
An IoT platform for civil infrastructure monitoring

Seongwoon Jeong and Kincho H. Law
Engineering Informatics Group

Department of Civil and Environmental Engineering
Stanford University
Stanford, CA, USA

{swjeong3, law}@stanford.edu

Abstract— IoT technology can have a huge impact in
engineering by leveraging state-of-the-art information and
communication technologies (ICT). In practice, however, it is
challenging for IoT platforms to handle domain-specific
engineering information (e.g., geometric model, engineering
simulation model, etc.) along with sensor data of different types.
Engineering information and sensor data need to be integrated
for effective data utilization and shared and interoperable
among a wide variety of software tools. This paper describes an
IoT platform that is tailored to engineering applications and
adopts an information modeling approach to facilitate data
interoperability and to integrate engineering information with
sensor data. In addition, a decentralized data management
framework is employed so that the data owned by different
project participants can be shared among authorized users and
software agents. The IoT platform is demonstrated using a civil
infrastructure monitoring scenario which involves various types
of sensor data, as well as engineering models. The result shows
that the IoT platform can facilitate information sharing and
data utilization, in particular, for the civil infrastructure
monitoring application.

Keywords- Internet of Things, IoT platform, cloud computing,
distributed data management, information modeling,
interoperability, data integration

I. INTRODUCTION
With the advances in information and communication

technology (ICT), sensors have been deployed widely in many
engineering domains. The increasing use of sensors will
realize the concept of Internet of Things (IoT) and cyber-
physical system (CPS) that physical systems and
computational systems are tightly integrated [1]. Physical
systems can be monitored, analyzed and controlled with or
without human intervention. Furthermore, the massive data
collected by sensors offers promising opportunities to find
new insights about the physical systems. In practice, however,
sensor data needs to be integrated with domain-specific
engineering information to support decision-making. A data
management platform that can effectively manage sensor data
and engineering information is essential before IoT
technology can find useful in engineering applications.

An IoT platform refers to a system that can connect
physical objects via a network, and receive, manage, store and
analyze data generated from the physical objects. As IoT

technology matures and becomes increasingly prevalent,
many generic IoT platforms have been developed. However,
there is no one-size-fit-all platform: an IoT platform has to be
tailored to meet domain-specific requirements [2].
Engineering applications, which often involve diverse types
of information ranging from heterogeneous sensor data (e.g.,
high-frequency time-series data and video and camera
images) to domain-specific engineering information (e.g.,
geometric model, engineering simulation model, etc.) [3, 4],
impose additional requirements for supporting data and
software interoperability. First, engineering information needs
to be integrated with sensor data to enable effective data
retrieval and utilization. In addition, efficient information
sharing and data exchange are required because engineering
projects typically involve a wide variety of software tools, as
well as ad hoc analysis modules [5]. Lastly, engineering
applications often involve multiple parties, each of which may
own certain types of data. An IoT platform needs to be
designed to meet these requirements in order to effectively
support engineering IoT applications.

In engineering domains, information modeling has gained
enormous attention as a vehicle to support integrated project
delivery process. Information modeling enables information
sharing and integration, as well as seamless data exchange
among software agents based on interoperability standards.
However, information modeling community seldom pays
attention to issues involving scalable sensor data management
or standardized communications with client devices, which
are being emphasized in most generic IoT platforms. This
study illustrates that information modeling and IoT platforms
can beneficially complement each other for effective data
management in IoT-driven engineering applications.

In this paper, an IoT platform tailored to engineering
applications is presented. For data integration and
interoperability, an information model that defines sensor
entities and their relationship to the engineering model is
employed. Database schema and web interfaces are designed
to support the management and sharing of semi-structured
information model, as well as the large amount of sensor data.
In addition, a decentralized data management approach is
adopted based on a hybrid cloud computing environment, so
that the data owned by different parties can be shared. The
proposed IoT platform is demonstrated using a civil

infrastructure monitoring scenario which involves various
types of sensor data as well as engineering models.

II. RELATED WORKS
With the increasing adoption of sensor and IoT

technology, many IoT platforms have been developed. Many
cloud computing service vendors offer IoT platforms,
including AWS IoT by Amazon AWS [6], IoT Hub by
Microsoft Azure [7], Watson IoT Platform by IBM cloud [8],
AT&T IoT Platform by AT&T [9]. These generic IoT
platforms support device connectivity via standard protocols
with high scalability by leveraging cloud computing
technology. These platforms also provide many tools, such as
device management tools, rule engine, event processing
module, security tool and software development kit (SDK).
While these generic IoT platforms provide basic services, they
lack the supporting services for domain-specific applications
and data management tools. Instead, these services need to be
developed and added by customers or partner companies.
There have been some domain-driven IoT platforms, such as
PTC ThingWorx [10] and AutoDesk Fusion Connect [11]
developed for industrial IoT (IIoT). These IIoT platforms
offer some industrial applications and sophisticated functions,
such as augmented reality (AR)-enabled user interfaces.
Nevertheless, these IIoT platforms are not designed to manage
engineering information models and do not support data and
software interoperability.

