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Abstract— IoT technology can have a huge impact in 
engineering by leveraging state-of-the-art information and 
communication technologies (ICT). In practice, however, it is 
challenging for IoT platforms to handle domain-specific 
engineering information (e.g., geometric model, engineering 
simulation model, etc.) along with sensor data of different types. 
Engineering information and sensor data need to be integrated 
for effective data utilization and shared and interoperable 
among a wide variety of software tools. This paper describes an 
IoT platform that is tailored to engineering applications and 
adopts an information modeling approach to facilitate data 
interoperability and to integrate engineering information with 
sensor data. In addition, a decentralized data management 
framework is employed so that the data owned by different 
project participants can be shared among authorized users and 
software agents. The IoT platform is demonstrated using a civil 
infrastructure monitoring scenario which involves various types 
of sensor data, as well as engineering models. The result shows 
that the IoT platform can facilitate information sharing and 
data utilization, in particular, for the civil infrastructure 
monitoring application.  

Keywords- Internet of Things, IoT platform, cloud computing, 
distributed data management, information modeling, 
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I.  INTRODUCTION 
With the advances in information and communication 

technology (ICT), sensors have been deployed widely in many 
engineering domains. The increasing use of sensors will 
realize the concept of Internet of Things (IoT) and cyber-
physical system (CPS) that physical systems and 
computational systems are tightly integrated [1]. Physical 
systems can be monitored, analyzed and controlled with or 
without human intervention. Furthermore, the massive data 
collected by sensors offers promising opportunities to find 
new insights about the physical systems. In practice, however, 
sensor data needs to be integrated with domain-specific 
engineering information to support decision-making. A data 
management platform that can effectively manage sensor data 
and engineering information is essential before IoT 
technology can find useful in engineering applications.  

An IoT platform refers to a system that can connect 
physical objects via a network, and receive, manage, store and 
analyze data generated from the physical objects. As IoT 

technology matures and becomes increasingly prevalent, 
many generic IoT platforms have been developed. However, 
there is no one-size-fit-all platform: an IoT platform has to be 
tailored to meet domain-specific requirements [2].  
Engineering applications, which often involve diverse types 
of information ranging from heterogeneous sensor data (e.g., 
high-frequency time-series data and video and camera 
images) to domain-specific engineering information (e.g., 
geometric model, engineering simulation model, etc.) [3, 4], 
impose additional requirements for supporting data and 
software interoperability. First, engineering information needs 
to be integrated with sensor data to enable effective data 
retrieval and utilization. In addition, efficient information 
sharing and data exchange are required because engineering 
projects typically involve a wide variety of software tools, as 
well as ad hoc analysis modules [5]. Lastly, engineering 
applications often involve multiple parties, each of which may 
own certain types of data. An IoT platform needs to be 
designed to meet these requirements in order to effectively 
support engineering IoT applications.  

In engineering domains, information modeling has gained 
enormous attention as a vehicle to support integrated project 
delivery process. Information modeling enables information 
sharing and integration, as well as seamless data exchange 
among software agents based on interoperability standards. 
However, information modeling community seldom pays 
attention to issues involving scalable sensor data management 
or standardized communications with client devices, which 
are being emphasized in most generic IoT platforms. This 
study illustrates that information modeling and IoT platforms 
can beneficially complement each other for effective data 
management in IoT-driven engineering applications. 

In this paper, an IoT platform tailored to engineering 
applications is presented. For data integration and 
interoperability, an information model that defines sensor 
entities and their relationship to the engineering model is 
employed. Database schema and web interfaces are designed 
to support the management and sharing of semi-structured 
information model, as well as the large amount of sensor data. 
In addition, a decentralized data management approach is 
adopted based on a hybrid cloud computing environment, so 
that the data owned by different parties can be shared. The 
proposed IoT platform is demonstrated using a civil 



infrastructure monitoring scenario which involves various 
types of sensor data as well as engineering models.  

