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Abstract 
  
Bridge load rating is an important approach to assessing the load-carrying capacity of bridges. 
Current approaches rely on empirically fitted models that do not require the measurement of live 
loads and bridge responses; this can lead to rating factors that are conservative. More accurate and 
bridge-specific load rating methods could be valuable in managing the safety of bridges.  In this 
study, a data-driven load rating approach is proposed based on data collected from a highway 
corridor with bridge monitoring systems, traffic cameras and weigh-in-motion (WIM) stations 
linked together in a cohesive cyber-physical system (CPS) architecture. The CPS architecture is 
designed to capture and track trucks in the corridor so that bridge excitations can be attributed to 
measured truck weight parameters. Computer vision algorithms, namely convolutional neural 
networks, are embedded with traffic cameras to automate the identification of trucks using edge 
computing. This allows bridge responses to a given truck to be conclusively linked to truck weight 
parameters measured by a WIM station that is not collocated with the bridge. Based on truck 
weight and bridge strain response data, essential load rating parameters such as the dynamic load 
allowance are estimated and investigated under various loading scenarios. This can lead to more 
accurate load ratings specific to the monitored bridge. The I-275 north bound corridor between 
Newport, Michigan and Romulus, Michigan is instrumented as a testbed to validate the proposed 
data-drive load rating framework. 
 
1. Introduction 
 
Bridges require proper inspection and assessment to ensure they operate safely. Bridges are 
inspected regularly to confirm the bridge condition is safe and the bridge system is operating as 
designed. For safe operations, the load demand imposed on bridge components must be below the 
structural capacity of those components. Bridge load rating provides a rational basis for assessing 
the safe load capacity of a bridge. Current load rating methods in the United States follow the 
Manual for Bridge Evaluation (MBE) published by American Association of State Highway and 
Transportation Officials (AASHTO); the MBE provides a framework for assessing the bridge 
capacity based on existing structural conditions, material properties, and loading scenarios, among 
other considerations (AASHTO 2018). Two load rating methods are recommended by the MBE: 
analytical and empirical. The analytical method is based on a mechanics-based model but is known 
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to be unnecessarily conservative due to the use of simplifying assumption (e.g. line girder analysis) 
and model calibration parameters empirically derived that neglect the systematic behavior of the 
specific bridge being analyzed (Sanayei et al. 2015). The empirical method is based on in situ load 
testing where controlled loads are placed on the bridge and the bridge response is measured. Load 
testing allows for proper adjustment of the rating factor obtained from the analytical method. The 
analytical method is most common due to the high costs and logistical complexities (e.g., road 
closure) associated with load testing.   
 
New approaches to bridge load rating are being explored using finite element method (FEM) 
modeling and structural monitoring. For example, bridge load rating using a calibrated FEM model 
has been studied with FEM models better reflecting the systematic behavior of a bridge as 
compared to the simplistic modeling approach taken in the MBE analytical approach (Alipour et 
al. 2016; Bell et al. 2013; Deng and Phares 2016; Ndong et al. 2019; Sanayei et al. 2015). These 
methods are even more accurate when the FEM model is calibrated using either modal properties 
extracted from: bridge vibration measurements (Alipour et al. 2016; Ndong et al. 2019) or strain 
measurements during controlled truck loading (Bell et al. 2013; Deng and Phares 2016; Sanayei 
et al. 2015). An alternative approach is to measure bridge responses to heavy trucks whose 
trajectories on the bridges are tracked using cameras; assuming the bridges is a linear system, the 
unit influence line (UIL) can be estimated using measured strain responses (Catbas et al. 2012). A 
limitation of such an approach is the uncertainties associated with estimating vehicle axle spacing 
and weights, leading to uncertainty in the final rating factor. Finally, some researchers have 
explored the use of long-term monitoring data to extract maximum bridge strain responses under 
the actual bridge traffic for use within the analytical MBE model (Al-Khateeb et al. 2018). A 
challenge of this approach is that the truck loads are not measured and hence, there is no basis for 
comparing the observed loads with design loads. This makes the rating factors difficult to be 
compared with those using classical design loads. 
 