Many research efforts have been spent on the development
of IoT platforms for specific application areas, such as
healthcare [12, 13], smart city [14, 15, 16] and agriculture
[17]. Domain-specific platform handles not only sensor data,
but also other relevant information. For example, Lea and
Blackstock [15] describe an IoT platform for smart city
application to manage a wide array of data, from real-time
(e.g. traffic data) to static data (e.g., asset lists). However, this
work does not address data integration for linking
heterogeneous sensor data and domain information. To allow
software agents to easily discover relevant information and to

perform analysis, domain information and sensor data need to
be properly linked and integrated. Jayaraman et al. [17]
describe a semantic-driven IoT platform to link sensor data
and domain concept based on ontology definitions. In
addition, an IoT platform proposed in [14] enables
interoperability among heterogeneous information models,
such as building information models (BIM) and system
information models (SIM), based on sematic web technology.
Nevertheless, these studies do not address the data
interoperability problem which is critical in engineering
projects involving various software tools, each of which may
have its own interface and data model. Engineering
information needs to be exposed in a platform-neutral and
standardized data format that can be easily parsed and used by
different software agents, ranging from engineering
simulation tools to data-driven analysis modules. To this end,
this paper describes an IoT platform based on information
modeling to deal with both data integration and data
interoperability problem. The IoT platform’s components are
designed to support the sharing and management of
information model data along with sensor data.

III. OVERVIEW OF IOT PLATFORM
Fig. 1 shows the architecture of the proposed IoT platform

designed to manage data collected from various data sources
in engineering, including information models and sensor
networks. Information models include comprehensive
information (e.g., geometry, physical properties, functional
characteristics and sensor information) of target systems.
Sensor networks, on the other hand, generate heterogeneous
sensor data, ranging from high-frequency time series data to
video and camera images.

The IoT platform is composed of three basic layers,
namely, communication layer, mapping layer and storage
layer, to support data store and retrieval. For data store
processes, the communication layer handles communication
with the data sources. Specifically, the web server and
message broker in the communication layer provide

Figure 1. Overall architecture of the IoT platform for engineering

Information models

Web server
&

Message
Broker

(Web
services,
pub/sub

messaging)

Data
mapper

(Information
models

→
Database
schema)

replica

Applications

Distributed database

Partition,
Replication

replica

replica

coordi-
nator

Communication
layer

Mapping
layer

Storage layer

IoT Platform

Cloud computing environment

Data
mapper

(Database
schema

→
Information

models)

Mapping
layer

Web server
(Web

services)

Communication
layer

Sensor networks

replica

standardized interfaces to receive data from different data
sources via the Internet. The mapping layer includes a data
mapper that maps the received semi-structured information
models onto the database schema. The mapped data is passed
to the storage layer which includes a distributed database
system that partitions, replicates and stores data.

The data stored in the distributed database of the IoT
platform can be accessed and queried via user interface and by
various applications, such as data analysis tools, engineering
analysis software and 3-D modeling tools. For the data
retrieval process, the web server in the communication layer
provides standardized web interface through which
applications can retrieve data. Receiving a request from an
application, the web server retrieves data from the distributed
database. If necessary, the data mapper is invoked to map the
retrieved data back into information models’ standardized
data schema that can be parsed and utilized by different
applications. Finally, the retrieved data is then delivered to the
application.

The proposed IoT platform is deployed on a cloud
computing environment for scalability, accessibility and
reliability. Specifically, the IoT platform can be deployed on
the Infrastructure as a Service (IaaS) layer of cloud (i.e.,
virtual machines offered by cloud) [18], which assures
platform portability across different cloud vendors or among
public cloud, private cloud and hybrid cloud.

IV. DATA STORE PROCESS
This section describes the process of acquiring and storing

the data with the IoT platform. Data store requests are
processed through three layers: communication, mapping and
storage. The communication layer employs web server and
message broker built upon standard protocols, so that various
data sources can access the platform. The mapping layer
defines the mapper to help store the semi-structured
information models in the database. Finally, the storage layer
employs a distributed NoSQL database to enable scalable data
management.

A. Communication Layer
The communication layer is exposed to clients (e.g., data

sources) via the Internet to enable remote access. The layer
serves as intermediary, and accepts messages with the data
from the clients, parses the message to extract the data and
passes the data to the appropriate layer. To support different
communication protocols often used in IoT applications, this
layer includes two systems: a web server based on the
Hypertext Transfer Protocol (HTTP) and a message broker
based on the Message Queuing Telemetry Transport (MQTT).
In the prototype implementation, both systems are deployed
using Node.js [19], a server-side JavaScript runtime
environment.

