

1

A Scalable Cloud-based Cyberinfrastructure Platform for Bridge

Monitoring

Seongwoon Jeonga*, Rui Houb, Jerome P. Lynchb, Hoon Sohnc, Kincho H.

Lawa
aDepartment of Civil and Environmental Engineering, Stanford University, Stanford,

CA, USA; bDepartment of Civil and Environmental Engineering, University of

Michigan, Ann Arbor, MI, USA; cDepartment of Civil and Environmental Engineering,

Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

*email: swjeong3@stanford.edu

2

A Scalable Cloud-based Cyberinfrastructure Platform for Bridge

Monitoring

Cloud computing is a computing paradigm wherein computing resources, such as

servers, storage and applications, can be provisioned and accessed in real time via

advanced communication networks. In the era of Internet of Things (IoT) and big

data, cloud computing has been widely developed in many industrial applications

involving large volume of data. Long term deployment of a structural health

monitoring (SHM) system would incur significant amount of data of different

types. This paper presents a cloud-based cyberinfrastructure platform designed

for bridge monitoring applications. A cloud-based platform comprises of virtual

machines, distributed database and web servers. Distributed database built on a

peer-to-peer architecture enables scalable and fault-tolerant data management on

a cloud computing environment. Platform-neutral web services are designed in

compliant with the REpresentational State Transfer (REST) design, and enable

easy access to the cloud resources and SHM data via a standard web protocol.

For data interoperability, a bridge information model for bridge monitoring

applications is adopted. The scalable cloud-based platform is demonstrated for

the monitoring of bridges along the I-275 corridor in the State of Michigan. The

results show that the cloud-based cyberinfrastructure platform facilitates storage,

retrieval and utilization of sensor data and bridge information for various bridge

monitoring applications.

Keywords: cloud computing, bridge monitoring, bridge information modelling,

interoperability, scalability, web service

1. Introduction

Advances in sensor and communication network technologies have led to increasing

deployment of sensors for structural health monitoring (SHM) of civil infrastructures

(Lynch and Loh 2006, Zhou and Yi 2013). Data collected from SHM systems can be

useful in many different contexts, from short-term anomaly detection to long-term

management of infrastructures (Lim et al. 2014, Cross et al. 2013, Dervilis et al. 2015).

However, the lack of easy access, sharing and utilization of data hinders the potential

3

use of collected data. The volume and the variety of sensor data make data management

an important task for long term structural health monitoring. A data management

framework that can support long-term data archiving and effective data access is one

indispensable component of data-intensive SHM systems (Law et al. 2014). This paper

describes the design and implementation of a cloud-based cyberinfrastructure platform

to cope with the big data issues in SHM systems.

Few attentions have been paid on data management in structural health

monitoring research. Early SHM systems typically collect and store measurement data

in files on local computers (Brownjohn et al. 1995, Farrar et al. 2000, Wong et al.

2000). File-based systems does not directly support queries, which often makes data

access a tedious task. The use of relational database management systems (RDBMSs) as

a centralized data storage for SHM systems has been reported (Li et al. 2006, Fraser et

al. 2009, Koo et al. 2011, Smarsly et al. 2012). RDBMSs support structured query

language (SQL) so that data residing in a database can be retrieved using query

statements. However, research studies have suggested that current RDBMSs, which

were architected decades ago when the characteristics of hardware and data processing

requirements were very different, are not effective in meeting the data needs of today’s

applications which often involve text, time-series, image and video data (Stonebraker et

al. 2007, Agrawal et al. 2011). Furthermore, a cloud computing platform provides a

scalable computing infrastructure in the form of multiple commodity machines. To

realize scalable data management, a database management system (DBMS) that can

effectively “glue” the distributed commodity machines is needed. To overcome the

performance and scalability issues of RDBMSs, NoSQL (Not-only-SQL) databases

have been proposed. NoSQL databases have become desirable alternatives over the

RDBMS for cloud-based data management (Grolinger et al. 2013). Structural health

4

monitoring is a data intensive application that shares the same burdens (Jeong et al.

2016a). This study extends the authors’ previous work on NoSQL-based SHM

framework (Jeong et al. 2016a) to enable scalable and interoperable SHM data

management on a cloud computing environment. Specifically, a NoSQL database that

enables dynamic scaling of the system and distributed data management is employed.

