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A Scalable Cloud-based Cyberinfrastructure Platform for Bridge 

Monitoring 

Cloud computing is a computing paradigm wherein computing resources, such as 

servers, storage and applications, can be provisioned and accessed in real time via 

advanced communication networks. In the era of Internet of Things (IoT) and big 

data, cloud computing has been widely developed in many industrial applications 

involving large volume of data. Long term deployment of a structural health 

monitoring (SHM) system would incur significant amount of data of different 

types. This paper presents a cloud-based cyberinfrastructure platform designed 

for bridge monitoring applications. A cloud-based platform comprises of virtual 

machines, distributed database and web servers. Distributed database built on a 

peer-to-peer architecture enables scalable and fault-tolerant data management on 

a cloud computing environment. Platform-neutral web services are designed in 

compliant with the REpresentational State Transfer (REST) design, and enable 

easy access to the cloud resources and SHM data via a standard web protocol. 

For data interoperability, a bridge information model for bridge monitoring 

applications is adopted. The scalable cloud-based platform is demonstrated for 

the monitoring of bridges along the I-275 corridor in the State of Michigan. The 

results show that the cloud-based cyberinfrastructure platform facilitates storage, 

retrieval and utilization of sensor data and bridge information for various bridge 

monitoring applications. 

Keywords: cloud computing, bridge monitoring, bridge information modelling, 

interoperability, scalability, web service 

1. Introduction 

Advances in sensor and communication network technologies have led to increasing 

deployment of sensors for structural health monitoring (SHM) of civil infrastructures 

(Lynch and Loh 2006, Zhou and Yi 2013). Data collected from SHM systems can be 

useful in many different contexts, from short-term anomaly detection to long-term 

management of infrastructures (Lim et al. 2014, Cross et al. 2013, Dervilis et al. 2015). 

However, the lack of easy access, sharing and utilization of data hinders the potential 
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use of collected data. The volume and the variety of sensor data make data management 

an important task for long term structural health monitoring. A data management 

framework that can support long-term data archiving and effective data access is one 

indispensable component of data-intensive SHM systems (Law et al. 2014). This paper 

describes the design and implementation of a cloud-based cyberinfrastructure platform 

to cope with the big data issues in SHM systems. 

Few attentions have been paid on data management in structural health 

monitoring research. Early SHM systems typically collect and store measurement data 

in files on local computers (Brownjohn et al. 1995, Farrar et al. 2000, Wong et al. 

2000). File-based systems does not directly support queries, which often makes data 

access a tedious task. The use of relational database management systems (RDBMSs) as 

a centralized data storage for SHM systems has been reported (Li et al. 2006, Fraser et 

al. 2009, Koo et al. 2011, Smarsly et al. 2012). RDBMSs support structured query 

language (SQL) so that data residing in a database can be retrieved using query 

statements. However, research studies have suggested that current RDBMSs, which 

were architected decades ago when the characteristics of hardware and data processing 

requirements were very different, are not effective in meeting the data needs of today’s 

applications which often involve text, time-series, image and video data (Stonebraker et 

al. 2007, Agrawal et al. 2011). Furthermore, a cloud computing platform provides a 

scalable computing infrastructure in the form of multiple commodity machines. To 

realize scalable data management, a database management system (DBMS) that can 

effectively “glue” the distributed commodity machines is needed. To overcome the 

performance and scalability issues of RDBMSs, NoSQL (Not-only-SQL) databases 

have been proposed. NoSQL databases have become desirable alternatives over the 

RDBMS for cloud-based data management (Grolinger et al. 2013). Structural health 
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monitoring is a data intensive application that shares the same burdens (Jeong et al. 

2016a). This study extends the authors’ previous work on NoSQL-based SHM 

framework (Jeong et al. 2016a) to enable scalable and interoperable SHM data 

management on a cloud computing environment. Specifically, a NoSQL database that 

enables dynamic scaling of the system and distributed data management is employed. 

Cloud computing has been widely employed in many large scale industrial 

applications particularly in the era of Internet of Things (IoT) and big data. Advances in 

cloud computing provide highly scalable and accessible computing environment, as 

well as cost-effectiveness (Zhang et al. 2010, Zaslavsky et al. 2013, Gillis 2015, 

Deckler 2016). Many state-of-the-art data management platforms take advantage of 

cloud computing to allow communication and data sharing among physical systems, 

sensors, software applications and users. While there are several IoT platforms offered 

by major cloud vendors (Strukhoff 2017), most of commercial platforms tend not to 

design for specific applications. Generally, there is no one-size-fit-all platform: a data 

management platform needs to be tailored to meet domain-specific application 

requirements. The development of cloud-based frameworks has been reported in many 

science and engineering domains, including smart city (Lea and Blackstock 2014), 

smart home (Ye and Huang 2011), healthcare (Lin et al. 2015), robotics (Arumugam et 

al. 2010), manufacturing (Xu 2012) and construction (Das et al. 2015). A number of 

efforts have also been reported on utilizing cloud computing in infrastructure 

monitoring. Liao et al. (2014) described a cloud-based wireless sensor network 

framework to process sensor data collected from infrastructure and environmental 

monitoring. Zhang et al. (2016) described a cyberinfrastructure platform, called 

SenStore, that supports cloud-based data interrogation for infrastructure health 

management. Alampalli et al. (2016) utilized cloud platform to process data collected 
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for SHM of railroad bridges. While these efforts have focused on hosting SHM data and 

applications on a cloud platform, they do not address the performance and scalability 

issues for data management, data utilization, data interoperability and information 

sharing. Following our preliminary studies on the use of cloud computing for SHM 

systems (Jeong et al. 2016b, Jeong et al. 2016c), this paper describes in details a highly 

scalable and interoperable cloud-based data management system for bridge monitoring. 

To take advantage of cloud computing, the software framework should be 

designed with consideration of the useful features provided by cloud services (e.g., 

dynamic provisioning, distributed computing and on-demand commodity hardware), as 

well as domain-specific application requirements (e.g., information model, application, 

interface, etc.). In contrast to traditional proprietary servers, the real value of cloud 

computing relies upon interoperability among systems and engineering services (Law et 

al. 2016). For service interoperability, engineering services on cloud platforms need to 

be exposed via standard interfaces. There are two main web service paradigms: namely, 

Service-Oriented Architecture (SOA) and Resource-Oriented Architecture (ROA). SOA 

is built upon standard web service protocols, such as Simple Object Access Protocol 

(SOAP), Web Service Description Language (WSDL) and Business Process Execution 

Language (BPEL), etc.. While SOA’s reliability and message-level security benefit 

enterprise-level applications, the complexity of the protocols makes them less attractive 

for basic, ad hoc integration of services (Pautasso et al. 2008). ROA, on the other hand, 

is based on the de facto Representational State Transfer (REST) (Fielding 2000). REST 

has become a preferable approach because of its simple and lightweight architecture, 

easy accessibility and scalability (Zhao and Doshi 2009, Mulligan and Gracanin 2009, 

Belqasmi et al. 2012). In this study, RESTful web services (i.e., web services based on 

REST) are developed to provide standard interfaces.  
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Data interoperability requires information models that describe relevant bridge 

information in a platform-neutral language. One of the most notable efforts for 

establishing a bridge information modeling (BrIM) schema is the OpenBrIM standards 

(Chen and Shirolé 2013, Bartholomew et al. 2015) supported by the US Federal 

Highway Administration (FHWA). While the current OpenBrIM standards focus on the 

geometric representation of bridge structures, the authors of this paper have proposed a 

BrIM schema for bridge monitoring applications by extending the OpenBrIM standards 

(Jeong et al. 2017). In this work, the cloud-based cyberinfrastructure platform adopts 

the extended BrIM schema for data interoperability.  