The web server is implemented to support a machine-to-
machine (M2M) communication based on the client-server
model. Specifically, the web server hosts RESTful
(Representational state transfer) web services that clients (i.e.,
data sources) can invoke to deliver messages via HTTP [20].
The proposed web server hosts a set of web services to handle
different types of data. For example, a web service for storing

an information model works as follows. A client system, such
as a local desktop computer, sends an HTTP request
specifying the host name and the Uniform Resource Identifier
(URI) of the web service for information model store. In
addition, the HTTP request includes an information model file
written in standard syntax such as eXtensible Markup
Language (XML) that the client wants to store in the IoT
platform. Upon receiving the message, the web server calls the
web service corresponding to the request specified. The web
service then parses the HTTP request, extracts the information
model file, and delivers the file to the next layer (i.e., mapping
layer). Once the process is completed, the web service returns
an HTTP response notifying that the request has been
processed successfully. If any error occurs during the process,
the web service returns an HTTP response with an error
message.

The web server processes a sensor data store request in a
similar manner. For example, a gateway system connected to
a sensor network sends an HTTP request that contains sensor
data written in JSON format, as well as the host address and
the URI for the sensor data store service. Once the web server
receives the request, a web service is invoked, parses the
request and extracts sensor data. It should be noted that the
sensor data is delivered directly to the storage layer without
going through the mapping layer in the current
implementation, since sensor data typically does not require
complex data mapping.

The message broker is implemented to support M2M
communication for sensor data exchange based on the
publish/subscribe (pub/sub) paradigm. Publisher clients (e.g.,
data sources) and subscriber clients (e.g., application
programs) can exchange messages in one-to-one, one-to-
many and many-to-many communication in real time. This
real time messaging can be used not only to store data, but also
to enable tasks, such as real time analytics and event
triggering, executed in real time. The message broker
manages several “topics”, each of which is defined for a
specific type of sensor data. Data sources can use the topic to
specify the type of data. For example, a gateway device
connected to sensor network can publish a message containing
the sensor data written in JSON and a topic name to the
message broker via MQTT protocol. Once published, the
message is parsed, and the sensor data is delivered to the
storage layer. In addition, any subscriber clients subscribing
to the same topic can receive the published message via
MQTT protocol.

B. Mapping Layer
The mapping layer receives the information models from

the communication layer, maps the model to a database
schema, and loads the mapped data to the database.
Information models are typically written in object-oriented
manner to represent a system as a set of hierarchical objects.
Each object includes information about its characteristics,
such as physical properties, functional role and relationship
with other objects. For interoperability, information models
are often written with XML or XML-based syntax adopted by
information modeling standards. For the mapping of such
information models, the mapping layer includes a data mapper

that has information about the relation between the
information model schema and the database schema. In the
prototype implementation, a Python script is written as a data
mapper which can be called by a web service in the
communication layer. The data mapper uses an XML parser
(e.g., Python xml.etree.ElementTree package [21]) to parse an
XML-based information model and a database driver (e.g.,
Cassandra driver API [22]) to transmit the mapped data to the
storage layer.

The data mapper works as follows. Upon receiving an
information model, the data mapper is invoked. The data
mapper first parses the model written in XML into a
hierarchical object structure using the XML parser. Each
object in the structure includes information about its
properties as well as hierarchical relationship (e.g., parent and
child objects information). The mapping script accesses the
root object and maps the root object into the database schema.
The data mapper then creates an INSERT query request for
the mapped object, and delivers the query request to the next
layer (i.e., storage layer) using the database driver. This
process is conducted recursively for the child objects in the
hierarchical object structure until all the leaf node objects are
processed.

C. Storage Layer
The storage layer provides a data management service

implemented using a distributed database. This layer receives
information model data (from the mapping layer) and sensor
data (from the communication layer), and stores them in the
database. For the effective data management, it is critical to
choose an appropriate database management system (DBMS).
Since the IoT platform aims to manage a large volume of
sensor data and engineering information model, scalability is
an important factor for choosing a DBMS. The prototype
implementation employs Apache Cassandra [23] which is a
distributed NoSQL database widely adopted for large-scale
distributed data management. Based on the peer-to-peer (P2P)
architecture, Cassandra provides high availability and
scalability [24]. For example, Cassandra ensures that in the
worst-case scenario, the failure of some nodes results in
degradation of the database performance but remains able to
guarantee a high possibility of availability. Furthermore, a
Cassandra database cluster is easily scalable such that the
capacity of the system scales linearly as new nodes are added
to the cluster.

A Cassandra database cluster is composed of multiple
nodes, each of which can be employed on a physical or virtual
machine. Cassandra glues the nodes distributed over multiple
machines. Furthermore, Cassandra handles data partitioning
and replications over multiple nodes according to the defined
network topology and replication factor. For instance, a
Cassandra database cluster, which has replication factor of
two, partitions incoming data into multiple pieces and stores
them twice over the distributed database nodes. With
partitioning and replication, a Cassandra database cluster can
be available even when some of the nodes are down.