Cloud computing has been widely employed in many large scale industrial

applications particularly in the era of Internet of Things (IoT) and big data. Advances in

cloud computing provide highly scalable and accessible computing environment, as

well as cost-effectiveness (Zhang et al. 2010, Zaslavsky et al. 2013, Gillis 2015,

Deckler 2016). Many state-of-the-art data management platforms take advantage of

cloud computing to allow communication and data sharing among physical systems,

sensors, software applications and users. While there are several IoT platforms offered

by major cloud vendors (Strukhoff 2017), most of commercial platforms tend not to

design for specific applications. Generally, there is no one-size-fit-all platform: a data

management platform needs to be tailored to meet domain-specific application

requirements. The development of cloud-based frameworks has been reported in many

science and engineering domains, including smart city (Lea and Blackstock 2014),

smart home (Ye and Huang 2011), healthcare (Lin et al. 2015), robotics (Arumugam et

al. 2010), manufacturing (Xu 2012) and construction (Das et al. 2015). A number of

efforts have also been reported on utilizing cloud computing in infrastructure

monitoring. Liao et al. (2014) described a cloud-based wireless sensor network

framework to process sensor data collected from infrastructure and environmental

monitoring. Zhang et al. (2016) described a cyberinfrastructure platform, called

SenStore, that supports cloud-based data interrogation for infrastructure health

management. Alampalli et al. (2016) utilized cloud platform to process data collected

5

for SHM of railroad bridges. While these efforts have focused on hosting SHM data and

applications on a cloud platform, they do not address the performance and scalability

issues for data management, data utilization, data interoperability and information

sharing. Following our preliminary studies on the use of cloud computing for SHM

systems (Jeong et al. 2016b, Jeong et al. 2016c), this paper describes in details a highly

scalable and interoperable cloud-based data management system for bridge monitoring.

To take advantage of cloud computing, the software framework should be

designed with consideration of the useful features provided by cloud services (e.g.,

dynamic provisioning, distributed computing and on-demand commodity hardware), as

well as domain-specific application requirements (e.g., information model, application,

interface, etc.). In contrast to traditional proprietary servers, the real value of cloud

computing relies upon interoperability among systems and engineering services (Law et

al. 2016). For service interoperability, engineering services on cloud platforms need to

be exposed via standard interfaces. There are two main web service paradigms: namely,

Service-Oriented Architecture (SOA) and Resource-Oriented Architecture (ROA). SOA

is built upon standard web service protocols, such as Simple Object Access Protocol

(SOAP), Web Service Description Language (WSDL) and Business Process Execution

Language (BPEL), etc.. While SOA’s reliability and message-level security benefit

enterprise-level applications, the complexity of the protocols makes them less attractive

for basic, ad hoc integration of services (Pautasso et al. 2008). ROA, on the other hand,

is based on the de facto Representational State Transfer (REST) (Fielding 2000). REST

has become a preferable approach because of its simple and lightweight architecture,

easy accessibility and scalability (Zhao and Doshi 2009, Mulligan and Gracanin 2009,

Belqasmi et al. 2012). In this study, RESTful web services (i.e., web services based on

REST) are developed to provide standard interfaces.

6

Data interoperability requires information models that describe relevant bridge

information in a platform-neutral language. One of the most notable efforts for

establishing a bridge information modeling (BrIM) schema is the OpenBrIM standards

(Chen and Shirolé 2013, Bartholomew et al. 2015) supported by the US Federal

Highway Administration (FHWA). While the current OpenBrIM standards focus on the

geometric representation of bridge structures, the authors of this paper have proposed a

BrIM schema for bridge monitoring applications by extending the OpenBrIM standards

(Jeong et al. 2017). In this work, the cloud-based cyberinfrastructure platform adopts

the extended BrIM schema for data interoperability.

In this paper, a scalable cloud-based cyberinfrastructure platform for managing,

sharing and utilizing sensor data and bridge information is presented. The cloud-based

platform comprises of the virtual machines (VMs), distributed database, web servers,

applications and user interfaces. For scalable, flexible, fault-tolerant and high-

performing data management, an open source distributed NoSQL database is employed.