II. RELATED WORKS 
With the increasing adoption of sensor and IoT 

technology, many IoT platforms have been developed. Many 
cloud computing service vendors offer IoT platforms, 
including AWS IoT by Amazon AWS [6], IoT Hub by 
Microsoft Azure [7], Watson IoT Platform by IBM cloud [8], 
AT&T IoT Platform by AT&T [9]. These generic IoT 
platforms support device connectivity via standard protocols 
with high scalability by leveraging cloud computing 
technology. These platforms also provide many tools, such as 
device management tools, rule engine, event processing 
module, security tool and software development kit (SDK). 
While these generic IoT platforms provide basic services, they 
lack the supporting services for domain-specific applications 
and data management tools. Instead, these services need to be 
developed and added by customers or partner companies. 
There have been some domain-driven IoT platforms, such as 
PTC ThingWorx [10] and AutoDesk Fusion Connect [11] 
developed for industrial IoT (IIoT). These IIoT platforms 
offer some industrial applications and sophisticated functions, 
such as augmented reality (AR)-enabled user interfaces. 
Nevertheless, these IIoT platforms are not designed to manage 
engineering information models and do not support data and 
software interoperability. 

Many research efforts have been spent on the development 
of IoT platforms for specific application areas, such as 
healthcare [12, 13], smart city [14, 15, 16] and agriculture 
[17]. Domain-specific platform handles not only sensor data, 
but also other relevant information. For example, Lea and 
Blackstock [15] describe an IoT platform for smart city 
application to manage a wide array of data, from real-time 
(e.g. traffic data) to static data (e.g., asset lists). However, this 
work does not address data integration for linking 
heterogeneous sensor data and domain information. To allow 
software agents to easily discover relevant information and to 

perform analysis, domain information and sensor data need to 
be properly linked and integrated. Jayaraman et al. [17] 
describe a semantic-driven IoT platform to link sensor data 
and domain concept based on ontology definitions. In 
addition, an IoT platform proposed in [14] enables 
interoperability among heterogeneous information models, 
such as building information models (BIM) and system 
information models (SIM), based on sematic web technology. 
Nevertheless, these studies do not address the data 
interoperability problem which is critical in engineering 
projects involving various software tools, each of which may 
have its own interface and data model. Engineering 
information needs to be exposed in a platform-neutral and 
standardized data format that can be easily parsed and used by 
different software agents, ranging from engineering 
simulation tools to data-driven analysis modules. To this end, 
this paper describes an IoT platform based on information 
modeling to deal with both data integration and data 
interoperability problem. The IoT platform’s components are 
designed to support the sharing and management of 
information model data along with sensor data. 

III. OVERVIEW OF IOT PLATFORM 
Fig. 1 shows the architecture of the proposed IoT platform 

designed to manage data collected from various data sources 
in engineering, including information models and sensor 
networks. Information models include comprehensive 
information (e.g., geometry, physical properties, functional 
characteristics and sensor information) of target systems. 
Sensor networks, on the other hand, generate heterogeneous 
sensor data, ranging from high-frequency time series data to 
video and camera images.  

The IoT platform is composed of three basic layers, 
namely, communication layer, mapping layer and storage 
layer, to support data store and retrieval. For data store 
processes, the communication layer handles communication 
with the data sources. Specifically, the web server and 
message broker in the communication layer provide 

 
Figure 1.  Overall architecture of the IoT platform for engineering 
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standardized interfaces to receive data from different data 
sources via the Internet. The mapping layer includes a data 
mapper that maps the received semi-structured information 
models onto the database schema. The mapped data is passed 
to the storage layer which includes a distributed database 
system that partitions, replicates and stores data.   

The data stored in the distributed database of the IoT 
platform can be accessed and queried via user interface and by 
various applications, such as data analysis tools, engineering 
analysis software and 3-D modeling tools. For the data 
retrieval process, the web server in the communication layer 
provides standardized web interface through which 
applications can retrieve data. Receiving a request from an 
application, the web server retrieves data from the distributed 
database. If necessary, the data mapper is invoked to map the 
retrieved data back into information models’ standardized 
data schema that can be parsed and utilized by different 
applications. Finally, the retrieved data is then delivered to the 
application.  

The proposed IoT platform is deployed on a cloud 
computing environment for scalability, accessibility and 
reliability. Specifically, the IoT platform can be deployed on 
the Infrastructure as a Service (IaaS) layer of cloud (i.e., 
virtual machines offered by cloud) [18], which assures 
platform portability across different cloud vendors or among 
public cloud, private cloud and hybrid cloud.   