Cassandra’s data model consists of keyspaces, column
families, rows and columns, which are analogous to the
common definitions, such as databases, tables, tuples and

attributes, respectively, of relational database model [24]. The
column-oriented data model of Cassandra offers some
advantages for handling object-oriented information model
data and the large volume of sensor (in particular, time-series)
data. For example, Cassandra data schema is flexible in that
every row can have a different set of columns. This flexible
data schema is effective when storing information model data,
since objects in an information model may have different sets
of attributes.

Cassandra’s data model also improves the performance of
range query, which is often used in retrieving time-series
sensor data, based on clustering and dynamic column features
[25]. For example, time-series sensor data collected by a
sensor can be stored in consecutive columns of a single row in
a sorted order by assigning the timestamp of the sensor data
as the clustering key. The data schema also allows new data
collected by the same sensor to be dynamically appended to
the end of the row. In this way, the data schema can guarantee
high query speed by storing consecutive time-series sensor
data in contiguous physical disk locations in a node. Fig. 2
shows the data schema examples for the sensor and image
data. Since it is redundant to store every timestamp for the
high-frequency data with the same sampling rate, the data
schema is defined to store data collected in a certain period of
time (e.g., 1 second) in a single column as a numeric array
data type. The data schema for image data stores a single
image per column in Binary Large Object (BLOB) data type.
For both cases, data collected by the same sensor is stored in
a single row in a sorted order.

V. DATA RETRIEVAL PROCESS
This section describes data retrieval process with the

proposed IoT platform. Standardized interfaces are provided
so that applications on various systems and devices can access
and retrieve data. In a data retrieval process, a request is
delivered from an application to the communication layer, to
the mapping layer and to the storage layer, whereas data is
delivered in reverse order. The retrieved data enables
interoperability and integration based on information
modeling standards and ontology.

A. Data Retrieval
The communication layer handles the communication

required by the applications. The communication layer
includes a web server that provides RESTful web services for
applications to retrieve the data, including (partial and entire)
information models and heterogeneous sensor data. For

Figure 2. Data schema definition for high-frequency sensor data

(top) and image data (bottom)

u07ch0
|2014

2014-08-
02T00:00:08

2014-08-
01T00:00:09

Array[32792.0,
32776.0, 32803.0, ...]

Array[32849.0,
32849.0, 32867.0, ...]

2014-08-
01T00:00:10

Array[32851.0,
32863.0, 32842.0 ...]

Incoming sensor data

TRB_01
|201608

2016-08-
23T10:02:08

2016-08-
23T10:02:13

BLOB(/9j/4AAQSkZJ
… H//Z)

BLOB(/9j/4AAQSkZJ
… /9k=)

2016-08-
23T10:02:19

BLOB(/9j/4AAQSkZJ
… Af/Z)

Incoming image data

example, an engineering analysis application can download an
analysis model, which is a part of an information model, as
follows. The application issues an HTTP request which
specifies the host name, the URI of the web service for
analysis model retrieval and the identifier of the target system.
The request is delivered to the web server and the
corresponding web service is invoked. The web service then
passes the request to the mapping layer. The mapping layer is
responsible to query all the relevant objects from the storage
layer and to map the objects into a hierarchical model. For this
task, the data mapper in the mapping layer first retrieves the
root object of the requested model by sending a SELECT
query to the distributed database in the storage layer. Once the
object is returned, the mapper maps the object from the
database schema to the information model schema. In
addition, the mapper performs data retrievals for the child
objects of the root object using the child object information
recorded in the object data. The retrieved child objects are
then parsed and added to the root object. The mapper performs
this process recursively until there is no further child objects.
The retrieved hierarchically structured objects are then saved
as an XML file and returned to the communication layer,
which then returns an HTTP response containing the file to
the application.

Similarly, an application can retrieve sensor data by
sending an HTTP request which specifies the host name, the
URI for sensor data retrieval web service and the parameters
(e.g., sensor ID and target time period) to the web server. For
sensor data retrieval request, the corresponding web service
sends a SELECT query directly to the data storage, since the
retrieved sensor data does not require complex data mapping.
The retrieved data is mapped to JSON format by the web
service, which then returns an HTTP response containing the
data to the application.

B. Data Interoperability and Integration
One important feature of the proposed IoT platform offers

is the data interoperability. Information models managed by
the platform is retrieved as a file written in a platform-neural
language, i.e., XML, based on information modeling
standards. Therefore, the retrieved model can be easily parsed
and converted to other data models for different application
software tools. In addition, sensor data is retrieved using
another platform-neural format, i.e., JSON, so that the data
can be utilized by most computing systems.

Since the proposed IoT platform manages information
models and sensor data together, integrated use of data can be
facilitated based on ontology or data semantics. For example,
in an information model, a sensor object can be assigned to a
system component object via a relationship, such as
“hasSensor”. In addition, sensor data can be assigned to a
sensor object via a relationship, such as “measures”. These
relationships can be used to relate the system components and
sensor data and to enable integrated use of information model
and sensor data.