NoSQL database ensures data consistency, supports partitioning and replication, and

allows queries over decentralized data storages across multiple VMs. For data

interoperability, database schema is designed based on the BrIM schema for bridge

monitoring applications. For service interoperability, RESTful web services are

implemented on web servers. To demonstrate the utilization of the cloud-based

cyberinfrastructure platform, the prototype platform is implemented and validated for

the monitoring of bridges along the I-275 corridor in the State of Michigan.

2. Cloud computing environment

Cloud computing, as defined by the National Institute of Standards and Technology

(NIST), is a “model for enabling convenient, on-demand network access to a shared

7

pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction” (Mell and Grance 2011). Cloud computing can

reduce the cost and lessen the burdens on the deployment, operation, maintenance and

management of data centers. Using cloud computing, a SHM system can be easily and

quickly scaled up and down on demand with optimal usages of computing and storage

resources.

Cloud computing services are typically categorized into three service models

(Mell and Grance 2011): (1) Software as a Service (SaaS) that provides applications and

web services to end users, (2) Platform as a Service (PaaS) that provides runtime and

database supports, and (3) Infrastructure as a Service (IaaS) that provides the basic

computing utilities including network, processor and storage. In this work, as depicted

in Figure 1, the cloud-based cyberinfrastructure platform serves as PaaS and SaaS that

employ computing infrastructures and platforms (i.e., IaaS and PaaS) to provide data

management and application services.

Figure 1. A model of cloud computing for SHM

IaaS utilities are typically offered in the form of VMs. Here, a VM is a

virtualized computing system that abstracts the underlying physical computer

architecture and offers the same functionalities of a physical computer (Smith and Nair

2005). A VM can be configured and created in minutes and be managed through cloud

interfaces offered by a cloud vendor. For example, Figure 2(a) shows the web interface

of the Microsoft Azure cloud platform1, namely the Azure portal, that shows of a VM’s

1 https://azure.microsoft.com/

8

information such as name, status, operating system (OS) and size. Once created, a VM

can be accessed via standard network protocols, such as Secure Shell (SSH) and Secure

Copy Protocol (SCP). Figure 2(b) shows the shell interface of a VM on Azure cloud

platform accessed via the SSH protocol. Similar to using a remote physical server, a

VM can be used to deploy computing platforms and applications. The proposed

cyberinfrastructure platform utilized VMs to deploy computing components, such as

distributed database, web servers and applications.

The IaaS utilities can be scaled both vertically (i.e., increasing capability of a

VM) and horizontally (i.e., adding new VMs) on demand. While vertical scalability is

limited to the maximum capability of a single VM, the horizontal scalability is nearly

unlimited since cloud vendors allow adding as many VMs as needed. Figure 2(c), for

example, shows that multiple VMs are deployed as needed on the Azure cloud platform.

To take advantage of the scalability of an IaaS utility and thus enable scalable SHM

data management, the cloud-based cyberinfrastructure platform should be designed to

run on a distributed computing environment such that new VMs can be dynamically

added on demand. For example, as will be discussed later, the proposed

cyberinfrastructure platform adopts a NoSQL database which can be effectively

executed on multiple VMs to offer a large scale distributed data store.

Figure 2. Virtual machine created on Microsoft Azure cloud platform: (a) Web-based

cloud interface, (b) Shell interface, (c) List of virtual machines deployed on Azure cloud

platform

3. A cloud-based cyberinfrastructure platform for bridge monitoring

Today’s bridge monitoring and management tasks involve various types of data

collected from different sources including, for examples, a SHM system, engineering

9

analysis and design, traffic data, maintenance and inspection, etc.. With effective

integration and utilization of data, actionable insights for bridge management and

maintenance can be derived (Cross et al. 2013, Zhang et al. 2016, Hou et al. 2017).

Careful design of a SHM data management platform is essential to facilitate the

utilization of SHM data.

In this study, a bridge monitoring scenario that involves diverse types of data,

including information about sensors, sensor measurement data, video image data, bridge

geometries and engineering models, is considered. Sensor networks instrumented on a

bridge collect structural data (e.g., acceleration and strain) and environmental data (e.g.,

temperature, wind speed and wind direction). Video cameras mounted near the bridge

collect video images of traffic passing through the bridge. For the utilization of

collected sensor data, sensor information (e.g., sensor ID, sensor type, sensor location,

etc.) is also managed. In addition, bridge geometric models and engineering models are

involved to perform structural analysis and to understand the behavior of the bridge

structure.