In this paper, a scalable cloud-based cyberinfrastructure platform for managing, 

sharing and utilizing sensor data and bridge information is presented. The cloud-based 

platform comprises of the virtual machines (VMs), distributed database, web servers, 

applications and user interfaces. For scalable, flexible, fault-tolerant and high-

performing data management, an open source distributed NoSQL database is employed. 

NoSQL database ensures data consistency, supports partitioning and replication, and 

allows queries over decentralized data storages across multiple VMs. For data 

interoperability, database schema is designed based on the BrIM schema for bridge 

monitoring applications. For service interoperability, RESTful web services are 

implemented on web servers. To demonstrate the utilization of the cloud-based 

cyberinfrastructure platform, the prototype platform is implemented and validated for 

the monitoring of bridges along the I-275 corridor in the State of Michigan. 

 

2. Cloud computing environment 

Cloud computing, as defined by the National Institute of Standards and Technology 

(NIST), is a “model for enabling convenient, on-demand network access to a shared 
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pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction” (Mell and Grance 2011). Cloud computing can 

reduce the cost and lessen the burdens on the deployment, operation, maintenance and 

management of data centers. Using cloud computing, a SHM system can be easily and 

quickly scaled up and down on demand with optimal usages of computing and storage 

resources.  

Cloud computing services are typically categorized into three service models 

(Mell and Grance 2011): (1) Software as a Service (SaaS) that provides applications and 

web services to end users, (2) Platform as a Service (PaaS) that provides runtime and 

database supports, and (3) Infrastructure as a Service (IaaS) that provides the basic 

computing utilities including network, processor and storage. In this work, as depicted 

in Figure 1, the cloud-based cyberinfrastructure platform serves as PaaS and SaaS that 

employ computing infrastructures and platforms (i.e., IaaS and PaaS) to provide data 

management and application services. 

Figure 1. A model of cloud computing for SHM 

 

IaaS utilities are typically offered in the form of VMs. Here, a VM is a 

virtualized computing system that abstracts the underlying physical computer 

architecture and offers the same functionalities of a physical computer (Smith and Nair 

2005). A VM can be configured and created in minutes and be managed through cloud 

interfaces offered by a cloud vendor. For example, Figure 2(a) shows the web interface 

of the Microsoft Azure cloud platform1, namely the Azure portal, that shows of a VM’s 

                                                

1 https://azure.microsoft.com/ 
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information such as name, status, operating system (OS) and size. Once created, a VM 

can be accessed via standard network protocols, such as Secure Shell (SSH) and Secure 

Copy Protocol (SCP). Figure 2(b) shows the shell interface of a VM on Azure cloud 

platform accessed via the SSH protocol. Similar to using a remote physical server, a 

VM can be used to deploy computing platforms and applications. The proposed 

cyberinfrastructure platform utilized VMs to deploy computing components, such as 

distributed database, web servers and applications. 

The IaaS utilities can be scaled both vertically (i.e., increasing capability of a 

VM) and horizontally (i.e., adding new VMs) on demand. While vertical scalability is 

limited to the maximum capability of a single VM, the horizontal scalability is nearly 

unlimited since cloud vendors allow adding as many VMs as needed. Figure 2(c), for 

example, shows that multiple VMs are deployed as needed on the Azure cloud platform. 

To take advantage of the scalability of an IaaS utility and thus enable scalable SHM 

data management, the cloud-based cyberinfrastructure platform should be designed to 

run on a distributed computing environment such that new VMs can be dynamically 

added on demand. For example, as will be discussed later, the proposed 

cyberinfrastructure platform adopts a NoSQL database which can be effectively 

executed on multiple VMs to offer a large scale distributed data store. 

Figure 2. Virtual machine created on Microsoft Azure cloud platform: (a) Web-based 

cloud interface, (b) Shell interface, (c) List of virtual machines deployed on Azure cloud 

platform 

 

3. A cloud-based cyberinfrastructure platform for bridge monitoring 

Today’s bridge monitoring and management tasks involve various types of data 

collected from different sources including, for examples, a SHM system, engineering 
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analysis and design, traffic data, maintenance and inspection, etc.. With effective 

integration and utilization of data, actionable insights for bridge management and 

maintenance can be derived (Cross et al. 2013, Zhang et al. 2016, Hou et al. 2017). 

Careful design of a SHM data management platform is essential to facilitate the 

utilization of SHM data. 

In this study, a bridge monitoring scenario that involves diverse types of data, 

including information about sensors, sensor measurement data, video image data, bridge 

geometries and engineering models, is considered. Sensor networks instrumented on a 

bridge collect structural data (e.g., acceleration and strain) and environmental data (e.g., 

temperature, wind speed and wind direction). Video cameras mounted near the bridge 

collect video images of traffic passing through the bridge. For the utilization of 

collected sensor data, sensor information (e.g., sensor ID, sensor type, sensor location, 

etc.) is also managed. In addition, bridge geometric models and engineering models are 

involved to perform structural analysis and to understand the behavior of the bridge 

structure.  

A cloud-based cyberinfrastructure platform is designed to manage these diverse 

types of data and to enable data retrieval by a variety of client systems (e.g., data 

analysis modules, engineering analysis tools and end-user interfaces). The platform is 

designed with an emphasis on (1) a scalable database design to handle voluminous and 

heterogeneous SHM data, (2) information model to capture SHM-related data and to 

facilitate data interoperability, and (3) interoperable web services to enable easy access 

to SHM data and to facilitate SHM application developments. Figure 3 shows the 

conceptual framework of the cloud-based cyberinfrastructure platform which includes 

the following major components: 
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• A distributed NoSQL database is deployed to manage sensor data and bridge 

information over multiple cloud VMs (i.e., VMs deployed on cloud platforms). 

Specifically, a highly scalable NoSQL database, namely Apache Cassandra 

database2, is employed to guarantee partitioning tolerance and database 

availability.  

• A BrIM schema (Jeong et al. 2017) is employed to support data interoperability 

among applications. The BrIM schema includes data entities for the description 

of bridge geometric models, engineering models and sensor information. 

• Web servers are employed to host RESTful web services that expose resources 

to clients via Hypertext Transfer Protocol (HTTP). Web services for storing and 

retrieving bridge monitoring data are implemented. 