VI. CLOUD-BASED IMPLEMENTATION
This section describes the cloud-based implementation of

the proposed IoT platform. The IoT platform needs to be

scalable to handle large and increasing amount of sensor data.
The use of cloud computing enables scalability of the IoT
platform. The prototype implementation leverages
Infrastructure as a Service (IaaS) of cloud computing to enable
portability. In addition, a hybrid cloud-based decentralized
data management is discussed to facilitate information
sharing.

A. Cloud Computing Environment
According to the National Institute of Standards and

Technology (NIST) definition, cloud computing is a “model
for enabling convenient, on-demand network access to a
shared pool of configurable computing resources that can be
rapidly provisioned and released with minimal effort or
service provider interaction [18].” Cloud computing provides
many benefits, including lower upfront investment, lower
operating cost, higher scalability, higher accessibility, lower
maintenance expenses and reduced business risks as
compared to the traditional server-based approaches [26, 27].

Cloud computing service models can be categorized into
Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) [18]. In the prototype
implementation, the IoT platform serves as a PaaS that is built
on the IaaS of cloud providers to provide scalable and reliable
data management service. Since IaaS cloud service is vendor-
independent, the proposed IoT platform can be deployed on
any cloud computing environment. Furthermore, the platform
can be migrated from one cloud vendor to another, from
public cloud to private cloud and vice versa.

IaaS cloud service is often provided as virtual machines
(VMs), which can be easily created, configured and managed
through cloud service interfaces. The use of IaaS cloud service
ensures high scalability, in terms of vertical scaling and
horizontal scaling. Specifically, cloud computing offers
almost unlimited the horizontal scalability (e.g., by increasing
the number of VMs). To leverage the high scalability of cloud
computing, the IoT platform is designed to have the ability to
run on a distributed computing environment where the
number of VMs can be dynamically increased. For example,
the platform employs a distributed NoSQL database that is
linearly scaled as VMs are added to the platform [24].

B. Hybrid Cloud-based Decentralized Data Management
 In engineering practice, different types of data are owned

by different project participants. Some data owners may
hesitate to upload sensitive data to a public cloud computing
platform because of security concern; instead, the data owners
prefer to store the data in a fully-controlled server.
Nevertheless, data needs to be shared among authorized users
and application software.

Hybrid cloud, which combines public cloud and private
cloud, could be a desirable preference for IoT platform in
engineering [28]. Fig. 3 depicts the conceptual framework of
the hybrid cloud-based implementation of IoT platform. The
public cloud system is employed for the management of
voluminous sensor data which requires high scalability and
availability. The private cloud, on the other hand, plays a role
to handle sensitive data, such as engineering models.

These two separate systems can communicate with each
other through web services. For example, when an application
program requests sensor data retrieval from the public cloud,
the data is directly retrieved from the database on public
cloud. On the other hand, when an application program
requests for an engineering model from the public cloud, the
public cloud forwards the request to the private cloud. The
private cloud then retrieves corresponding information from
its database and deliver the information to the client via the
public cloud. In this way, the hybrid cloud system can abstract
the underlying complex structure and provides unified web
services to clients.

VII. CASE SCENARIO: CIVIL INFRASTRUCTURE
MONITORING APPLICATION

This section describes a case scenario using a civil
infrastructure monitoring application as an example. For
demonstration, the Telegraph Road Bridge (TRB), which is a
68-meter long highway overpass located at Monroe, Michigan,
is chosen as a target system, as shown in Fig. 4. The TRB has
been monitored with a sensor network installed and operated
by a research team at University of Michigan since 2011 [29,
30]. The data involved in the TRB monitoring is as follows.

• Sensor data: The TRB is instrumented with 60
sensors, including accelerometers, strain gauges and
thermistors. They collect data every two hours for
one-minute duration at sampling frequency 200 Hz
(accelerometer) or 100 Hz (strain gauges and
thermistors).

• Traffic video image: The traffic monitoring system
operated by Michigan Department of Transportation

(MDOT) collects traffic video images at the TRB
every two seconds [31].

• Geometric model: The TRB’s geometric model is
created for the representation of geometry and
physical characteristics.

• Engineering model: An engineering model (i.e., a
Finite Element model) is developed for numerical
simulation of structural behavior of the bridge.

• Sensor information: The sensor information,
including sensor ID, sampling rate, physical
characteristic, electrical characteristics, etc., is
recorded in a Microsoft Excel Spreadsheet.

A prototype IoT platform is implemented using the VMs
provisioned on the Microsoft Azure cloud computing service,
as well as a private server. Table 1 summarizes the list of
computers composing the prototype IoT platform and their
role.