IV. DATA STORE PROCESS 
This section describes the process of acquiring and storing 

the data with the IoT platform. Data store requests are 
processed through three layers: communication, mapping and 
storage. The communication layer employs web server and 
message broker built upon standard protocols, so that various 
data sources can access the platform. The mapping layer 
defines the mapper to help store the semi-structured 
information models in the database. Finally, the storage layer 
employs a distributed NoSQL database to enable scalable data 
management. 

A. Communication Layer 
The communication layer is exposed to clients (e.g., data 

sources) via the Internet to enable remote access. The layer 
serves as intermediary, and accepts messages with the data 
from the clients, parses the message to extract the data and 
passes the data to the appropriate layer. To support different 
communication protocols often used in IoT applications, this 
layer includes two systems: a web server based on the 
Hypertext Transfer Protocol (HTTP) and a message broker 
based on the Message Queuing Telemetry Transport (MQTT). 
In the prototype implementation, both systems are deployed 
using Node.js [19], a server-side JavaScript runtime 
environment. 

The web server is implemented to support a machine-to-
machine (M2M) communication based on the client-server 
model. Specifically, the web server hosts RESTful 
(Representational state transfer) web services that clients (i.e., 
data sources) can invoke to deliver messages via HTTP [20]. 
The proposed web server hosts a set of web services to handle 
different types of data. For example, a web service for storing 

an information model works as follows. A client system, such 
as a local desktop computer, sends an HTTP request 
specifying the host name and the Uniform Resource Identifier 
(URI) of the web service for information model store. In 
addition, the HTTP request includes an information model file 
written in standard syntax such as eXtensible Markup 
Language (XML) that the client wants to store in the IoT 
platform. Upon receiving the message, the web server calls the 
web service corresponding to the request specified. The web 
service then parses the HTTP request, extracts the information 
model file, and delivers the file to the next layer (i.e., mapping 
layer). Once the process is completed, the web service returns 
an HTTP response notifying that the request has been 
processed successfully. If any error occurs during the process, 
the web service returns an HTTP response with an error 
message.  

The web server processes a sensor data store request in a 
similar manner. For example, a gateway system connected to 
a sensor network sends an HTTP request that contains sensor 
data written in JSON format, as well as the host address and 
the URI for the sensor data store service. Once the web server 
receives the request, a web service is invoked, parses the 
request and extracts sensor data. It should be noted that the 
sensor data is delivered directly to the storage layer without 
going through the mapping layer in the current 
implementation, since sensor data typically does not require 
complex data mapping. 

The message broker is implemented to support M2M 
communication for sensor data exchange based on the 
publish/subscribe (pub/sub) paradigm. Publisher clients (e.g., 
data sources) and subscriber clients (e.g., application 
programs) can exchange messages in one-to-one, one-to-
many and many-to-many communication in real time. This 
real time messaging can be used not only to store data, but also 
to enable tasks, such as real time analytics and event 
triggering, executed in real time. The message broker 
manages several “topics”, each of which is defined for a 
specific type of sensor data. Data sources can use the topic to 
specify the type of data. For example, a gateway device 
connected to sensor network can publish a message containing 
the sensor data written in JSON and a topic name to the 
message broker via MQTT protocol. Once published, the 
message is parsed, and the sensor data is delivered to the 
storage layer. In addition, any subscriber clients subscribing 
to the same topic can receive the published message via 
MQTT protocol. 

B. Mapping Layer 
The mapping layer receives the information models from 

the communication layer, maps the model to a database 
schema, and loads the mapped data to the database. 
Information models are typically written in object-oriented 
manner to represent a system as a set of hierarchical objects. 
Each object includes information about its characteristics, 
such as physical properties, functional role and relationship 
with other objects. For interoperability, information models 
are often written with XML or XML-based syntax adopted by 
information modeling standards. For the mapping of such 
information models, the mapping layer includes a data mapper 



that has information about the relation between the 
information model schema and the database schema. In the 
prototype implementation, a Python script is written as a data 
mapper which can be called by a web service in the 
communication layer. The data mapper uses an XML parser 
(e.g., Python xml.etree.ElementTree package [21]) to parse an 
XML-based information model and a database driver (e.g., 
Cassandra driver API [22]) to transmit the mapped data to the 
storage layer.  