Figure 3. Conceptual framework of cloud-based cyberinfrastructure platform 
 

3.1 A scalable distributed database 

There are a variety of readily available NoSQL database systems, each with their own 

features. Selection of an appropriate NoSQL database for a specific purpose is critical 

for efficient data management. The cloud-based cyberinfrastructure platform aims for 

high scalability to handle voluminous SHM data on a distributed cloud computing 

environment. Given the requirement, Apache Cassandra database, which is one of the 

most widely used NoSQL databases, is selected (Jeong et al. 2016a). The Cassandra 

database is built upon the peer-to-peer (P2P) architecture which is a preferable approach 

for a highly available and scalable distributed database (Stonebraker et al. 2007). Figure 

                                                

2 http://cassandra.apache.org/ 
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4, as an example, shows the status table of a Cassandra cluster consisting of five nodes 

(i.e., database instances). The status table shows the current states of the nodes and their 

topology information such as the data center ID (e.g., DC1) and the rack IDs (e.g., 

RAC1, RAC2, etc.). The Cassandra database is particularly suitable for large scale data 

management because the number of nodes can be easily modified without causing 

operational downtime and the database performance is linearly scaled as new nodes are 

added to an existing Cassandra cluster (Hewitt 2010). Another advantage of using the 

Cassandra database for SHM applications is its query performance for time-series data 

(Le et al. 2014). The variety of data types (e.g., number, array, dictionary, binary data, 

etc.) and flexible data schema supported by Cassandra database can also be an 

advantage for SHM data management which involves sensor data and video image data.  

Figure 4. A Cassandra cluster instance 

 

To maintain the consistency of the database and to process requests in a 

decentralized manner, nodes in a Cassandra cluster communicate among one another 

according to a “ring” topology as shown in Figure 5. Data is replicated and distributed 

over multiple nodes to ensure high availability and fault-tolerance, as well as to 

maintain efficient reading and writing performances. Figure 5, for instance, illustrates 

how SHM data is stored in a Cassandra cluster. In this example, the incoming data R 

has two rows r1 and r2 which could be sensor measurement data collected by different 

sensors. The replication factor (i.e., the number of replicas in a cluster) is two. Any 

node (say, node N5 in the example) can accept the write request. The incoming sensor 

data is partitioned into two pieces and then copied twice over the nodes. Since the 

sensor data is replicated over the cluster, writing and reading the data can still be 
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performed even when a node is down, as long as other nodes remain available for 

processing the requests.  

Figure 5. Ring topology of Cassandra database 

 

3.2 A data schema definition of bridge information model 

3.2.1. Bridge information model 

A consistent and unified information model is needed to manage the heterogeneous 

information involved in bridge monitoring and to enable data interoperability among the 

applications. The proposed platform adopts a BrIM framework for bridge monitoring 

application (Jeong et al. 2017). This BrIM framework extends the OpenBrIM standards 

(Chen and Shirolé 2013, Bartholomew et al. 2015) by introducing additional data entity 

definitions for representing sensor information and finite element (FE) models. 

Specifically, the BrIM framework drew upon the data entities of SensorML (an open 

standard for sensor description (Open Geospatial Consortium 2014)) and CSI Bridge (a 

structural engineering software tool3).  

The base schema (i.e., the data schema of OpenBrIM standards) represents a 

bridge using hierarchical objects and their parameters (Bartholomew et al. 2015). Each 

object describes a physical or conceptual entity (e.g., beam, column, group and project) 

while each parameter describes an attribute (e.g., width, height and length) of an object 

(or refers to another object). To encode bridge information in an object-oriented 

fashion, OpenBrIM standards use the ParamML, an Extensible Markup Language 

(XML)-based syntax (ParamML 2017). Figure 6(a), for example, shows the data 

                                                

3 https://www.csiamerica.com/products/csibridge 
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schema of a “Shape” object defined in the base schema. The data schema is displayed 

using an XML schema definition (XSD) diagram, which can be interpreted as follows: 

• Each box refers to an XML component, such as element, attribute and complex 

types.  

• The abbreviated letters in the inner shadowed boxes refer to the XML 

component types. For example, “CT”, “A” and “E” refer to “xs:complexType”, 

“xs:attribute” and “xs:element”, respectively (W3C 2014). 

• The attribute “T” represents the type of an object. 

• The attribute “N” represents the name of a parameter.  

• The xs:element “O” and “P” represent BrIM object and parameter, respectively. 

• The string on the left-side of the “:” represents the name of an XML component, 

while the string on the right-side of the colon represents the data type or an 

extension base. For example, “Shape: Object” means that the XML component 

has name “Shape” and its extension base is “Object”.  

• The numbers on the left side of an XML component represents the possible 

number of the components. For example “0..*” means equal or greater than zero.  

As an example, the XSD diagram in Figure 6(a) defines that (1) a “Shape” object is 

extended from the “Object” object; (2) a “Shape” object can have any number of child 

objects each of which has either “Point”, “Shape” or “Circle” type; and (3) a “Shape” 

object can have any number of parameters having name “Material”. 

The base schema is extended with additional data entities for the representation 

of FE models and sensors. Figure 6(b) shows the extended data schema of “FELine” 

object as a representative example of FE model objects. The original definition of 

“FELine” includes parameters “Node1”, “Node2” and “Section” to describe two ends of 
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the line element and its section information. In addition, new data entities FELineMesh, 

FELineRelease and FELineSection are defined to describe mesh information, member-

end release information and standard section shapes, respectively. Figure 6(c), as 

another example, shows the newly defined data schema “StrainGauge” as a 

representative example of sensor object. The data schema of “StrainGauge” object 

includes data entities for describing the “Input” (data that will be processed by the 

sensor), “Output” (processed data), “Parameters” (values needed for processing data) 

and “DataLink” (link to the sensor data repository).  

Figure 6. Data schema definition in BrIM for bridge monitoring applications: (a) Shape, 

(b) FELine, (c) StrainGauge entity types  

 

3.2.2 Database schema definition 

An extensible database schema is needed to effectively manage the complex SHM data 

and bridge information. RDBMSs are not designed to manage hierarchical objects 

because of their inflexible data structure, Cassandra database, on the other hand, offers 

more flexible data structure that can elegantly handle complex data (Hewitt 2010). This 

section describes Cassandra database schema definitions for managing complex data 

involved in SHM systems.  

The Cassandra database is built upon a column-oriented data model consisting 

of “keyspace,” “column family,” “row” and “column,” which are analogous to 

“database,” “table,” “tuple” and “attribute” of relational database, respectively. To 

manage bridge information, the database schema follows closely the BrIM schema for 

bridge monitoring applications. Figure 7 shows data mapping between the BrIM schema 

of the “FELine” object and the corresponding column family schema “FELine”. The 

database schema contains the data entities of “FELine”, as well as “child” and “parent” 
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entities to record the hierarchical relation between the objects. As such, bridge 

information stored in the column-oriented database can be mapped to hierarchical BrIM 

objects.  