A. Storing Data in IoT Platform
The IoT platform can store and manage comprehensive

data involved in the bridge monitoring application. Fig. 5
depicts the data stored with the IoT platform. Dynamically
collected data (e.g., sensor data and video images) are
transmitted to the IoT platform continuously and
automatically. For this purpose, automation scripts are
developed. For example, a sensor data store script is deployed
on the onsite computer, which receives data from the sensor
network. The script detects new sensor data, parses the data
into JSON format, and transmits the parsed data to the IoT
platform via HTTP or MQTT. In addition, a video image store
script is deployed on a local desktop computer. The script
accesses the traffic monitoring system and downloads the
image files from the real-time image stream. A downloaded
image file is converted into byte array format and stored as a
JSON document. The script then sends the JSON document to
the IoT platform via HTTP or MQTT.

Static information (e.g., sensor information, geometric
model and engineering model), on the other hand, needs to be
mapped into the information model schema before storing.
For prototyping, an XML-based information model schema
for bridge monitoring application based on the OpenBrIM
standards is employed [32, 33]. The geometric model is
created using the OpenBrIM App [34], which is compatible
with the information model schema, and thus, data mapping is
not needed. The engineering model is created using CSI
Bridge [35], a software tool for structural analysis, which can
export the model in a Microsoft Excel Spreadsheet format.

Figure 3. A framework of hybrid cloud-based implementation of IoT

platform for decentralized data management

IoT Platform

Mapping layer
Storage layer (Sensitive data)

Communication layer

Private cloud

① Send
request

Applications

IoT Platform

Mapping layer
Storage layer (Large data)

Communication layer

Public cloud

④ Return
response

② Forward
request

③ Return
response

Communication for
retrieving data residing

in private cloud

Figure 4. The Telegraph Road Bridge and data involved in the civil

infrastructure monitoring application

-40

-20

0

20

40

Sensor data

Traffic video image
Sensor information

Geometric model

Engineering model

TABLE I. SPECIFICATION AND ROLE OF CLOUD VIRTUAL
MACHINES AND PRIVATE SERVER COMPOSING IOT PLATFORM

Type Spec Quantity Role

Public
cloud
VM

Azure Standard_A2m_v2
(2 cores, 16 GB memory) 5

Distributed
database for

large data
Azure Standard DS2 v2
(2 cores, 7 GB memory) 3 Web server

Private
server Dell PowerEdge T620 1

Local data
storage for

sensitive data

The exported file is then parsed and mapped into the
information model schema, using an Excel data parser [36],
XML parser [21] and a mapping script written for engineering
model. Similarly, sensor information recorded in a Microsoft
Excel Spreadsheet format is parsed and mapped into
information model schema by using an Excel data parser, an
XML parser, and a mapping script written for sensor
information. The information converted into information
model schema is then transmitted to the IoT platform via
HTTP, and stored.

B. Retrieving Data from Applications
Since the IoT platform offers standardized web interfaces

for data retrieval and returns data in a standardized
information model schema, different applications and devices
can access and retrieve data from the platform, which
facilitates data utilization. Fig. 6 shows a few applications that
utilize the data retrieval web services of the IoT platform.
Firstly, the mobile and web user interfaces can easily retrieve
the data from the IoT platform and display the data on mobile
devices or web browsers. In addition, domain-specific
engineering analysis software tools can also be connected to
IoT platform using the web services and the Application
Programming Interface (API) of the software tools. For
example, Fig. 6 shows a numerical simulation performed
using a script that downloads an information model from the
IoT platform, defines truck loads, converts model to Microsoft
Excel Spreadsheet format, and executes analysis using the
API of the CSI Bridge software. Last but not least, a large
amount of sensor data residing in the IoT platform can be
retrieved and analyzed using data analytic tools. For example,
Fig. 6 shows a sensor data reconstruction module triggered by
a script that invokes the web service to retrieve accumulated
sensor data, trains a data-driven model using a machine

learning tool (e.g., PyTorch [37]) and reconstructs sensor data
using the trained data-driven model.

C. Integrated Use of Data
The heterogeneous data managed by the IoT platform can

be integrated via appropriate design of ontology schema. For
example, sensor data and engineering model can be retrieved
and compared based on the relationship defined between
engineering model objects, sensor objects and sensor data.
Fig. 7 shows a comparison between measured acceleration
and numerically simulated acceleration at the same location of
the TRB. The comparison shows that the physical system’s
response is within the range of numerically simulated
response.

Heterogeneous sensor data can also be integrated to
understand the target system’s behavior. Fig. 8 shows a
comparison between traffic video image and the
corresponding (time synchronized) acceleration data. This

Figure 5. Storing heterogeneous data from different sources

Sensor network

Traffic monitoring
system

OpenBrIM App IoT
platform
(commu-
nication

layer)

Onsite computer

Detect, parse,
transmit data

Local computer

Download, parse,
transmit image

Traffic video
Image

Local computer

Transmit model

Local computer

Export, parse,
map, transmit

model

Local computer

Parse, map,
transmit sensor

information

Microsoft Excel

CSI Bridge

Sensor
data

Geometric
model

Engineering
model

Sensor
information

Figure 7. Integration of heterogeneous data: engineering model and

acceleration measurement data

Figure 6. Retrieving heterogeneous data from different devices and

applications

comparison shows, for example, the cause of high
acceleration amplitude with a large truck passing the bridge.