A cloud-based cyberinfrastructure platform is designed to manage these diverse

types of data and to enable data retrieval by a variety of client systems (e.g., data

analysis modules, engineering analysis tools and end-user interfaces). The platform is

designed with an emphasis on (1) a scalable database design to handle voluminous and

heterogeneous SHM data, (2) information model to capture SHM-related data and to

facilitate data interoperability, and (3) interoperable web services to enable easy access

to SHM data and to facilitate SHM application developments. Figure 3 shows the

conceptual framework of the cloud-based cyberinfrastructure platform which includes

the following major components:

10

• A distributed NoSQL database is deployed to manage sensor data and bridge

information over multiple cloud VMs (i.e., VMs deployed on cloud platforms).

Specifically, a highly scalable NoSQL database, namely Apache Cassandra

database2, is employed to guarantee partitioning tolerance and database

availability.

• A BrIM schema (Jeong et al. 2017) is employed to support data interoperability

among applications. The BrIM schema includes data entities for the description

of bridge geometric models, engineering models and sensor information.

• Web servers are employed to host RESTful web services that expose resources

to clients via Hypertext Transfer Protocol (HTTP). Web services for storing and

retrieving bridge monitoring data are implemented.

Figure 3. Conceptual framework of cloud-based cyberinfrastructure platform

3.1 A scalable distributed database

There are a variety of readily available NoSQL database systems, each with their own

features. Selection of an appropriate NoSQL database for a specific purpose is critical

for efficient data management. The cloud-based cyberinfrastructure platform aims for

high scalability to handle voluminous SHM data on a distributed cloud computing

environment. Given the requirement, Apache Cassandra database, which is one of the

most widely used NoSQL databases, is selected (Jeong et al. 2016a). The Cassandra

database is built upon the peer-to-peer (P2P) architecture which is a preferable approach

for a highly available and scalable distributed database (Stonebraker et al. 2007). Figure

2 http://cassandra.apache.org/

11

4, as an example, shows the status table of a Cassandra cluster consisting of five nodes

(i.e., database instances). The status table shows the current states of the nodes and their

topology information such as the data center ID (e.g., DC1) and the rack IDs (e.g.,

RAC1, RAC2, etc.). The Cassandra database is particularly suitable for large scale data

management because the number of nodes can be easily modified without causing

operational downtime and the database performance is linearly scaled as new nodes are

added to an existing Cassandra cluster (Hewitt 2010). Another advantage of using the

Cassandra database for SHM applications is its query performance for time-series data

(Le et al. 2014). The variety of data types (e.g., number, array, dictionary, binary data,

etc.) and flexible data schema supported by Cassandra database can also be an

advantage for SHM data management which involves sensor data and video image data.

Figure 4. A Cassandra cluster instance

To maintain the consistency of the database and to process requests in a

decentralized manner, nodes in a Cassandra cluster communicate among one another

according to a “ring” topology as shown in Figure 5. Data is replicated and distributed

over multiple nodes to ensure high availability and fault-tolerance, as well as to

maintain efficient reading and writing performances. Figure 5, for instance, illustrates

how SHM data is stored in a Cassandra cluster. In this example, the incoming data R

has two rows r1 and r2 which could be sensor measurement data collected by different

sensors. The replication factor (i.e., the number of replicas in a cluster) is two. Any

node (say, node N5 in the example) can accept the write request. The incoming sensor

data is partitioned into two pieces and then copied twice over the nodes. Since the

sensor data is replicated over the cluster, writing and reading the data can still be

12

performed even when a node is down, as long as other nodes remain available for

processing the requests.

Figure 5. Ring topology of Cassandra database

3.2 A data schema definition of bridge information model

3.2.1. Bridge information model

A consistent and unified information model is needed to manage the heterogeneous

information involved in bridge monitoring and to enable data interoperability among the

applications. The proposed platform adopts a BrIM framework for bridge monitoring

application (Jeong et al. 2017). This BrIM framework extends the OpenBrIM standards

(Chen and Shirolé 2013, Bartholomew et al. 2015) by introducing additional data entity

definitions for representing sensor information and finite element (FE) models.