Figure 7. Data mapping between BrIM schema “FELine” and corresponding Cassandra 

column family. 
 

Figure 8 shows examples of the rows of the column-oriented database for 

storing BrIM objects where a single object is stored in each row. Each row has a 

mandatory partition key (e.g., “shp001” of the first row in Figure 8(a)). A row has 

columns for storing attributes and parameters, as well as the list of child and parent 

objects. Since the Cassandra database supports collection types, any number of child 

objects can be recorded in the child column. In Figure 8(a), for example, the child 

column of the shape object contains the ID and types of child objects (i.e., [“pt001”: 

“Point”, “pt002”: “Point”, …]). One issue in managing hierarchical object data is that 

each object may have different sets of attributes. This data irregularity can be efficiently 

handled by the Cassandra database with its flexible data structure. Specifically, the 

Cassandra database allows rows in the same column family to contain different sets of 

columns. For instance, Figure 8(b) shows that the two rows in the column family 

“FELine” have different column sets: the first row has the “FELineRelease” column, 

while the second one does not. In fact, BrIM objects with the same type often have 

different sets of attributes and child objects. As such, the flexible data structure of 

Cassandra database is suitable to handle the heterogeneous BrIM object entities without 

enforcing every row to have the same set of columns.  

Figure 8. Database schema for BrIM objects: (a) Rows storing Shape object and its 

child Point objects, (b) Rows storing heterogeneous FELine objects 
 



 
16 

In addition to BrIM objects, SHM systems collect a large volume of time-series 

sensor data and traffic video images. Since SHM applications often utilize continuous 

time-series data collected within a certain period, efficient range query performance for 

time-series data is needed. Cassandra database has better range query performance 

comparing to RDBMSs because of the clustering and dynamic column features (Le et 

al. 2014). Cassandra data schema for SHM time-series sensor data is defined as follows. 

As shown in Figure 9(a), data collected from a sensor is stored in a single row in a 

sorted order by assigning the timestamp (e.g., “2014-08-02T00:00:08”) of data as a 

clustering key. Since sensor data collected from SHM systems usually has very high 

sampling rate with same interval period between data points, it is redundant to record 

timestamp for every data point. Instead, the proposed data schema encodes sensor data 

as a numeric array type that stores data collected during a specified time period (e.g., 1 

second) in a sorted order. The timestamp records can be regenerated, if needed, based 

on the sampling rate. When new data is collected, the incoming data is stored to the 

same row by dynamically adding new columns at the end of the row. This data schema 

improves the range query performance by enforcing the consecutive sensor data to be 

stored in a contiguous physical disk location in the same node (Le et al. 2014). To 

prevent a single row from becoming too lengthy, part of the timestamp (e.g., year) is 

added to the row key so that the data from a sensor can be partitioned to several rows 

based on a specific time period (e.g., year) of data acquisition.  

Similarly, Figure 9(b) shows that sequential image files collected from a traffic 

video camera are stored in a row by assigning timestamp (e.g., “2016-08-23T10:02:08”) 

as a clustering key. In addition, part of the timestamp (e.g., year and month) is added to 

the row key to partition image data to several rows based on the year and month of its 

acquisition. Each image file is encoded in a binary large object (BLOB) data (e.g., 
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“/9j/4AAQSkZj … H//Z”) and stored in a single column. The BLOB data can be 

converted back to the original image file using imaging libraries, such as Python 

Imaging Library4.  

Figure 9. Database schema for time-series data: (a) Row storing sensor measurement 

data, (b) Row storing traffic video image data 

 

Data stored in the Cassandra database can be retrieved using a SQL-like query 

language, namely Cassandra Query Language (CQL). For example, Figure 10 shows a 

SELECT query statement that specifies sensor ID (“TRB_u07_ch0”), year (“2014”) and 

time range (from “2014-08-02T00:00:00” to “2014-08-02T01:00:00”) to retrieve 

acceleration data. The query result is returned in a tabular structure. Since Cassandra 

database offers application programming interfaces (APIs) for various programming 

languages, platforms and applications can remotely access the Cassandra database and 

query the data using CQL.  

Figure 10. Select query for sensor data retrieval and query result in a tabular format 

 

3.3 Web servers  

The resources residing in the cloud-based cyberinfrastructure platform needs to be 

exposed via standardized interfaces to facilitate sharing, integration and potential 

utilization of the data from various applications and devices. To this end, the design and 

implementation of web services for the cyberinfrastructure platform are presented. 

                                                

4 http://www.pythonware.com/products/pil/ 
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3.3.1 Web services 

Web services, as defined by W3C, is a “software system designed to support 

interoperable machine-to-machine interaction over a network” (Haas and Brown 2004). 

Web services enable sharing of data and integration of applications over the network. 

Since the cyberinfrastructure platform needs to support utilization of data from various 

devices (e.g., cloud, local computer, micro computer and mobile devices) and platforms 

(e.g., different operating systems), it is important to employ a widely-adopted web 

service protocol. Furthermore, the cyberinfrastructure platform needs to support 

conditional queries involved in SHM applications (e.g., range query for time-series 

data). To meet these requirements, the cyberinfrastructure platform employs RESTful 

web services which have fast performance and high scalability (Mulligan and Gracanin 

2009). It should be noted that there are other lightweight communication protocols, such 

as MQTT (MQ Telemetry Transport) protocol5. While such protocols have advantages 

on real-time communication via publish/subscribe messaging, our design stresses on the 

query capabilities that efficiently handle typical data utilization patterns commonly seen 

in SHM applications (e.g., range query for time-series data). RESTful web services are 

described using five constraints (Guinard et al. 2010): 

• Resource identification. Resources are identified by uniform resource identifiers 

(URI). 

• Uniform interface. Resources can be accessed via the HTTP. 

                                                

5 http://mqtt.org/ 
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• Self-descriptive messages. Resources are represented using standardized 

formats, such as Hypertext Markup Language (HTML), XML and JavaScript 

Object Notation (JSON). 

• Hypermedia as the engine of application state. Resources contain links by which 

clients can interact with web services. 

• Stateless interactions. Requests contain all the required information for web 

services to process the requests. 

Table 1 summarizes the web services currently implemented for the cloud-based 

cyberinfrastructure platform to manage sensor data and bridge information. Here, the 

HTTP method GET is used to retrieve data from the specified URIs, while the HTTP 

method POST is used to submit data to the specified URIs (Fielding et al. 1999). The 

following briefly describes two examples to illustrate the basic process for 

implementation of RESTful web services. 

Table 1. RESTful web services currently implemented on the cyberinfrastructure 

platform 

 

Figure 11, for example, shows the “Sensor data store” service which accepts 

POST requests with URI “/sensordata” and processes a request in four steps: 

(1) The client sends a POST request to the web server with URI (/sensordata), 

protocol (HTTP/1.1), host (<ws_address>.cloudapp.azure.com), content type 

(application/json) and JSON-encoded content including sensor_id, event_time 

and data. 

(2) The web server sends an INSERT query to the database by parsing the request. 