VIII. CONCLUSION
This paper presents an IoT platform for engineering

applications with emphasis on data integration and
interoperability. To support various software tools involved in
engineering projects, the IoT platform is designed to manage
not only the heterogeneous sensor data, but also the
standardized engineering information models. In addition,
sensor data and domain-specific engineering information are
linked and integrated based on relationship definitions among
relevant data entities. The platform consists of three basic
layers: communication layer, mapping layer and storage layer.
The communication layer supports machine-to-machine
communication based on standard protocols to allow accesses
from different systems and different devices, including data
sources and applications. The mapping layer is developed for
the data mapping between standardized information model
schema and database schema. The storage layer employs a
distributed NoSQL database to enable scalable data
management. For scalability, reliability and portability, the
prototype IoT platform is implemented on the IaaS cloud
service offered by a public cloud vendor. In addition, the
platform supports hybrid cloud environments, so that the data
owned by different parties can be shared in a decentralized
manner. The proposed IoT platform is demonstrated with a

case scenario of civil infrastructure monitoring, which
involves various types of sensor data and engineering models.
The result demonstrated that the IoT platform is able to
manage heterogeneous data, allow access from various
devices and systems, and facilitate data interoperability and
integration based on engineering information modeling.

ACKNOWLEDGMENT
The research is supported by a collaborative project

funded by the US National Science Foundation (Grant No.
ECCS-1446330 to Stanford University and Grant No. CMMI-
1362513 and ECCS-1446521 to the University of Michigan).
This research is also supported by a Grant No. 13SCIPA01
from Smart Civil Infrastructure Research Program funded by
Ministry of Land, Infrastructure and Transport (MOLIT) of
Korea government and Korea Agency for Infrastructure
Technology Advancement (KAIA). The authors would like to
thank Prof. Jerome Lynch of University of Michigan and Prof.
Hoon Sohn of KAIST, Korea for their collaboration. While
certain commercial systems are identified in this paper, such
identification does not imply recommendation or endorsement
by the authors, NSF, MOLIT, or KAIA; nor does it imply that
the products identified are necessarily the best available for
the purpose. Furthermore, any opinions, findings, conclusions
or recommendations expressed in this paper are solely those
of the authors and do not necessarily reflect the views of NSF,
MOLIT, KAIA or any other organizations and collaborators.

REFERENCES
[1] R. Baheti and H. Gill, "Cyber-physical systems," The impact of control

technology, vol. 12, pp. 161-166, 2011.
[2] F. Wortmann and K. Flüchter, "Internet of things," Business &

Information Systems Engineering, vol. 57, no. 3, pp. 221-224, 2015.
[3] S. Kim, C.Y. Kim and J. Lee, "Monitoring Results of A Self-Anchored

Suspension Bridge," in Sensing Issues in Civil Structural Health
Monitoring, Dordrecht, Springer, 2005, pp. 475-484.

[4] R. Hou, S. Jeong, Y. Wang, K. Law and J. Lynch, "Camera-based
Triggering of Bridge Structural Health Monitoring Systems using a
Cyber-physical System Framework," in Structural Health Monitoring,
2017.

[5] C. Eastman, P. Teicholz, R. Sacks and K. Liston, BIM handbook: a
guide to building information modeling for owners, managers,
designers, engineers, and contractors, Hoboken, NJ: John Wiley &
Sons, Inc., 2011.

[6] Amazon Web Services, "AWS IoT Services Overview - Amazon Web
Services," [Online]. Available: https://aws.amazon.com/iot/.
[Accessed 1 February 2018].

[7] Microsoft, "Azure IoT Hub | Microsoft Azure," [Online]. Available:
https://azure.microsoft.com/. [Accessed 1 February 2018].

[8] IBM, "IoT Platform - IBM Watson IoT," [Online]. Available:
https://www.ibm.com/internet-of-things/spotlight/watson-iot-
platform. [Accessed 1 February 2018].

[9] AT&T, "AT&T IoT Platform - Build Solutions for the Internet of
Things," [Online]. Available: https://iotplatform.att.com/. [Accessed 1
February 2018].

[10] PTC, "ThingWorx Industrial Innovation Platform | PTC," [Online].
Available: https://www.ptc.com/en/products/iot/thingworx-platform.
[Accessed 1 February 2018].

[11] Autodesk, "Autodesk Fusion Connect. Enterprise IoT Software
Platform," [Online]. Available: https://autodeskfusionconnect.com/.
[Accessed 1 February 2018].

Figure 8. Integration of heterogeneous data: traffic video image data

and acceleration measurement data

[12] G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. Xu, S. Kao-
Walter, Q. Chen and L. Zheng, "A health-iot platform based on the
integration of intelligent packaging, unobtrusive bio-sensor, and
intelligent medicine box," IEEE transactions on industrial informatics,
vol. 10, no. 4, pp. 2180-2191, 2014.