The goal of this study is to develop a data-driven load rating method consistent with the MBE 
analytical approach based on measured bridge responses corresponding to known (measured) truck 
loads.  Specifically, the study shows that it is feasible to link measured bridge responses to truck 
axle weights measured using a weigh-in-motion (WIM) station by identifying the truck through 
computer vision. A cyber-physical system (CPS) framework is proposed that collects the data from 
bridge monitoring systems, cameras and WIM stations, and uses the data collected to link bridge 
responses to truck measurements. Over time, an abundance of coupled vehicle load and bridge 
response data can be collected from which load rating parameters can be extracted including the 
dynamic load allowance (DLA) and UILs. By doing so, the final rating factors from the MBE 
analytical method reflect the true behavior of the bridge under real load conditions leading to a 
more accurate assessment of the bridge load capacity. The CPS architecture has been installed on 
a 20-mile segment of the north-bound I-275 corridor between Newport and Romulus, Michigan 
which includes two instrumented bridges and a WIMS station. In this paper, the three interior 
girders of the Newburg Road Bridge are rated following the Load and Resistance Factor Rating 
(LRFR) criteria for design load rating (AASHTO 2018). To evaluate the proposed data-driven load 
rating method, the rating factors obtained by the data-driven method are compared with those 
obtained by conventional analytical and FEM-based methods. 
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2. Corridor-based Cyber-Physical System 
 
2.1 Newburg Road Bridge 
 
The Newburg Road Bridge (NRB) is a single-span composite slab-on-steel girder bridge that 
carries I-275 north bound traffic over the East Newburg Road in Monroe, Michigan (Figure 1(a)). 
The bridge was built in 1973 and is owned by the Michigan Department of Transportation 
(MDOT). It spans 105 feet (32.00 m) and has a skew angle of 59 degrees. The bridge consists of 
seven girder lines (deep I-beam sections). Based on prior inspection, the bridge structural 
components (e.g., deck, girders, abutments) are generally rated in good condition. For the purpose 
of long-term SHM, three interior girders (girder lines 2, 4 and 6 in Figure 1b) were instrumented 
with Narada wireless sensor nodes measuring bridge strain and acceleration in 2016 (Hou et al. 
2017); the sensor layout is depicted in Figure 1(b). A total of 10 sensors are installed including 
one vertical accelerometer, one thermometer, four weldable strain gages, and four BDI transducers 
(full bridge strain sensors). In this study, the sensors used for load rating are the weldable strain 
gages (Hitec HBWF-35-125-6-10GP-TR) placed 3 inches (7.62 cm) above the bottom flange on 
the I-section web.  These strain sensors measure the flexural strain response of the span on girder 
line 2, 4 and 6 at sensor S1, S2 and S3, respectively (Figure 1(b)).  Figure 2(a) shows a typical 
sensor installation on the girder while Figure 2(b) shows the mid-span composite cross section of 
an interior girder with key dimensions and strain gage position illustrated. The sampling frequency 
of the strain gages is set at 100 Hz. The NRB monitoring system collects data from the Narada 
nodes using a base station computer which communicates data to the Internet via a cellular modem. 

2.2 Cyber-Physical System (CPS) Design 
 
Besides the NRB bridge monitoring system, the I-275 corridor has other data collecting elements 
within the CPS architecture including three traffic cameras and a WIM station (Figure 3). The 
WIM station is located 7 miles (11.3 km) north of the NRB and is managed by MDOT. It is a two-
lane type II quartz station that measures vehicle gross weight, speed, number of axles, axle spacing, 
and axle weights. Each traffic camera is a Logitech C930e webcam controlled by a GPU-enabled 
embedded computing device (Nvidia Jetson TX2) which is connected to the Internet through a 
cellular modem. Each camera is programmed to capture traffic images at a frame rate of 10 FPS 

 
Figure 1. (a) Views of the Newburg Road Bridge; (b) instrumentation design of the Newburg Road Bridge 

monitoring system. 
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with a resolution of 1280x720 pixels. A vehicle detection program, namely YOLOv3-tiny 
(Redmon and Farhadi 2018), is embedded in each TX2 for real-time truck detection using captured 
images. Cam-1 (Figure 3) is 6.5 miles (10.5 km) upstream from the NRB acting as a trigger of the 
entire CPS architecture. Cam-2 and Cam-3 are installed at the NRB and WIM station to capture 
truck images synchronized with bridge response data and truck weight data, respectively. Bridge 
response data, WIMS truck weight data and the corresponding truck images (taken from Cam-1, 
Cam-2, and Cam-3) are communicated to a cloud-based data management system developed for 
data storage and computing (Jeong et al. 2018). 
 