The data mapper works as follows. Upon receiving an 
information model, the data mapper is invoked. The data 
mapper first parses the model written in XML into a 
hierarchical object structure using the XML parser. Each 
object in the structure includes information about its 
properties as well as hierarchical relationship (e.g., parent and 
child objects information). The mapping script accesses the 
root object and maps the root object into the database schema. 
The data mapper then creates an INSERT query request for 
the mapped object, and delivers the query request to the next 
layer (i.e., storage layer) using the database driver. This 
process is conducted recursively for the child objects in the 
hierarchical object structure until all the leaf node objects are 
processed.  

C. Storage Layer 
The storage layer provides a data management service 

implemented using a distributed database. This layer receives 
information model data (from the mapping layer) and sensor 
data (from the communication layer), and stores them in the 
database. For the effective data management, it is critical to 
choose an appropriate database management system (DBMS). 
Since the IoT platform aims to manage a large volume of 
sensor data and engineering information model, scalability is 
an important factor for choosing a DBMS. The prototype 
implementation employs Apache Cassandra [23] which is a 
distributed NoSQL database widely adopted for large-scale 
distributed data management. Based on the peer-to-peer (P2P) 
architecture, Cassandra provides high availability and 
scalability [24]. For example, Cassandra ensures that in the 
worst-case scenario, the failure of some nodes results in 
degradation of the database performance but remains able to 
guarantee a high possibility of availability. Furthermore, a 
Cassandra database cluster is easily scalable such that the 
capacity of the system scales linearly as new nodes are added 
to the cluster. 

A Cassandra database cluster is composed of multiple 
nodes, each of which can be employed on a physical or virtual 
machine. Cassandra glues the nodes distributed over multiple 
machines. Furthermore, Cassandra handles data partitioning 
and replications over multiple nodes according to the defined 
network topology and replication factor. For instance, a 
Cassandra database cluster, which has replication factor of 
two, partitions incoming data into multiple pieces and stores 
them twice over the distributed database nodes. With 
partitioning and replication, a Cassandra database cluster can 
be available even when some of the nodes are down.  

Cassandra’s data model consists of keyspaces, column 
families, rows and columns, which are analogous to the 
common definitions, such as databases, tables, tuples and 

attributes, respectively, of relational database model [24]. The 
column-oriented data model of Cassandra offers some 
advantages for handling object-oriented information model 
data and the large volume of sensor (in particular, time-series) 
data. For example, Cassandra data schema is flexible in that 
every row can have a different set of columns. This flexible 
data schema is effective when storing information model data, 
since objects in an information model may have different sets 
of attributes.  

Cassandra’s data model also improves the performance of 
range query, which is often used in retrieving time-series 
sensor data, based on clustering and dynamic column features 
[25]. For example, time-series sensor data collected by a 
sensor can be stored in consecutive columns of a single row in 
a sorted order by assigning the timestamp of the sensor data 
as the clustering key. The data schema also allows new data 
collected by the same sensor to be dynamically appended to 
the end of the row. In this way, the data schema can guarantee 
high query speed by storing consecutive time-series sensor 
data in contiguous physical disk locations in a node. Fig. 2 
shows the data schema examples for the sensor and image 
data. Since it is redundant to store every timestamp for the 
high-frequency data with the same sampling rate, the data 
schema is defined to store data collected in a certain period of 
time (e.g., 1 second) in a single column as a numeric array 
data type. The data schema for image data stores a single 
image per column in Binary Large Object (BLOB) data type. 
For both cases, data collected by the same sensor is stored in 
a single row in a sorted order. 

V. DATA RETRIEVAL PROCESS 
This section describes data retrieval process with the 

proposed IoT platform. Standardized interfaces are provided 
so that applications on various systems and devices can access 
and retrieve data. In a data retrieval process, a request is 
delivered from an application to the communication layer, to 
the mapping layer and to the storage layer, whereas data is 
delivered in reverse order. The retrieved data enables 
interoperability and integration based on information 
modeling standards and ontology. 