Specifically, the BrIM framework drew upon the data entities of SensorML (an open

standard for sensor description (Open Geospatial Consortium 2014)) and CSI Bridge (a

structural engineering software tool3).

The base schema (i.e., the data schema of OpenBrIM standards) represents a

bridge using hierarchical objects and their parameters (Bartholomew et al. 2015). Each

object describes a physical or conceptual entity (e.g., beam, column, group and project)

while each parameter describes an attribute (e.g., width, height and length) of an object

(or refers to another object). To encode bridge information in an object-oriented

fashion, OpenBrIM standards use the ParamML, an Extensible Markup Language

(XML)-based syntax (ParamML 2017). Figure 6(a), for example, shows the data

3 https://www.csiamerica.com/products/csibridge

13

schema of a “Shape” object defined in the base schema. The data schema is displayed

using an XML schema definition (XSD) diagram, which can be interpreted as follows:

• Each box refers to an XML component, such as element, attribute and complex

types.

• The abbreviated letters in the inner shadowed boxes refer to the XML

component types. For example, “CT”, “A” and “E” refer to “xs:complexType”,

“xs:attribute” and “xs:element”, respectively (W3C 2014).

• The attribute “T” represents the type of an object.

• The attribute “N” represents the name of a parameter.

• The xs:element “O” and “P” represent BrIM object and parameter, respectively.

• The string on the left-side of the “:” represents the name of an XML component,

while the string on the right-side of the colon represents the data type or an

extension base. For example, “Shape: Object” means that the XML component

has name “Shape” and its extension base is “Object”.

• The numbers on the left side of an XML component represents the possible

number of the components. For example “0..*” means equal or greater than zero.

As an example, the XSD diagram in Figure 6(a) defines that (1) a “Shape” object is

extended from the “Object” object; (2) a “Shape” object can have any number of child

objects each of which has either “Point”, “Shape” or “Circle” type; and (3) a “Shape”

object can have any number of parameters having name “Material”.

The base schema is extended with additional data entities for the representation

of FE models and sensors. Figure 6(b) shows the extended data schema of “FELine”

object as a representative example of FE model objects. The original definition of

“FELine” includes parameters “Node1”, “Node2” and “Section” to describe two ends of

14

the line element and its section information. In addition, new data entities FELineMesh,

FELineRelease and FELineSection are defined to describe mesh information, member-

end release information and standard section shapes, respectively. Figure 6(c), as

another example, shows the newly defined data schema “StrainGauge” as a

representative example of sensor object. The data schema of “StrainGauge” object

includes data entities for describing the “Input” (data that will be processed by the

sensor), “Output” (processed data), “Parameters” (values needed for processing data)

and “DataLink” (link to the sensor data repository).

Figure 6. Data schema definition in BrIM for bridge monitoring applications: (a) Shape,

(b) FELine, (c) StrainGauge entity types

3.2.2 Database schema definition

An extensible database schema is needed to effectively manage the complex SHM data

and bridge information. RDBMSs are not designed to manage hierarchical objects

because of their inflexible data structure, Cassandra database, on the other hand, offers

more flexible data structure that can elegantly handle complex data (Hewitt 2010). This

section describes Cassandra database schema definitions for managing complex data

involved in SHM systems.

The Cassandra database is built upon a column-oriented data model consisting

of “keyspace,” “column family,” “row” and “column,” which are analogous to

“database,” “table,” “tuple” and “attribute” of relational database, respectively. To

manage bridge information, the database schema follows closely the BrIM schema for

bridge monitoring applications. Figure 7 shows data mapping between the BrIM schema

of the “FELine” object and the corresponding column family schema “FELine”. The

database schema contains the data entities of “FELine”, as well as “child” and “parent”

15

entities to record the hierarchical relation between the objects. As such, bridge

information stored in the column-oriented database can be mapped to hierarchical BrIM

objects.

Figure 7. Data mapping between BrIM schema “FELine” and corresponding Cassandra

column family.