After a truck is detected by Cam-1, it messages the other downstream CPS elements (Cam-2, Cam-
3 and the NRB monitoring system) via the Internet to begin their data acquisition processes starting 
at a time based on the approximate travel time of the truck. The NRB bridge monitoring system 
and Cam-2 are programmed to collect data for 120 seconds with a delay of 300 seconds 
(corresponding to 6.5-mile driving distance at 65 mph) after a positive detection of a truck at Cam-
1. By the same logic, Cam-3 collects images for 200 seconds with a delay of 630 seconds from 
detection at Cam-1. Operated by MDOT, the WIM station is collecting data at all times and 
communicating it to a WIMS database that the CPS architecture has access to. Following this 
coordinated data collection process, the CPS architecture is capable of tracking the same truck 
along the instrumented highway corridor.  
 

 
 

Figure 2. (left) Strain gage installation on the Newburg Road Bridge; (right) cross section of an interior girder 
with dimension and sensor location illustrated. 

 

 
Figure 3. Locations of the cyber-physical system components along the I-275 north bound corridor. 
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All data collected (i.e., bridge strains, camera frames, and WIM record) within the same data 
collection cycle are automatically uploaded to a server hosted in the cloud. When uploading is 
completed, a program on the CPS sever automatically detects and synchronizes truck events 
between the different types of data at each location (i.e., the NRB and the WIM station), after 
which each detected truck event is segmented from the original data set as a set of truck images 
plus either the bridge monitoring data (Figure 4(a)) or truck weight data (Figure 4(b)). The truck 
images are key to linking the bridge responses to the WIM recording of the same truck.  To re-
identify the truck at the NRB and the WIM station, a learning-based re-identification algorithm is 
adopted to match the trucks (Hou et al. 2019). This is critical because the gross vehicle weight and 
the axle weight distributions for the truck can be used to interpret the strain response of the bridge.  
This provides an input-output data set similar to what would be obtained in a traditional field load 
test. However, the CPS approach does not require any interruption in traffic and has the potential 
to collect a large number of truck events. A sample of paired data corresponding to a 5-axle truck 
is shown in Figure 4. Totally, 6092 matched data pairs collected from November 2017 to 
September 2018 are utilized in this study to demonstrate the proposed data-driven load rating 
method. While only a single truck travels on the bridge at the same time in this data set, there could 
be the presence of small vehicles (e.g., cars) in a few of the data sets.  
 
3. Data-Driven Load Rating Procedure 
 
3.1 General Load Rating Equation and Items 
 
This paper showcases the proposed data-driven load rating method by performing a design load 
rating following the LRFR method presented in the MBE (AASHTO 2018). The legal load rating 
and the permit load rating can be performed in a similar manner. According to the latest MBE, the 
general load rating equation for each component subjected to a single force effect (i.e., flexure) 
can be expressed as follows (AASHTO 2018), 
 

𝑅𝐹 =
𝐶 − (𝛾())(𝐷𝐶) − (𝛾(,)(𝐷𝑊) ± (𝛾/)(𝑃)

(𝛾11)(𝐿𝐿 + 𝐼𝑀)
 (1) 

  

 
Figure 4. Paired weigh-in-motion and structural monitoring data: (a) time history of bridge strain responses 
measured by strain gages S1, S2 and S3 with a picture of the truck; (b) measured weight configuration at the 