A. Data Retrieval 
The communication layer handles the communication 

required by the applications. The communication layer 
includes a web server that provides RESTful web services for 
applications to retrieve the data, including (partial and entire) 
information models and heterogeneous sensor data. For 

 
Figure 2.  Data schema definition for high-frequency sensor data 
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example, an engineering analysis application can download an 
analysis model, which is a part of an information model, as 
follows. The application issues an HTTP request which 
specifies the host name, the URI of the web service for 
analysis model retrieval and the identifier of the target system. 
The request is delivered to the web server and the 
corresponding web service is invoked. The web service then 
passes the request to the mapping layer. The mapping layer is 
responsible to query all the relevant objects from the storage 
layer and to map the objects into a hierarchical model. For this 
task, the data mapper in the mapping layer first retrieves the 
root object of the requested model by sending a SELECT 
query to the distributed database in the storage layer. Once the 
object is returned, the mapper maps the object from the 
database schema to the information model schema. In 
addition, the mapper performs data retrievals for the child 
objects of the root object using the child object information 
recorded in the object data. The retrieved child objects are 
then parsed and added to the root object. The mapper performs 
this process recursively until there is no further child objects. 
The retrieved hierarchically structured objects are then saved 
as an XML file and returned to the communication layer, 
which then returns an HTTP response containing the file to 
the application.  

Similarly, an application can retrieve sensor data by 
sending an HTTP request which specifies the host name, the 
URI for sensor data retrieval web service and the parameters 
(e.g., sensor ID and target time period) to the web server. For 
sensor data retrieval request, the corresponding web service 
sends a SELECT query directly to the data storage, since the 
retrieved sensor data does not require complex data mapping. 
The retrieved data is mapped to JSON format by the web 
service, which then returns an HTTP response containing the 
data to the application.  

B. Data Interoperability and Integration 
One important feature of the proposed IoT platform offers 

is the data interoperability. Information models managed by 
the platform is retrieved as a file written in a platform-neural 
language, i.e., XML, based on information modeling 
standards. Therefore, the retrieved model can be easily parsed 
and converted to other data models for different application 
software tools. In addition, sensor data is retrieved using 
another platform-neural format, i.e., JSON, so that the data 
can be utilized by most computing systems.  

Since the proposed IoT platform manages information 
models and sensor data together, integrated use of data can be 
facilitated based on ontology or data semantics. For example, 
in an information model, a sensor object can be assigned to a 
system component object via a relationship, such as 
“hasSensor”. In addition, sensor data can be assigned to a 
sensor object via a relationship, such as “measures”. These 
relationships can be used to relate the system components and 
sensor data and to enable integrated use of information model 
and sensor data. 

VI. CLOUD-BASED IMPLEMENTATION 
This section describes the cloud-based implementation of 

the proposed IoT platform. The IoT platform needs to be 

scalable to handle large and increasing amount of sensor data. 
The use of cloud computing enables scalability of the IoT 
platform. The prototype implementation leverages 
Infrastructure as a Service (IaaS) of cloud computing to enable 
portability. In addition, a hybrid cloud-based decentralized 
data management is discussed to facilitate information 
sharing. 

A. Cloud Computing Environment 
According to the National Institute of Standards and 

Technology (NIST) definition, cloud computing is a “model 
for enabling convenient, on-demand network access to a 
shared pool of configurable computing resources that can be 
rapidly provisioned and released with minimal effort or 
service provider interaction [18].” Cloud computing provides 
many benefits, including lower upfront investment, lower 
operating cost, higher scalability, higher accessibility, lower 
maintenance expenses and reduced business risks as 
compared to the traditional server-based approaches [26, 27]. 

Cloud computing service models can be categorized into 
Software as a Service (SaaS), Platform as a Service (PaaS) and 
Infrastructure as a Service (IaaS) [18]. In the prototype 
implementation, the IoT platform serves as a PaaS that is built 
on the IaaS of cloud providers to provide scalable and reliable 
data management service. Since IaaS cloud service is vendor-
independent, the proposed IoT platform can be deployed on 
any cloud computing environment. Furthermore, the platform 
can be migrated from one cloud vendor to another, from 
public cloud to private cloud and vice versa. 

IaaS cloud service is often provided as virtual machines 
(VMs), which can be easily created, configured and managed 
through cloud service interfaces. The use of IaaS cloud service 
ensures high scalability, in terms of vertical scaling and 
horizontal scaling. Specifically, cloud computing offers 
almost unlimited the horizontal scalability (e.g., by increasing 
the number of VMs). To leverage the high scalability of cloud 
computing, the IoT platform is designed to have the ability to 
run on a distributed computing environment where the 
number of VMs can be dynamically increased. For example, 
the platform employs a distributed NoSQL database that is 
linearly scaled as VMs are added to the platform [24]. 

