitations of RDBMSs (Han et al., 2011). In
addition, bridge information models can be
easily mapped into NoSQL data schemas, and
thus facilitate information interoperability and
access by engineering application services.
Furthermore, recent emergence of cloud
computing technologies provides a cost-effective
and scalable platform to handle large volumes of
data and information (Marston et al., 2011).

In this paper, a cloud-based cyber
infrastructure for management of the
information in bridge monitoring applications is
presented. Section 2 describes the infrastructure
framework including cloud computing services
and NoSQL database technologies. Data
schemas for representing sensor data and other
information pertinent to bridge monitoring are
discussed in Section 3. In Section 4, the
utilization of the cyber-infrastructure framework
is demonstrated using the sensor data and the
bridge model of the Telegraph Road Bridge
(located in Monroe, Michigan).

2 CLOUD-BASED CYBER
INFRASTRUCTURE FRAMEWORK

Broadly speaking, a bridge monitoring system
typically involves several computing
components: onsite computer (or DAQ system),
main server and local computer (Law et al.,
2014). Connecting to the sensor network, the
onsite computer (or DAQ system) receives and
temporarily stores the sensor data, and sends
them to the main server. The main server stores
the sensor data permanently along with other
information, such as the bridge model and the
metadata about the sensors. Users’ local
computers, or mobile devices, periodically
retrieve sensor data and other relevant bridge
information from the main server (or
occasionally directly from the onsite computer)
and performs data analysis. This section
describes the development of a main server by
deploying NoSQL data management
technologies and cloud computing services.

2.1 Cloud computing service

Cloud computing can be broadly defined as a
utility over a network model that enables

efficient access (e.g., via Internet connection) to
cost-effective computing resources, such as
servers, storages, applications and services (Law
et al., 2016). According to the US National
Institute of Standards and Technology (NIST),
cloud computing services can be broadly
categorized into three basic models, namely,
Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS)
(Mell and Grance, 2011). As described by
Remde (2011) and illustrated in Figure 1, the
service models are defined by computing
resources provided by the service vendors.

The deployment of cloud services depends on
the provisioning of the cloud infrastructure
whether the infrastructure is publicly available,
privately owned by an organization, shared by a
community of users, or a hybrid combination of
the former three provisioning types (Mell and
Grance, 2011). Using a public cloud service
model can have many benefits, particularly for
research purposes (Marston et al., 2011). First,
public cloud services alleviate the need to
purchase or to manage server machines.
Furthermore, users can use an optimal amount of
computing resource based on demand, thereby
minimizing expenses on unnecessary resources.
Last, but not least, the computing resources can
be flexibly scaled according to the amount of
sensor data that need to be stored.

In this work, we employ the IaaS service
model implemented on a public cloud. The
hardware and O/S are provided by the cloud
service vendor, while the database systems and
applications are self-incorporated to the service.
The cloud service vendor employed herein is
Microsoft Azure, which is a widely used cloud
service. To implement the cloud-based platform,
we create a virtual machine (Linux Ubuntu
14.04 LTS, Standard A1 Tier: 1 core, 1.75GB
memory) on Azure.

Figure 1. Cloud computing service models

2.2 NoSQL database system

Because of their scalability and flexibility
compared to relational database management
systems (RDBMSs), NoSQL database systems
have been applied to handle “big data”
applications (Han et al., 2011). There exist many

NoSQL database systems each having their own
features and performance advantages. In this
study, Apache Cassandra is selected as the
persistent store for the bridge monitoring data.
Cassandra is known to be effective for handling
extremely large amounts of data. For example,
for scaling with computing resources, Cassandra
exhibits linear performance as new computing
nodes are added to the existing system (Han et
al., 2011). Moreover, the database system can
easily be scaled outwardly from an existing
system since Cassandra can automatically
rebalance the allocation of data when additional
computing nodes are added (Hewitt, 2013).
Lastly, the master-less architecture of Cassandra
prevents single point of failure and thus ensures
high availability as a database system (Hewitt,
2013).