WIM station with a picture of the same truck. 
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where RF is the rating factor of a structural component, C is its capacity given its current condition,  
DC is the dead load effect due to structural components and attachments, DW is the dead load 
effects due to wearing surface and utilities, P is permanent load effects other than those from the 
dead loads, LL is the live load effect, and IM represents additional live load effects produced by 
DLA.  All of the γ-values are scaling load factors defined in the Load and Resistance Factor Design 
(LRFD) bridge design specifications (AASHTO 2017). All capacity and load effects are presented 
herein with respect to strain responses presented in micro-strain. As the structural components to 
be rated in this paper are three interior steel girders, the capacity of the girder is calculated based 
on the nominal resistance, R, of the girder cross section (Figure 2(b)) at the sensing location under 
flexural moment and scaled by LRFD factors (e.g., condition, system and resistance factors) 
(AASHTO 2018). The values of DC, DW and P are determined as per the bridge design drawings 
and a calibrated finite element model which is discussed in Section 3.2. The three dead load factors 
(𝛾() , 𝛾(, , 𝛾/ ) are determined according to the LRFD specifications. As both inventory-and 
operating-level ratings under the Strength I limit state are reported, the live load factor, 𝛾11 , has 
two values: 1.75 and 1.35 for the inventory- and operating-levels, respectively (AASHTO 2018).  
 
In this paper, the HL-93 design live load is used for the design load rating with all combinations 
of different load scenarios (e.g., single-lane and multiple-lane loads) explicitly considered to 
generate the maximum live load effect (AASHTO 2017). The major contribution of this paper is 
on how to efficiently compute an accurate live load effect considering both the systematic behavior 
of the bridge and the current condition of its structural elements. This objective is achieved by 
extracting UILs and DLA from the multi-source data set collected by the instrumented CPS. The 
data processing procedures for extracting the DLAs and UILs are discussed in Sections 3.3 and 
3.4, respectively. 
 
3.2 Finite Element Modelling 
 
A finite element model of the NRB is created in the commercial FEM package CSiBridge 2016 
using the engineering drawings and materials test results of the bridge. The concrete deck and steel 
girders are modelled using shell elements while the bridge bracings and stiffeners are modelled 
using frame elements. The reinforcement effect of the slab reinforcement bars on the deck stiffness 
is included by setting a deck stiffness amplification factor in CSiBridge. Bridge boundary 
conditions are modelled using translational and rotational springs. The model is calibrated by 
tuning the coefficients of these boundary springs by matching modal features (e.g., modal 
frequencies) of the model with those extracted from the monitoring data and based on minimizing 
the difference between predicted and measured strains under truck loading. The CSiBridge model 
is also used for computing all dead load effects. 
 
3.3 Dynamic Load Allowance 
 
DLA is in effect an amplification of the live load effect induced by moving vehicle wheel loads as 
compared to static wheel loads. The DLA value recommended by the MBE for steel girders in the 
load rating cases considered in this paper is 33%. (AASHTO 2018). It has been widely studied that 
the DLA of a bridge is strongly influence by many factors including the type of bridge and its 
geometry. Also influencing the DLA are the vehicle properties including its speed, weight and 
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suspension system  (Deng et al. 2015b; a; Paultre et al. 1992). This results in a high variation in 
the DLA for a specific bridge (Carey et al. 2017). In this study, DLA is extracted from the 
measured vehicle weight and bridge response data based on the use of low-pass filtering of the 
measured bridge strain (Paultre et al. 1992). The filter needs a cut-off frequency lower than the 
bridge’s first natural frequency and a passband of v/L Hz, where v is the speed of passing vehicles 
and L is the bridge span length. The NRB exhibits its first mode at 4.2 Hz; the vehicle passing 
frequency can range from 0.77 Hz to 1.11 Hz assuming vehicle speed ranging from 55 mph to 80 
mph, respectively. Consequently, a low-pass filter with a 3.5 Hz cut-off frequency is used to filter 
the measured dynamic strain response to derive the bridge static responses. Figure 4(a) overlaps 
the measured raw data with the low-pass filtered data to illustrate the process. The DLA can then 
be calculated as follows, 
 

𝐷𝐿𝐴 =
𝑚𝑎𝑥	(𝑅;<= − 𝑅>?@)

𝑚𝑎𝑥	(𝑅>?@)
 (2) 

 
where Rdyn is the dynamic response and Rsta is the static (i.e., low-pass filtered) response.  
 