Figure 8 shows examples of the rows of the column-oriented database for

storing BrIM objects where a single object is stored in each row. Each row has a

mandatory partition key (e.g., “shp001” of the first row in Figure 8(a)). A row has

columns for storing attributes and parameters, as well as the list of child and parent

objects. Since the Cassandra database supports collection types, any number of child

objects can be recorded in the child column. In Figure 8(a), for example, the child

column of the shape object contains the ID and types of child objects (i.e., [“pt001”:

“Point”, “pt002”: “Point”, …]). One issue in managing hierarchical object data is that

each object may have different sets of attributes. This data irregularity can be efficiently

handled by the Cassandra database with its flexible data structure. Specifically, the

Cassandra database allows rows in the same column family to contain different sets of

columns. For instance, Figure 8(b) shows that the two rows in the column family

“FELine” have different column sets: the first row has the “FELineRelease” column,

while the second one does not. In fact, BrIM objects with the same type often have

different sets of attributes and child objects. As such, the flexible data structure of

Cassandra database is suitable to handle the heterogeneous BrIM object entities without

enforcing every row to have the same set of columns.

Figure 8. Database schema for BrIM objects: (a) Rows storing Shape object and its

child Point objects, (b) Rows storing heterogeneous FELine objects

16

In addition to BrIM objects, SHM systems collect a large volume of time-series

sensor data and traffic video images. Since SHM applications often utilize continuous

time-series data collected within a certain period, efficient range query performance for

time-series data is needed. Cassandra database has better range query performance

comparing to RDBMSs because of the clustering and dynamic column features (Le et

al. 2014). Cassandra data schema for SHM time-series sensor data is defined as follows.

As shown in Figure 9(a), data collected from a sensor is stored in a single row in a

sorted order by assigning the timestamp (e.g., “2014-08-02T00:00:08”) of data as a

clustering key. Since sensor data collected from SHM systems usually has very high

sampling rate with same interval period between data points, it is redundant to record

timestamp for every data point. Instead, the proposed data schema encodes sensor data

as a numeric array type that stores data collected during a specified time period (e.g., 1

second) in a sorted order. The timestamp records can be regenerated, if needed, based

on the sampling rate. When new data is collected, the incoming data is stored to the

same row by dynamically adding new columns at the end of the row. This data schema

improves the range query performance by enforcing the consecutive sensor data to be

stored in a contiguous physical disk location in the same node (Le et al. 2014). To

prevent a single row from becoming too lengthy, part of the timestamp (e.g., year) is

added to the row key so that the data from a sensor can be partitioned to several rows

based on a specific time period (e.g., year) of data acquisition.

Similarly, Figure 9(b) shows that sequential image files collected from a traffic

video camera are stored in a row by assigning timestamp (e.g., “2016-08-23T10:02:08”)

as a clustering key. In addition, part of the timestamp (e.g., year and month) is added to

the row key to partition image data to several rows based on the year and month of its

acquisition. Each image file is encoded in a binary large object (BLOB) data (e.g.,

17

“/9j/4AAQSkZj … H//Z”) and stored in a single column. The BLOB data can be

converted back to the original image file using imaging libraries, such as Python

Imaging Library4.

Figure 9. Database schema for time-series data: (a) Row storing sensor measurement

data, (b) Row storing traffic video image data

Data stored in the Cassandra database can be retrieved using a SQL-like query

language, namely Cassandra Query Language (CQL). For example, Figure 10 shows a

SELECT query statement that specifies sensor ID (“TRB_u07_ch0”), year (“2014”) and

time range (from “2014-08-02T00:00:00” to “2014-08-02T01:00:00”) to retrieve

acceleration data. The query result is returned in a tabular structure. Since Cassandra

database offers application programming interfaces (APIs) for various programming

languages, platforms and applications can remotely access the Cassandra database and

query the data using CQL.

Figure 10. Select query for sensor data retrieval and query result in a tabular format

3.3 Web servers

The resources residing in the cloud-based cyberinfrastructure platform needs to be

exposed via standardized interfaces to facilitate sharing, integration and potential

utilization of the data from various applications and devices. To this end, the design and

implementation of web services for the cyberinfrastructure platform are presented.