(3) The database informs the web server that the INSERT query has been processed.  
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(4) The web server returns a response to the client with a status code 200, which 

means “OK” in the HTTP (Fielding et al. 1999). (Other status codes are returned 

if an error is encountered in the retrieval process.) 

As another example, Figure 12 describes the “Sensor data retrieval” service 

which accepts GET requests with URI “/sensordata/{sensorID}”. Again, the service 

processes a request in four basic steps:  

(1) The client sends a GET request to the web server with URI 

“/sensordata/TRB_u131_ch0”, query parameters (e.g., “event_time_begin” and 

“event_time_end”), protocol (HTTP/1.1) and host 

(<ws_address>.cloudapp.azure.com). 

(2) The web server sends a SELECT query corresponding to the query parameters 

to the database. 

(3) The database returns query result to the web server.  

(4) The web server returns a response enclosing JSON-encoded query result and the 

status code 200 to the client. 

Figure 11. Web service example: sensor data store service 

Figure 12. Web service example: sensor data retrieval service 

  

3.3.2 Web service composition 

This section describes how web services offered by the cyberinfrastructure platform can 

be used for developing and integrating SHM applications. Web service composition 

refers to the process of combining different web services to provide a new service that 

carries out composite functions (Sheng et al. 2014). Standardized web services can be 
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efficiently composed. Different methods have been suggested for composition of 

RESTful web services (Pautasso 2008, Rosenberg et al. 2008, Zhao and Doshi 2009, 

Pautasso 2009). For visual demonstration purpose, this study adopts Pautasso (2009)’s 

approach that uses JOpera6, a visual composition language. JOpera describes control 

flow and data flow between programs using a graphical model (Pautasso and Alonso 

2005). Each node of the graph represents either a program, an input of a program, or an 

output of a program, while each edge of the graph represents a control flow or data flow 

between nodes. Each program performs a function, such as web service invocation, 

script execution and HTML document creation. The following briefly describes two 

examples to illustrate the composition of RESTful web services implemented on the 

cyberinfrastructure platform. 

Figure 13(a) shows the JOpera data flow of the first demonstrative application 

named “DataRetrievalByLocation”. This application composes two web services 

“Sensor list retrieval” and “Sensor data retrieval” in order to retrieve sensor data 

measured at a specified location by a specified type of sensor. Here, the hollow arrows 

describe the input and the output flow of each program, while the solid arrows describe 

the data flow and control flow between programs.  

As described in Figure 13(a), the application consists of three programs, namely 

“SensorListRetrieval”, “SearchByLocation” and “SensorDataRetrieval”, and processes 

a request in five steps: 

(1) The application accepts input arguments including target time period 

(“start_time”, “end_time”), sensor type (“sensor_type”) and local coordinate 

(“loc_X” and “loc_Y”) from a client. 

                                                

6 http://www.jopera.org/ 
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(2) The “start_time”, “end_time” and “sensor_type” are passed to the program 

“SensorListRetrieval” as input parameters. The program invokes the “Sensor list 

retrieval” service with the input parameters, and then returns an output 

parameter “SYS.page” enclosing the retrieved sensor list. 

(3) The “loc_X” and “loc_Y” and the “SYS.page” from the previous step are passed 

to the program “SearchByLocation” as input parameters. The program searches 

a sensor corresponding to the “loc_X” and “loc_Y” from the sensor list, and 

then returns “sensor_id” of the searched sensor.  

(4) The “start_time”, “end_time” and the “sensor_id” from the previous step are 

passed to the program “SensorDataRetrieval” as input parameters. The program 

invokes the “Sensor data retrieval” service with the input parameters, and then 

returns an output parameter “SYS.page” enclosing the retrieved sensor data.  

(5) Finally, the “SYS.page” from the previous step is passed to the application’s 

output “sensor_data” which is returned to the client. 

Figure 13(b) shows the retrieved sensor data when the application is executed with the 

input arguments “2014-08-01T00:00:00”, “2014-08-10T00:00:00”, “Accelerometer”, 

“102” and “-50”, which correspond to “start_time”, “end_time”, “sensor_type”, 

“loc_X” and “loc_Y”, respectively.  

Figure 13. A composite application DataRetrievalByLocation: (a) Data flow, (b) 

Execution example 

 

Figure 14(a) shows the data flow of the second application named 

“SensorInfoOnMap” that composes an internal web service “Sensor information 

retrieval” and an external service “Google Map API”. Given a sensor’s ID, the 

application shows sensor information at the location of the sensor on the map. As shown 
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in Figure 14(a), the application consists of three programs, including 

“SensorInfoRetrieval”, “SensorInfoParser” and “MapHandler”, and processes a request 

in five steps: 

(1) The application accepts an input argument “sensor_id” from a client. 

(2) The “sensor_id” is passed to the “SensorInfoRetrieval” as an input parameter. 

The program invokes the “Sensor information retrieval” service with the input 

parameter, and then returns an output parameter “SYS.page” enclosing the 

sensor information. 

(3) The output parameter of the previous step (i.e., “SYS.page”) is passed to the 

“SensorInfoParser” as an input parameter. The program parses the sensor 

information and returns extracted data entities including sensor’s ID, coordinate, 

type, position and description.  

(4) The data entities from the previous step are passed to the “MapHandler”. The 

program returns an HTML document that displays extracted data entities on the 

Google Map by using the Google Map JavaScript API7. 

(5) Finally, the HTML document from the previous step is passed to the 

application’s output that can be visualized by a web browser. 

Figure 14(b) shows the result of the “SensorInfoOnMap” application with an input 

argument “TRB_u07_ch0”, where the sensor information and the location marker are 

displayed on the Google map. 

Figure 14. A composite application SensorInfoOnMap: (a) Data flow, (b) Execution 

example 

                                                

7 https://developers.google.com/maps/documentation/javascript/ 
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3.3.3 Web server 

A web server is a computer system that processes clients’ requests and returns responses 

to the corresponding clients. The cloud-based cyberinfrastructure platform deploys web 

servers to host the RESTful web services. Given the high volume and high velocity of 

SHM data, a web server that can process intensive input/output (I/O) requests is needed. 

The proposed cyberinfrastructure platform employs Node.js8, a server-side JavaScript 

runtime environment. Based on the non-blocking I/O feature, Node.js is suitable for 

intensive I/O processing (Lei et al. 2014, Chaniotis et al. 2015). 

While a single web server can serve multiple web services for all the clients, the 

web server would become a bottleneck of the cyberinfrastructure platform due to the 

limited capabilities of a single machine. To improve the scalability of the web server, 

the cyberinfrastructure platform deploys duplicated web servers that process requests in 

a distributed manner. Figure 15 depicts a demonstrative situation in which two separate 

sensor networks are transmitting sensor data to a cyberinfrastructure platform 

simultaneously and, at the same time, a local computer attempts to retrieve sensor data 

from the cyberinfrastructure. Three duplicated web servers offering the same web 

services are implemented on three cloud VMs. The web servers balance loads as 

follows: 

(1) The local computer sends a GET request with URI “/serverIP” to any of the web 

servers (e.g., “Web server 2” in this example) in order to find the least busy web 

server. 