The scatter plots of extracted DLA values versus vehicle gross weight under different loading 
scenarios are shown in Figure 5. As labelled in Figure 5, each subplot corresponds to a girder 
sensor location (S1, S2 or S3) and a truck lane assignment (slow, middle or fast lane). It should be 
noted that the number of samples corresponding to trucks in the fast lane is small as few trucks 
choose to use the fast lane when crossing the bridge. As can be seen, the extracted DLA values 
vary widely with generally more variation at lower vehicle weights.  This is expected as lower 
weight vehicles induce a smaller static strain response leading to the DLA calculation being 
strongly influenced by signal noise. Hence, the DLA extraction process focuses on DCA values 
that correspond to truck weights corresponding to the dominating HL-93 load pattern. For the 
NCB, the dominant HL-93 load pattern corresponds to an HS-20 truck with the uniform design 
lane load. The gross weight of the HS-20 design truck, 72 kips, is notated using a vertical solid 
green line in each subplot. A region of interest (ROI) is established around 72 kips to account for 
the maximum 15% error of the WIM station in terms of vehicle gross weight. All samples within 
this region are considered for the extraction of DLA values for the HS-20 design truck load. The 
mean, µ, and standard deviation, σ, of all the DCA samples in the ROI are calculated, and the 
estimated DLA (shown as the solid black horizontal line in Figure 5) is taken as µ+3σ to screen 
out extreme values (outliers) which might be caused by either sensor noise or a faulty WIM 
measurement. The MBE recommended DLA value (0.33) is presented as the red dashed line in 
each subplot for reference. It can be observed that the DLA values tend to be smaller for heavier 
trucks. The relative position of the truck relative to the girder line is important.  Specifically, the 
DLA value of a girder tends to be smaller (usually below 0.33) when the vehicular loads are on 
the lane right above the girder and a larger portion of the vehicular load is distributed to it. For 
example, the DLA value of S1 is smaller when the truck is assigned to the slow lane. This can be 
due to the load distribution in the bridge section with the girder closest to the truck lane taking a 
larger share of the live load response leading to improved signal-to-noise ratios. Taking the DLA 
for the loads above the sensor, the data suggests the MBE over estimates the DLA value for a 
bridge like the NRB. The obtained DLA values are used to compute the worst loading scenario 
with the HL-93 design load.  
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Figure 6. Extracted unit influence lines for sensor S2 when trucks travel along the NCB middle lane. 

 
3.4 Unit Influence Line 
 
A UIL represents the load effect (defined here using strain) induced at a specific bridge location 
caused by a unit axle load (one kip) traversing the bridge over a defined certain lane. While being 
continuous in theory, the lane positions along the bridge length are usually discretized so that the 
UIL can be conveniently expressed as a vector. For each pair of measured bridge strain and truck 
load configuration (particularly axle spacings and weights), a unit load influence line can be 
extracted at each sensor location by solving a series of linear equations formulated based on 

 
 

Figure 5. Dynamic load allowance (DLA) values extracted from NCB strain data under different loading 
scenarios (truck in slow, middle of fast lane) for the three sensing locations (S1, S2, and S3). Solid vertical green 

line corresponds to 72-kip HS-20 load, shaded green region is the region of interest (ROI), red horizontal line 
corresponds to the AASHTO DLA (0.33) and the black line is the µ+3σ DLA for samples in the ROI. 
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fundamental input-output relations of Equation (3) where εt is the strain measurement at timestamp 
t, wi is the ith axle weight at timestamp t, and Iit is the UIL entry corresponding to the position of 
ith axle at timestamp t that is being solved for (O’Brien et al. 2006): 
 

𝜀? =B𝑤D𝐼D?