B. Hybrid Cloud-based Decentralized Data Management 
 In engineering practice, different types of data are owned 

by different project participants. Some data owners may 
hesitate to upload sensitive data to a public cloud computing 
platform because of security concern; instead, the data owners 
prefer to store the data in a fully-controlled server. 
Nevertheless, data needs to be shared among authorized users 
and application software. 

Hybrid cloud, which combines public cloud and private 
cloud, could be a desirable preference for IoT platform in 
engineering [28]. Fig. 3 depicts the conceptual framework of 
the hybrid cloud-based implementation of IoT platform. The 
public cloud system is employed for the management of 
voluminous sensor data which requires high scalability and 
availability. The private cloud, on the other hand, plays a role 
to handle sensitive data, such as engineering models. 



These two separate systems can communicate with each 
other through web services. For example, when an application 
program requests sensor data retrieval from the public cloud, 
the data is directly retrieved from the database on public 
cloud. On the other hand, when an application program 
requests for an engineering model from the public cloud, the 
public cloud forwards the request to the private cloud. The 
private cloud then retrieves corresponding information from 
its database and deliver the information to the client via the 
public cloud. In this way, the hybrid cloud system can abstract 
the underlying complex structure and provides unified web 
services to clients. 

VII. CASE SCENARIO: CIVIL INFRASTRUCTURE 
MONITORING APPLICATION 

This section describes a case scenario using a civil 
infrastructure monitoring application as an example. For 
demonstration, the Telegraph Road Bridge (TRB), which is a 
68-meter long highway overpass located at Monroe, Michigan, 
is chosen as a target system, as shown in Fig. 4. The TRB has 
been monitored with a sensor network installed and operated 
by a research team at University of Michigan since 2011 [29, 
30]. The data involved in the TRB monitoring is as follows. 

• Sensor data: The TRB is instrumented with 60 
sensors, including accelerometers, strain gauges and 
thermistors. They collect data every two hours for 
one-minute duration at sampling frequency 200 Hz 
(accelerometer) or 100 Hz (strain gauges and 
thermistors).  

• Traffic video image: The traffic monitoring system 
operated by Michigan Department of Transportation 

(MDOT) collects traffic video images at the TRB 
every two seconds [31].  

• Geometric model: The TRB’s geometric model is 
created for the representation of geometry and 
physical characteristics. 

• Engineering model: An engineering model (i.e., a 
Finite Element model) is developed for numerical 
simulation of structural behavior of the bridge.  

• Sensor information: The sensor information, 
including sensor ID, sampling rate, physical 
characteristic, electrical characteristics, etc., is 
recorded in a Microsoft Excel Spreadsheet. 

A prototype IoT platform is implemented using the VMs 
provisioned on the Microsoft Azure cloud computing service, 
as well as a private server. Table 1 summarizes the list of 
computers composing the prototype IoT platform and their 
role. 

A. Storing Data in IoT Platform 
The IoT platform can store and manage comprehensive 

data involved in the bridge monitoring application. Fig. 5 
depicts the data stored with the IoT platform. Dynamically 
collected data (e.g., sensor data and video images) are 
transmitted to the IoT platform continuously and 
automatically.  For this purpose, automation scripts are 
developed. For example, a sensor data store script is deployed 
on the onsite computer, which receives data from the sensor 
network. The script detects new sensor data, parses the data 
into JSON format, and transmits the parsed data to the IoT 
platform via HTTP or MQTT. In addition, a video image store 
script is deployed on a local desktop computer. The script 
accesses the traffic monitoring system and downloads the 
image files from the real-time image stream. A downloaded 
image file is converted into byte array format and stored as a 
JSON document. The script then sends the JSON document to 
the IoT platform via HTTP or MQTT.  

Static information (e.g., sensor information, geometric 
model and engineering model), on the other hand, needs to be 
mapped into the information model schema before storing. 
For prototyping, an XML-based information model schema 
for bridge monitoring application based on the OpenBrIM 
standards is employed [32, 33]. The geometric model is 
created using the OpenBrIM App [34], which is compatible 
with the information model schema, and thus, data mapping is 
not needed. The engineering model is created using CSI 
Bridge [35], a software tool for structural analysis, which can 
export the model in a Microsoft Excel Spreadsheet format. 