                                                

8 https://nodejs.org/en/ 
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(2) The “Web server 2” communicates with the other web servers to check if the 

other servers are up and, if so, to count the number of current connections of 

each server.  

(3) The “Web server 2” sends a response enclosing the IP address of the web server 

having least connection (e.g., “Web server 3” in this example) to the local 

computer.  

(4) Given the IP address, the local computer starts to invoke the “Sensor data 

retrieval” service via the “Web server 3”.  

Figure 15. Duplicated web servers 

 

4. Implementation 

This section describes the implementation of the prototype cloud-based 

cyberinfrastructure platform for real bridge monitoring systems. For demonstration 

purposes, bridge monitoring applications (e.g., automated data store application, 

automated data retrieval and analysis application and user interfaces) built upon the 

cloud-based cyberinfrastructure platform are presented. 

The research team at the University of Michigan has implemented bridge 

monitoring systems on the Telegraph Road Bridge (TRB) and the Newburg Road 

Bridge (NRB). Both are steel girder bridges located along the I-275 corridor between 

Romulus, Michigan and Toledo, Ohio (see Figure 16). The TRB has been monitored 

with a wireless sensor network that consists of sixty sensors including accelerometers, 

strain gauges and thermistors since 2011 (O’Connor et al. 2012, O’Connor et al. 2017). 

The NRB has been monitored by a wireless sensor network that consists of twelve 

sensors including accelerometers, strain gauges and thermistors since late 2016. 
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Specifically, these bridge monitoring systems are instrumented with Narada wireless 

sensor nodes (Swartz et al. 2005) for the wireless data transmission from the sensors to 

the onsite computers, as well as for the time synchronization. Data transmitted from the 

Narada wireless sensor nodes is stored temporarily to the local file system of the onsite 

computers. The sensor networks of the bridges acquire data for a one-minute duration 

every two-hours. The sampling rate of the accelerometers is 200 Hz, while the sampling 

rate of strain gauges and thermistors is 100 Hz. Sensor information, as well as the 

geometric and engineering models of the bridges (which are created based on the 2-

dimensional drawings of the bridges), are also recorded and stored. In addition, the 

monitoring systems collect traffic video images from the traffic monitoring system of 

the Michigan Department of Transportation (MDOT)9. These diverse types of data are 

collected and managed using the cloud-based cyberinfrastructure platform.  

Figure 16. Bridges on the I-275 corridor installed with bridge monitoring systems: (a) 

Telegraph Road Bridge (TRB), (b) Newburg Road Bridge (NRB) 

 

A prototype cloud-based cyberinfrastructure platform is built upon eight Ubuntu 

Linux (16.04 LTS) VMs on the Microsoft Azure cloud platform. As summarized in 

Table 2, five VMs (No.1 – No.5) are used to build a multi-node Cassandra database 

(Version 3.4), while three VMs (No.6 – No.8) are used to construct three duplicated 

web servers using Node.js (Version 4.2.6). The web servers are connected to the 

database nodes using the “DataStax Node.js Driver for Apache Cassandra” (DataStax 

2017).  

                                                

9 http://mdotnetpublic.state.mi.us/drive/ 
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Table 2. Specification and role of virtual machines provisioned on the Microsoft Azure 

cloud platform 

 

4.1 Automated data store and retrieval 

Two automated data store applications are developed using the cyberinfrastructure’s 

web services to archive sensor data and video image data, respectively. Figure 17 shows 

the workflow of the first application that runs on onsite computers and transmits sensor 

data from an onsite computer to the cloud-based cyberinfrastructure platform. When 

new data is transmitted from the sensor network to the onsite computer, the application 

records the list of the new data files and labels them as “un-transmitted”. For an “un-

transmitted” file, the application parses the raw data file encoded in DAT file format 

(see Figure 18(a)) into a JSON format (see Figure 18(b)) that the “Sensor data store” 

service of the cyberinfrastructure can read. The application then invokes the “Sensor 

data store” service with the parsed sensor data. If the service returns a status code 200, 

the application changes the label of the data file to “transmitted”. Otherwise, the 

application retries invoking the “Sensor data store” service up to N times (i.e., a 

predefined maximum number of retries) to ensure the transmission is done properly. 

This parsing and storing process is repeated until there are no “un-transmitted” data files 

in the list. Since the application keeps track of data transmission status of data files, data 

losses due to an unstable network connection can be minimized.  

Figure 17. Workflow: application for data store automation  

Figure 18. Sensor data file: (a) Raw data file, (b) Parsed sensor data 

 

Figure 19 shows the workflow of the second application for collecting traffic 

video images from an external data source (i.e., MDOT’s traffic monitoring system) and 
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the manner by which images are archived along with the camera ID and timestamp. The 

application first accesses the data source to locate the dynamic Uniform Resource 

Locators (URLs) of video image files. Once the URLs are found, the application fetches 

the video image files and converts them to the BLOB format. The application then 

transmits the BLOB data to the cyberinfrastructure by invoking the “Traffic image 

store” service. The application service repeats this process every two seconds 

corresponding to the time interval between new images in the MDOT’s traffic 

monitoring system. 

Figure 19. Workflow: traffic video image collecting application 

 

Data stored in the cloud-based cyberinfrastructure platform can be easily 

retrieved using data retrieval services. For example, Figure 20(a) shows a request for the 

“Sensor data retrieval” service with query conditions including sensor ID 

(“TRB_u131_ch0”), event_time_begin (“2016-09-01T12:02:00.000z”) and 

event_time_end (“2016-09-12T12:02:10.000z”).  Similarly, Figure 20(b) shows a 

request for the “Traffic image retrieval” service with query conditions including 

camera_ID (“Telegraph2”), event_time_begin (“2016-08-18T18:01:00.000z”) and 

event_time_end (“2016-08-18T18:01:20.000z”). 

Figure 20. Data retrieval using web services: (a) Sensor data retrieved by invoking the 

sensor data retrieval service, (b) Traffic images retrieved by invoking the traffic image 

retrieval service 

 

4.2 Data integration and utilization 

The advantages of the cloud-based cyberinfrastructure platform is its ability to support 

easy access, integration and utilization of SHM data. This section presents a 
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demonstrative example application developed to extract patterns from heterogeneous 

data (e.g., structural sensing data and environmental data) to find the relationships 

between the modal frequencies derived from sensor data with temperature 

measurements. The cyberinfrastructure platform enables machine-to-machine 

communication so that the workflow can be fully automated with applications written 

using programming scripts, for example, Python. As shown in the conceptual workflow 

described in Figure 21, the application accesses the cyberinfrastructure platform via 

web services, retrieve acceleration data and temperature data, and performs analyses. 

The application service comprises of the following steps: 

(1) the application reads the input arguments “StartTime” and “EndTime” 

specifying the target time period which typically includes multiple data 

acquisition events.  