[13] C. Doukas and I. Maglogiannis, "Bringing IoT and Cloud Computing
towards Pervasive Healthcare," in 2012 Sixth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing,
2012.

[14] A. Krylovskiy, M. Jahn and E. Patti, "Designing a Smart City Internet
of Things Platform with Microservice Architecture," in 2015 3rd
International Conference on Future Internet of Things and Cloud,
Rome, 2015.

[15] R. Lea and M. Blackstock, "City hub: A cloud-based iot platform for
smart cities," in 2014 IEEE 6th International Conference on Cloud
Computing Technology and Science, Singapore, 2014.

[16] G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran and V. Suciu,
"Smart Cities Built on Resilient Cloud Computing and Secure Internet
of Things," in 2013 19th International Conference on Control Systems
and Computer Science, Bucharest, 2013.

[17] P. Jayaraman, D. Palmer, A. Zaslavsky and D. Georgakopoulos, "Do-
it-Yourself Digital Agriculture applications with semantically
enhanced IoT platform," in 2015 IEEE Tenth International Conference
on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), Singapore, 2015.

[18] P. Mell and T. Grance, The NIST definition of cloud computing, 2011.
[19] Node.js Foundation, "Node.js," [Online]. Available:

https://nodejs.org/. [Accessed 1 February 2018].
[20] R. Fielding, Architectural styles and the design of network-based

software architectures, Doctoral dissertation, University of California,
Irvine., 2000.

[21] Python Software Foundation, "19.7. xml.etree.ElementTree - The
ElementTree XML API," [Online]. Available:
https://docs.python.org/2/library/xml.etree.elementtree.html.
[Accessed 1 February 2018].

[22] DataStax, "Python Cassandra Driver - Cassandra Driver 3.13.0
documentation," [Online]. Available: http://datastax.github.io/python-
driver/api/index.html. [Accessed 1 February 2018].

[23] The Apache Software Foundation, "Apache Cassandra," [Online].
Available: http://cassandra.apache.org/. [Accessed 1 February 2018].

[24] E. Hewitt, Cassandra: the definitive guide, O'Reilly Media, Inc., 2010.
[25] T. Le, S. Kim, M. Nguyen, D. Kim, S. Shin, K. Lee and R. da Rosa

Righi, "EPC information services with No-SQL datastore for the
Internet of Things," in 2014 IEEE International Conference on RFID
(IEEE RFID), Orlando, FL, 2014.

[26] Q. Zhang, L. Cheng and R. Boutaba, "Cloud computing: state-of-the-
art and research challenges," Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7-18, 2010.

[27] A. Zaslavsky, C. Perera and D. Georgakopoulos, "Sensing as a service
and big data," in International Conference on Advances in Cloud
Computing (ACC-2012), Bangalore, 2013.

[28] X. Huang and X. Du, "Efficiently secure data privacy on hybrid cloud,"
in 2013 IEEE International Conference on Communications (ICC),
Budapest, 2013.

[29] S. O'Connor, J. Lynch, M. Ettouney, G. vander Linden and S.
Alampalli, "Cyber-Enabled Decision Making System for Bridge
Management Using Wireless Monitoring Systems: Telegraph Road
Bridge Demonstration Project," in Structural Materials Technology
2012, 2012.

[30] S. O'Connor, Y. Zhang, J. Lynch, M. Ettouney and P. Jansson, "Long-
term performance assessment of the Telegraph Road Bridge using a
permanent wireless monitoring system and automated statistical
process control analytics," Structure and Infrastructure Engineering,
vol. 13, no. 5, pp. 604-624, 2017.

[31] State of Michigan, "MDOT - Mi Drive Interactive Map," [Online].
Available: https://mdotnetpublic.state.mi.us/drive/. [Accessed 1
February 2018].

[32] M. Bartholomew, B. Blasen and A. Koc, "Bridge Information
Modeling (BrIM) Using Open Parametric Objects," Federal Highway
Administration., 2015.

[33] S. Jeong, R. Hou, J. P. Lynch, H. Sohn, and K. H. Law, “An
information modelling framework for bridge monitoring,” Advances in
engineering software, 114, pp.11-31, 2017.

[34] Red Equation Corp, "OPEN BRIM V3," [Online]. Available:
https://openbrim.org/www/brim/. [Accessed 1 2018 February].

[35] Computers and Structures, Inc., "Structural Bridge Design Software |
CSiBridge," [Online]. Available:
https://www.csiamerica.com/products/csibridge. [Accessed 1
February 2018].

[36] E. Gazoni and C. Clark, "Openpyxl - A Python library to read/write
Excel 2010 xlsx/xlsm files," 24 January 2018. [Online]. Available:
http://openpyxl.readthedocs.io/en/default/. [Accessed 1 February
2018].

[37] PyTorch, "PyTorch," [Online]. Available: http://pytorch.org/.
[Accessed 1 February 2018].