2.3 Cyber infrastructure framework

Based on the cloud computing service model
and the NoSQL database system, a cyber
infrastructure framework for bridge monitoring
applications is designed. Figure 2 shows the
overall configuration of the cloud-based cyber
infrastructure framework. A set of virtual
machines provided by Microsoft Azure serves as
the main server for the bridge monitoring
system. On the cloud computing platform,
Apache Cassandra is installed to manage the
sensor data along with other pertinent
information including the bridge geometry and
engineering model. Due to the scalability of
Azure and Cassandra, the number of virtual
machines can be easily adjusted according to the
demand.

Python scripts are developed for the onsite
computer to enable seamless data flow from the
sensor network to the cloud-based main server.
When measurement data are received from
sensor network by the onsite computer, the
scripts automatically parse the data and store
them locally in MongoDB (a document-oriented
NoSQL database system) for temporary storage
of the data on the onsite computer. When the
Cassandra database system is ready, the scripts
also parse and send the data to the main server.
Application Program Interfaces (API) (such as
PyMongo and Cassandra driver) are utilized to
connect the DAQ file on the system with
MongoDB on the onsite computer and the
Cassandra on the cloud server.

The local computers (such as desktop or
laptop computers of system end-users) serve as
the computational platform of the system. In the

current implementation, the analysis modules are
installed on local computers and are separated
from the main server so that the main server can
guarantee consistent performance as a data
management platform. APIs (such as Matlab
Engine (for Matlab) and rpy2 (for R)) have been
deployed to retrieve the data from the main
server to the analysis modules on the local
computers.

Additionally, a web server module has been
developed based on the HTTP protocol to handle
users’ request to the main server. The web server
module includes functions for converting a
user’s request into a Cassandra query and
returning the query results to the user’s device
(such as a web browser on the mobile device).

Figure 2. Cloud and NoSQL based data
management framework for bridge monitoring

3 DATA SCHEMAS AND DATA
MANAGEMENT

3.1 Data schema for bridge information

In order to support a broad spectrum of potential
usages of the data for bridge monitoring
applications, the data schema needs to include
information such as bridge geometry, finite
element model parameters, and metadata about
the sensors (e.g., type, sensitivities, locations,
orientations). The information in the main server
needs to be properly organized as much as
possible and should adhere to open standards for
interoperability purposes. The bridge

information model (BrIM) developed in this
work is built upon the OpenBrIM standards,
which is an open standard established as an
integrated bridge structure model throughout the
project lifecycle (Chen, 2013). The bridge data
stored in the main server can be mapped to the
OpenBrIM schema and then be utilized by
applications supporting OpenBrIM.

While the current OpenBrIM standards
capture the geometry of a bridge, the standards
do not have any entities for describing sensors
and lacks many data entities that are necessary to
represent an engineering analysis model. The
BrIM model thus enriches the OpenBrIM
standards with additional user-defined objects
and parameters. For example, to include
metadata for the sensors, BrIM adopts
SensorML which is a widely used standard for
sensor description (Open Geospatial
Consortium, 2014). Also introduced are the data
entities derived from CSI Bridge (a software tool
for bridge modelling and analysis) to support an
analysis model. Figure 3 shows the BrIM
schema developed in this study.

Figure 3. BrIM model for bridge monitoring

Figure 4 shows an example of a BrIM

document and the corresponding Cassandra
database instance. The BrIM document consists
of a hierarchical set of objects and their
parameters where an object represents a physical
or a conceptual element of a bridge while the
parameters are the attributes of each object. In
the Cassandra database, each row stores the
information of an object, its parameters as well

as the object hierarchy by including the
information about the parent and the children
entities of the object.