(2) the application service retrieves the accelerometer list for a data acquisition 

event by submitting request as a web service to the “Sensor list retrieval 

service” as shown in Figure 22(a).  

(3) the application service retrieves the acceleration data collected from the data 

acquisition event for each accelerometer in the list by submitting a request 

(as another web service) to the “Sensor data retrieval” service, as shown in 

Figure 22(b).  

(4) the application executes the subspace identification module service 

(Overschee 2012) to compute the modal frequency from the retrieved 

acceleration data.  

(5) the application service retrieves the thermistor list for the data acquisition 

event by submitting a request (as a web service) to the “Sensor list retrieval 

service” as shown in Figure 22(c).  
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(6) the application service retrieves temperature data collected from the data 

acquisition event by submitting a request to the “Sensor data retrieval” 

service, as shown in Figure 22(d). 

(7) Executing Gaussian Process Regression (GPR) service to find the general 

pattern on the variation between the fundamental modal frequency and 

temperature measurements.  

The application service repeats step 2 to step 6 by moving on to the next data 

acquisition event until reaching the EndTime of the targeted period. Once modal 

frequencies and temperature measurements that share the same timestamps are 

collected, the application service proceeds to step 7 to perform regression analysis. 

Figure 23(a) shows the history of the first modal frequency over the duration 

from June 2013 to August 2015. The modal frequencies vary with a seasonal trend and 

tend to increase during the winter and decrease during the summer. As shown in Figure 

23(b), the GPR analysis result shows a nearly bilinear relation between the modal 

frequency and temperature. This example application shows that the cyberinfrastructure 

platform can be used to automate repetitive tasks involving multiple SHM data sets. 

Figure 21. A workflow for relating structural behaviour with temperature data 

Figure 22. HTTP requests and corresponding CQL queries for sensor list and data 

retrieval: (a) HTTP request for accelerometer list retrieval, (b) HTTP request for 

acceleration data retrieval (c) HTTP request for thermistor list retrieval, (d) HTTP 

request for temperature data retrieval 

Figure 23. Patterns of modal frequency of the Telegraph Road Bridge: (a) History of 

first modal frequency (from August 2013 to August 2015) (b) Gaussian process 

regression showing the confidence interval of modal frequency according to 

temperature changes 
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4.3 Web and mobile interface 

To facilitate ubiquitous access to the bridge monitoring information, preliminary web 

and mobile user interfaces are developed based on the cloud-based cyberinfrastructure 

platform. A web interface is an interactive program that reads user inputs via a web 

browser (e.g., Google Chrome), invokes the requested web services and returns a web 

page displayed on a web browser. The preliminary web interface supports the retrieval 

of sensor list, sensor data, traffic video images and bridge models. The sensor 

information retrieval interface (Figure 24(a)) allows users to retrieve the sensor list with 

query parameters (e.g., “Sensor ID”, “Sensor type”, “Install before” or “Removed 

after”) by invoking the “Sensor list retrieval” service. The sensor data retrieval interface 

(Figure 24(b)) accepts query parameters (e.g., “Sensor ID, “Begin timestamp” and “End 

timestamp”) and returns corresponding sensor data by invoking the “Sensor data 

retrieval” service. Similarly, the traffic video image retrieval interface (Figure 24(c)) 

accepts query parameters (e.g., “Camera ID”, “Begin timestamp” and “End timestamp”) 

and returns corresponding traffic video images by invoking the “Traffic image retrieval” 

service. The bridge model retrieval interface (Figure 24(d)) allows users to download 

bridge models by invoking either the “Geometric model retrieval” or “Engineering 

model retrieval” service. Through this interface, users can specify the “Bridge name” 

and model type (e.g., “GeometricModel”, “FEModel (xml)” and “FEModel (xlsx)”). 

The bridge models downloaded can be regenerated by proper software tools, such as the 

OpenBrIM viewer10 for geometric models (Figure 25(a)) and CSI Bridge for 

engineering models (Figure 25(b)). 

                                                

10 https://openbrim.org/ 
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Figure 24. Prototype web-based user interface: (a) Sensor information retrieval, (b) 

Sensor data retrieval, (c) Traffic image retrieval, (d) Bridge model retrieval 

Figure 25. Telegraph road bridge model downloaded from the web-based user interface: 

(a) Geometric model visualized by OpenBrIM viewer, (b) Engineering model visualized 

by CSI Bridge 

 

A mobile user interface is also developed based on the cyberinfrastructure 

platform. The mobile user interface reads user inputs via the mobile devices, invokes 

the web services, and displays the retrieved information on the mobile devices. The 

preliminary mobile user interface is built upon iOS operating system and supports the 

retrieval of sensor list, sensor information and sensor data. For example, Figure 26(a) 

shows the sensor list view that reads user’s search keyword (e.g., “Accelerometer”) and 

retrieves sensor list by invoking the “Sensor list retrieval” service. Figure 26(b) shows 

the sensor map view that displays the retrieved sensor list on a map view. Figure 26(c) 

shows the sensor detail view that displays brief information about a sensor along with 

its sensor data by invoking the “Sensor data retrieval” service. Figure 26(d) shows the 

sensor information view that displays a sensor’s detailed information by invoking the 

“Sensor information retrieval” service. 

Figure 26. Prototype mobile interface: (a) Sensor list view, (b) Sensor map view, (c) 

Sensor detail view, (d) Sensor information view 

 

5. Summary and conclusion 

Cloud computing has become a popular computing paradigm that offers many benefits 

such as cost-effectiveness, scalability and accessibility for developing large scale 

software application. In this study, cloud computing technology is explored to develop a 
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cloud-based cyberinfrastructure platform for SHM systems. Specifically, the cloud-

based platform is demonstrated to have the ability to handle a wide variety of data 

including sensor data, sensor information, bridge geometry, engineering models and 

traffic video images. 

For the scalable data management on a distributed cloud computing 

environment, Apache Cassandra database is employed. The Cassandra database enables 

high availability, partitioning-tolerance and scalability, which are the most important 

features for the management of large scale SHM data sets. For data interoperability, a 

database schema is defined based on a BrIM framework which is intended for SHM 

applications. Specifically, the BrIM framework extends the OpenBrIM standards by 

adding new data entities for the representation of engineering models and sensor 

information. For service interoperability, RESTful web services are implemented to 

support store and retrieval of sensor data and bridge information. For the scalability of 

web services, the cloud-based platform employs duplicated web servers that handle 

requests in a distributed manner. 

The prototype cloud-based cyberinfrastructure platform has been implemented 

for the bridge monitoring systems along the I-275 corridor between Romulus, Michigan 

and Toledo, Ohio. Eight VMs are created on the Microsoft Azure cloud platform, where 

five VMs serve as the distributed database and three VMs serve as the web servers. 

Several demonstrative applications built upon the cloud-based platform are developed. 