E

D

 (3) 

 
The algorithm proposed by O’Brien et al. (2006) is used to extract Iit. The static (low-pass filtered) 
strain responses are used as the input strain for the extraction of the UIL. With over 6,000 bridge-
truck data sets available for this study, thousands of influence lines can be extracted for each 
sensing location and truck lane assignment. Like the DLA extraction case, there will be fewer UILs 
for the case of trucks assigned to the fast lane. Considering that the sampling frequency of the 
strain gage is 100 Hz and the truck speed limit is 65 mph along the I-275 corridor, the UILs is 
discretized with a resolution of 11.4 inches (28.9 cm). While the UIL is supposed to be a 105-entry 
vector given the proposed discretization, the obtained UIL vectors are larger since it is impossible 
to determine the exact timestamps when trucks enter and exit the bridge and redundant tiny entries 
are added to the head and tail of calculated UILs (O’Brien et al. 2006). Those values are very close 
to zero and thus won’t influence of the final predicted responses. The entries at the tail are usually 
larger than those at the head due to free vibration after trucks leave the bridge. 
 
A total of 2621 UILs are extracted for S2 when the axle load is moving on the middle lane as 
plotted in Figure 6. It can be observed that the extracted influence lines have similar shapes but 
vary in amplitude. This variation can be attributed to many factors such as varying truck speeds, 
varying truck location within the lane, different load configurations of the trucks, WIM data error, 
bridge response error, presence of small vehicles, and signal noise. In this study, the magnitude of 
the final UIL is selected to be the mean value at each position. The final extracted UIL for all three 
sensors with different loading lanes are plotted in Figure 7. They are used to generate the 
maximum vehicular live load effect combined with the extracted DLA values.  
 
4. Load Rating Evaluation 
 
Given the extracted DLA values and UIL vectors under different loading scenarios, the maximum 
live load effect caused by the HL-93 design load can be calculated for all three girders. The results 
are listed in Table 1 along with results obtained from the FEM simulations in CSiBridge. It can be 
observed that both methods obtain the maximum live load effect under the same load conditions. 
The results by the data-driven method are higher than that from FEM. To evaluate the proposed 
data-driven load rating method, the resultant rating factors are compared with those obtained by 
the FEM-based method in Table 2. Included is the conventional analytical method following the 
logic of Equation (1). The results, as listed in Table 2, show that the rating factors calculated using 
the data-driven approach lie between the conventional and the FEM-based rating factors. 
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Figure 7. Unit influence lines (UIL) extracted for the NRB three sensing locations with different loading lanes. 

 
Table 1. Maximum live load effects computed using the proposed data-driven method and the FEM-based method 

 Girder 2 (S1) Girder 4 (S2) Girder 6 (S3) 
Live Load Effect 

(Data-driven Method) 88.97 µε 164.26 µε 152.34 µε 

Live Load Effect 
(FEM-based Method) 78.88 µε 134.87 µε 108.55 µε 

Worst Load  
Case 

HL-93 load on slow and 
middle lane 

HL-93 load on slow, 
middle and fast lane 

HL-93 load on middle 
and fast lane 

 
Table 2. Load rating factors calculated by three different methods 

  Girder 2 (S1) Girder 4 (S2) Girder 6 (S3) 

Inventory Level 
Rating Factor 

Conventional 1.45 1.45 1.45 
FEM-based 4.66 2.66 3.42 
Data-driven 4.14 2.17 2.34 

Operating Level 
Rating Factor 

Conventional 1.88 1.88 1.88 
FEM-based 6.05 3.43 4.43 
Data-driven 5.19 2.81 3.03 

 
 
5. Conclusions 
 
Accurate load ratings are critical for effective bridge management. In this study, a cyber-physical 
system that consists of bridge health monitoring system, cameras and a WIM are integrated within 
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a single CPS architecture to collect and integrate bridge and truck measurement data. By doing so, 
a vast collection of bridge response data paired with vehicular weight data can be collected at 
minimal cost and effort.  Taking advantage of the data, realistic parameters under different loading 
conditions such as dynamic load allowance and unit influence lines can be calculated to produce a 
more accurate data-driven rating factor reflecting the bridge’s actual load-carrying capacity. Future 
research will focus on investigating the factors that influence the quality of the extracted UILs and 
testing the generalizability of the proposed method on another multiple-span bridge located on the 
same highway corridor. 
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