Figure 4. Example of a BrIM document and the
corresponding Cassandra database instance

3.2 Sensor data management

A very large portion of the data in a structural
monitoring system is the time-series
measurement data collected from the sensors.
The time-series data need to be stored
contiguously in a sequentially sorted order to
minimize disk seek time. For distributed storage
systems, the partitioning feature of Cassandra
may result in distribution of the time-series data
to many different computing nodes, causing
excessive disk seek time. Figure 5(a) shows an
example where the time-series data d:<d1, d2,
d3> is distributed over multiple Cassandra
database nodes. In this case, a database query
not only needs to retrieve the data from all three
nodes, but also needs to sort the data according
to their timestamps.

(a) Time-series data
distributed over
multiple nodes

(b) Time-series data
that stored in the same
node in sorted order

Figure 5. Time-series data stored in a
distributed system

To reduce data access time, we employ a

strategy for handling time-series data in
Cassandra as shown in Figure 6 (McFadin,
2015). First, the partitioning key is defined as
the combination of sensor ID and date (such as
year and month of the data acquisition), so that
the time-series data measured by a single sensor
in a specific time span (such as a month) are
stored in a single node. Second, the clustering
key is defined to be the timestamp when the data
is measured, so that the time-series data can be
written to the disk in a sorted order. Figure 5(b)
shows the example that time-series data d:<d1,
d2, d3> are stored in a single node in sorted
order.

Figure 6. Data schema for time-series data

4 IMPLEMENTATION

For demonstration purpose, we use the bridge
model of the Telegraph Road Bridge (TRB)
located in Monroe, Michigan and the sensor data
collected on that bridge to illustrate the
cloud-based cyber infrastructure system (Zhang
et al. 2016). The sensor data are collected by 14
accelerometers, 40 strain gauges, and 6
thermistors and are acquired between August
2014 and February 2015. For this example, the
finite element model is created using CSI Bridge
(version 2015).

We first create a virtual machine on the
Microsoft Azure cloud platform and set up the
Apache Cassandra database along with the
defined data schema. For illustration purposes,
we use a laptop computer as the onsite
computer. The Python scripts on the onsite
computer start to execute and to store the sensor
data temporarily in MongoDB which is installed
on the onsite computer. Furthermore, sensor data
is also parsed and sent to the main server which
is on Azure. In addition to the sensor data, the
finite element model, bridge geometry and
sensor metadata are also stored in the Cassandra
database.

The data stored in the Cassandra database can
be retrieved using the Cassandra Driver API.
The API provides a SQL-like query language
that supports SELECT, FROM and WHERE

statements. For example, Figure 7 shows an
example of the query statement for retrieving
sensor data and the corresponding query result
plotted using the matplotlib (Python library for
plotting). Based on the Cassandra Driver API,
users can also build query scripts to retrieve the
FE model of the bridge structure. Figure 8 shows
the retrieved FE model of the TRB and the
modal analysis results.

Figure 7. Query statement to retrieve sensor
data and corresponding query result plotted
using matplotlib

Figure 8. Finite element model retrieved from
the main server and modal analysis results

5. SUMMARY AND CONCLUSION

In this study, a cloud-based cyber infrastructure
framework for bridge monitoring application is
discussed. The main server of the framework
utilizes a cloud platform service and a NoSQL
database system to enable a cost-effective,
scalable and flexible data management platform.
APIs and scripts are implemented to allow
seamless data flow among the onsite computer,
the main server and the tools residing on a local

computer. For time-series sensor data and the
complex bridge information, data schemas for
SHM are defined. The developed framework and
data schema are tested using the data collected
from the TRB. While the implementation
presented employs the public cloud service
platform, the methodology is general and can be
deployed in other public or private cloud
services and web service environment.
Implementation results show that the cyber
infrastructure framework can elegantly manage
the bridge monitoring data and allow users to
easily retrieve data for data analysis.