 
Figure 3.  A framework of hybrid cloud-based implementation of IoT 
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Type Spec Quantity Role 

Public 
cloud 
VM 

Azure Standard_A2m_v2 
(2 cores, 16 GB memory) 5 

Distributed 
database for 

large data 
Azure Standard DS2 v2 
(2 cores, 7 GB memory) 3 Web server 

Private 
server Dell PowerEdge T620 1 

Local data 
storage for 

sensitive data 
 



The exported file is then parsed and mapped into the 
information model schema, using an Excel data parser [36], 
XML parser [21] and a mapping script written for engineering 
model. Similarly, sensor information recorded in a Microsoft 
Excel Spreadsheet format is parsed and mapped into 
information model schema by using an Excel data parser, an 
XML parser, and a mapping script written for sensor 
information. The information converted into information 
model schema is then transmitted to the IoT platform via 
HTTP, and stored.  

B. Retrieving Data from Applications  
Since the IoT platform offers standardized web interfaces 

for data retrieval and returns data in a standardized 
information model schema, different applications and devices 
can access and retrieve data from the platform, which 
facilitates data utilization. Fig. 6 shows a few applications that 
utilize the data retrieval web services of the IoT platform. 
Firstly, the mobile and web user interfaces can easily retrieve 
the data from the IoT platform and display the data on mobile 
devices or web browsers. In addition, domain-specific 
engineering analysis software tools can also be connected to 
IoT platform using the web services and the Application 
Programming Interface (API) of the software tools. For 
example, Fig. 6 shows a numerical simulation performed 
using a script that downloads an information model from the 
IoT platform, defines truck loads, converts model to Microsoft 
Excel Spreadsheet format, and executes analysis using the 
API of the CSI Bridge software. Last but not least, a large 
amount of sensor data residing in the IoT platform can be 
retrieved and analyzed using data analytic tools. For example, 
Fig. 6 shows a sensor data reconstruction module triggered by 
a script that invokes the web service to retrieve accumulated 
sensor data, trains a data-driven model using a machine 

learning tool (e.g., PyTorch [37]) and reconstructs sensor data 
using the trained data-driven model. 

C. Integrated Use of Data 
The heterogeneous data managed by the IoT platform can 

be integrated via appropriate design of ontology schema. For 
example, sensor data and engineering model can be retrieved 
and compared based on the relationship defined between 
engineering model objects, sensor objects and sensor data. 
Fig. 7 shows a comparison between measured acceleration 
and numerically simulated acceleration at the same location of 
the TRB. The comparison shows that the physical system’s 
response is within the range of numerically simulated 
response.  

Heterogeneous sensor data can also be integrated to 
understand the target system’s behavior. Fig. 8 shows a 
comparison between traffic video image and the 
corresponding (time synchronized) acceleration data. This 

 
Figure 5.   Storing heterogeneous data from different sources  
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Figure 7.   Integration of heterogeneous data: engineering model and 

acceleration measurement data 
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comparison shows, for example, the cause of high 
acceleration amplitude with a large truck passing the bridge. 

VIII. CONCLUSION 
This paper presents an IoT platform for engineering 

applications with emphasis on data integration and 
interoperability. To support various software tools involved in 
engineering projects, the IoT platform is designed to manage 
not only the heterogeneous sensor data, but also the 
standardized engineering information models. In addition, 
sensor data and domain-specific engineering information are 
linked and integrated based on relationship definitions among 
relevant data entities. The platform consists of three basic 
layers: communication layer, mapping layer and storage layer. 
The communication layer supports machine-to-machine 
communication based on standard protocols to allow accesses 
from different systems and different devices, including data 
sources and applications. The mapping layer is developed for 
the data mapping between standardized information model 
schema and database schema. The storage layer employs a 
distributed NoSQL database to enable scalable data 
management. For scalability, reliability and portability, the 
prototype IoT platform is implemented on the IaaS cloud 
service offered by a public cloud vendor. In addition, the 
platform supports hybrid cloud environments, so that the data 
owned by different parties can be shared in a decentralized 
manner. The proposed IoT platform is demonstrated with a 

case scenario of civil infrastructure monitoring, which 
involves various types of sensor data and engineering models. 
The result demonstrated that the IoT platform is able to 
manage heterogeneous data, allow access from various 
devices and systems, and facilitate data interoperability and 
integration based on engineering information modeling. 
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