For example, automated data store applications are developed to transmit sensor data 

and traffic video image to the cyberinfrastructure platform. Furthermore, a 

demonstrative application that calculates the modal frequency history is developed to 

show that the cloud-based platform is useful for complex queries, iterative jobs and 

batch operations. Finally, preliminary web and mobile user interfaces are developed to 



 
34 

facilitate ubiquitous access to the bridge monitoring data residing in the cloud-based 

cyberinfrastructure platform.  

In the current design and development of cloud-based cyberinfrastructure 

platform for SHM systems, this paper mainly focuses on the cloud-based data 

management with emphasis on scalability and interoperability. One of the important 

aspects that could be explored in the future studies is meaningful analyses of large scale 

heterogeneous data set. The authors’ current work attempts to develop data analysis 

applications that extract meaningful information from the large data sets collected from 

sensors to help bridge managers evaluate bridge conditions. In addition, cloud security 

is another important topic that was not discussed in this paper. For secure data 

management, the proper use of cryptography and authentication schemes is 

indispensable. Another concern regarding the cloud security is that bridge managers 

may not desire to store their sensitive data on public cloud platforms. To address such 

issues, the authors’ current work attempts to develop a hybrid cloud computing 

framework in which the sensitive data sets are stored in private data centers, while the 

public cloud service is used to guarantee high scalability and availability of a system.  
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Table 1. RESTful web services currently implemented on the cyberinfrastructure 

platform 

Service Method URI Parameter 

Sensor data store POST /sensordata - 

Sensor data retrieval GET /sensordata/{sensorID} event_time_begin, event_time_end 

Traffic image store POST /imagedata - 

Traffic image retrieval GET /imagedata/{cameraID} event_time_begin, event_time_end 

Sensor information store POST /sensor  

Sensor list retrieval GET /sensor sensor_type, install, remove 

Sensor information retrieval GET /sensor/{sensorID} install, remove 

Geometric model store POST /geometricmodel  

Geometric model retrieval GET /geometricmodel/{BridgeID}  

Engineering model store POST /femodel  

Engineering model retrieval GET /femodel/{BridgeID} file_format (xml or xlsx) 

 

Table 2. Specification and role of virtual machines provisioned on the Microsoft Azure 

cloud platform 

No. Spec Role 

1,2,3,4,5 Azure Standard_A2m_v2 (2 cores, 16 GB memory) Database node 

6,7,8 Azure Standard DS2 v2 (2 cores, 7 GB memory) Web server 
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Figure 1. A model of cloud computing for SHM 
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Data	management	and	application	services	(PaaS,	SaaS)	
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(a) Web-based cloud interface 

 

(b) Shell interface 

 

(c) List of virtual machines deployed on Azure cloud platform 

Figure 2. Virtual machine created on Microsoft Azure cloud platform 
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Figure 3. Conceptual framework of cloud-based cyberinfrastructure platform 
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Figure 4. A Cassandra cluster instance 

 

 

 

Figure 5. Ring topology of Cassandra database 
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(a) Entity: Shape 

 

(b) Entity: FELine 

 

(c) Entity: StrainGauge 

Figure 6. Data schema definition in BrIM for bridge monitoring applications: (a) Shape, 

(b) FELine, (c) StrainGauge entity types  

  

“O”	 represents	a	BrIM object.

A	“Shape”	object	can	have	0..*	
number	 of	child	 objects	having	
either	“Point”,	“Shape”	or	“Circle”	
type.

A	“Shape”	object	can	have	0..*	
number	 of	parameters	having	
name	“Material”.

“P”	 represents	a	BrIM parameter.

Parameters	defined	in	the	original	
BrIM schema.

Parameters	newly	defined	in	the	
extended	 BrIM schema	
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Figure 7. Data mapping between BrIM schema “FELine” and corresponding Cassandra 

column family. 

 

 

(a) Rows storing Shape object and its child Point objects 

 

(b) Rows storing heterogeneous FELine objects 

Figure 8. Database schema for BrIM objects 
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(a) Row storing sensor measurement data 

 

(b) Row storing traffic video image data 

Figure 9. Database schema for time-series data 

 

 

Figure 10. Select query for sensor data retrieval and query result in a tabular format 
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Figure 11. Web service example: sensor data store service 

 

  

Figure 12. Web service example: sensor data retrieval service 
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(a) Data flow 

 

(b) Execution example 

Figure 13. A composite application DataRetrievalByLocation 

Input	screen

Retrieved	data
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(a) Data flow 

 

(b) Execution example 

Figure 14. A composite application SensorInfoOnMap 

Input	screen

Sensor	information	visualized	on	Google	map
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Figure 15. Duplicated web servers 

 

  

(a) Telegraph Road Bridge (TRB) (b) Newburg Road Bridge (NRB) 

Figure 16. Bridges on the I-275 corridor installed with bridge monitoring systems  
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Figure 17. Workflow: application for data store automation  

 

  

(a) Raw data file  (b) Parsed sensor data 

Figure 18. Sensor data file 

 

  

Start

Is	there	a	new	data	file(s)?

n:	number	of	re-trying	web	service
N:	max	#	of	re-try	web	service
W:	waiting	time	between	loops

Store	data	file	list	to	a	local	storage	and	label	“un-transmitted”	

Parse	an	“un-transmitted”	data	file	and	set	n=0

Invoke	 the	sensor	data	store	service

Is	status	code	200?

Wait	for	W	
seconds

Mark	the	file	“transmitted”	(or	“failed”)

Is	there	un-transmitted	file?

Yes

No

n=n+1
No

Yes	(or	n=N)

Yes

No

Is	stop	requested?
No

Finish

Yes



 
55 

 

Figure 19. Workflow: traffic video image collecting application 

 

 

(a) Sensor data retrieved by invoking the sensor data retrieval service 

 

(b) Traffic images retrieved by invoking the traffic image retrieval service 

Figure 20. Data retrieval using web services 
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Figure 21. A workflow for relating structural behaviour with temperature data 
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(a) HTTP request for accelerometer list retrieval 

 

(b) HTTP request for acceleration data retrieval 

 

(c) HTTP request for thermistor list retrieval 

 

(d) HTTP request for temperature data retrieval 

Figure 22. HTTP requests and corresponding CQL queries for sensor list and data 

retrieval 

 

GET /sensor?sensorType=Accelerometer&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u07_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensor?sensorType=Thermistor&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u45_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->
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(a) History of first modal frequency (from August 2013 to August 2015) 

 

(b) Gaussian process regression showing the confidence interval of modal frequency 

according to temperature changes 

Figure 23. Patterns of modal frequency of the Telegraph Road Bridge 
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(a) Sensor information retrieval (b) Sensor data retrieval 

  

(c) Traffic image retrieval (d) Bridge model retrieval 

Figure 24. Prototype web-based user interface 

 

  

(a) Geometric model visualized by 

OpenBrIM viewer 

(b) Engineering model visualized by CSI 

Bridge 

Figure 25. Telegraph road bridge model downloaded from the web-based user interface 
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(a) Sensor list view (b) Sensor map 

view 

(c) Sensor detail 

view 

(d) Sensor 

information view 

Figure 26. Prototype mobile interface 

 

 