ACKNOWLEDGEMENTS

This research is supported by a Grant No.
13SCIPA01 from Smart Civil Infrastructure
Research Program funded by the Ministry of
Land, Infrastructure and Transport (MOLIT) of
the Korea government and the Korea Agency for
Infrastructure Technology Advancement
(KAIA). The research is also partially supported
by the US National Science Foundation (NSF),
Grant No. ECCS-1446330 to Stanford
University and Grant No. CMMI-1362513 and
ECCS- 1446521 to the University of Michigan.
The authors would like to thank the Michigan
Department of Transportation (MDOT) for
access to the Telegraph Road Bridge and for
offering support during the installation of the
wireless monitoring system. Any opinions,
findings, conclusions or recommendations
expressed in this paper are solely those of the
authors and do not necessarily reflect the views
of NSF, MOLIT, KAIA, MDOT or any other
organizations and collaborators.

REFERENCES

CHEN S S. 2013. Bridge Data Protocols for
Interoperability Local Failure Bridge Data
Protocols for Interoperability and Life Cycle
Management. [Online article], Retrieved
from: http://iug.buildingsmart.org/resources/
itm-and-iug-meetings-2013-munich/infra-roo
m/bridge-data-protocols-for-interoperability-a
nd-life-cycle-management (accessed on Mar
2016)

HAN J, HAIHONG E, LE G, DU J. 2011.
Survey on NoSQL database[C]. Proceedings
of ICPCA 2011, 363-366.

HEWITT E. 2010. Cassandra: the definitive
guide. O'Reilly Media, Inc., [Online Book],

Retrieved from: http://proquest.safaribooks
online.com/9781449399764 (accessed on Mar
2016)

LAW K H, CHENG J C P, FRUCHTER R,
SRIRAM R. 2016. Cloud applications in
engineering[M]. In Encyclopedia of Cloud
Computing, MURUGESAN S, BOJANOVA
I. (eds.), Wiley. (in press).

LAW K H, SMARSLY K, WANG Y. 2014.
Sensor data management technologies for
infrastructure asset management[M]. In
Sensor Technologies for Civil Infrastructures:
Applications in Structural Health Monitoring,
WANG M L, LYNCH J P, SOHN H. (eds.),
Woodhead Publishing, Cambridge, UK, 2(1):
3-32.

MARSTON S, LI Z, BANDYOPADHYAY S,
ZHANG J, GHALSASI A. 2011. Cloud
computing—The business perspective[J].
Decision support systems, 51(1):176-189.

McFADIN P. 2015. Getting Started with Time
Series Data Modeling. [Online article],
Retrieved from: https://academy.datastax.com
/demos/getting-started-time-series-data-model
ing (accessed on Mar 2016)

MCNEILL D K. 2009. Data management and
signal processing for structural health
monitoring of civil infrastructure systems[M].
In Structural Health Monitoring of Civil
Infrastructure Systems, V.M. KARBHARI, F.
ANSARI (eds.), CRC Press, Boca Raton, FL,
283-304.

MELL P, GRANCE T. 2011. The NIST
definition of cloud computing -
Recommendations of the National Institute of
Standards and Technology[M]. NIST Special
Publication 800-145, Computer Science
Division, Information Technology
Laboratory, National Institute of Standards
and Technology.

OPEN GEOSPATIAL CONSORTIUM. 2014.
Sensor Model Language (SensorML) [Online
article], Retrieved from: http://www.opengeo
spatial.org/standards/sensorml (accessed on
Mar 2016)

REMDE K. 2011. SaaS, PaaS, and IaaS.. Oh
my!. [Online article], Retrieved from:
https://blogs.technet.microsoft.com/kevinrem
de/2011/04/03/saas-paas-and-iaas-oh-my-clou
dy-april-part-3/ (accessed on Mar 2016)

ZHANG Y, O’CONNOR S M, VAN DER
LINDEN G, PRAKASH A, LYNCH J P.
2016. SenStore: A Scalable
Cyberinfrastructure Platform for
Implementation of Data-to-Decision
Frameworks for Infrastructure Health
Management[J]. Journal of Computing in
Civil Engineering, 10.1061/(ASCE)CP.
1943-5487.0000560, 04016012.