4 http://www.pythonware.com/products/pil/

18

3.3.1 Web services

Web services, as defined by W3C, is a “software system designed to support

interoperable machine-to-machine interaction over a network” (Haas and Brown 2004).

Web services enable sharing of data and integration of applications over the network.

Since the cyberinfrastructure platform needs to support utilization of data from various

devices (e.g., cloud, local computer, micro computer and mobile devices) and platforms

(e.g., different operating systems), it is important to employ a widely-adopted web

service protocol. Furthermore, the cyberinfrastructure platform needs to support

conditional queries involved in SHM applications (e.g., range query for time-series

data). To meet these requirements, the cyberinfrastructure platform employs RESTful

web services which have fast performance and high scalability (Mulligan and Gracanin

2009). It should be noted that there are other lightweight communication protocols, such

as MQTT (MQ Telemetry Transport) protocol5. While such protocols have advantages

on real-time communication via publish/subscribe messaging, our design stresses on the

query capabilities that efficiently handle typical data utilization patterns commonly seen

in SHM applications (e.g., range query for time-series data). RESTful web services are

described using five constraints (Guinard et al. 2010):

• Resource identification. Resources are identified by uniform resource identifiers

(URI).

• Uniform interface. Resources can be accessed via the HTTP.

5 http://mqtt.org/

19

• Self-descriptive messages. Resources are represented using standardized

formats, such as Hypertext Markup Language (HTML), XML and JavaScript

Object Notation (JSON).

• Hypermedia as the engine of application state. Resources contain links by which

clients can interact with web services.

• Stateless interactions. Requests contain all the required information for web

services to process the requests.

Table 1 summarizes the web services currently implemented for the cloud-based

cyberinfrastructure platform to manage sensor data and bridge information. Here, the

HTTP method GET is used to retrieve data from the specified URIs, while the HTTP

method POST is used to submit data to the specified URIs (Fielding et al. 1999). The

following briefly describes two examples to illustrate the basic process for

implementation of RESTful web services.

Table 1. RESTful web services currently implemented on the cyberinfrastructure

platform

Figure 11, for example, shows the “Sensor data store” service which accepts

POST requests with URI “/sensordata” and processes a request in four steps:

(1) The client sends a POST request to the web server with URI (/sensordata),

protocol (HTTP/1.1), host (<ws_address>.cloudapp.azure.com), content type

(application/json) and JSON-encoded content including sensor_id, event_time

and data.

(2) The web server sends an INSERT query to the database by parsing the request.

(3) The database informs the web server that the INSERT query has been processed.

20

(4) The web server returns a response to the client with a status code 200, which

means “OK” in the HTTP (Fielding et al. 1999). (Other status codes are returned

if an error is encountered in the retrieval process.)

As another example, Figure 12 describes the “Sensor data retrieval” service

which accepts GET requests with URI “/sensordata/{sensorID}”. Again, the service

processes a request in four basic steps:

(1) The client sends a GET request to the web server with URI

“/sensordata/TRB_u131_ch0”, query parameters (e.g., “event_time_begin” and

“event_time_end”), protocol (HTTP/1.1) and host

(<ws_address>.cloudapp.azure.com).

(2) The web server sends a SELECT query corresponding to the query parameters

to the database.

(3) The database returns query result to the web server.

(4) The web server returns a response enclosing JSON-encoded query result and the

status code 200 to the client.

Figure 11. Web service example: sensor data store service

Figure 12. Web service example: sensor data retrieval service

3.3.2 Web service composition

This section describes how web services offered by the cyberinfrastructure platform can

be used for developing and integrating SHM applications. Web service composition

refers to the process of combining different web services to provide a new service that

carries out composite functions (Sheng et al. 2014). Standardized web services can be

21

efficiently composed. Different methods have been suggested for composition of

RESTful web services (Pautasso 2008, Rosenberg et al. 2008, Zhao and Doshi 2009,

Pautasso 2009). For visual demonstration purpose, this study adopts Pautasso (2009)’s

approach that uses JOpera6, a visual composition language. JOpera describes control

flow and data flow between programs using a graphical model (Pautasso and Alonso

2005). Each node of the graph represents either a program, an input of a program, or an

output of a program, while each edge of the graph represents a control flow or data flow

between nodes. Each program performs a function, such as web service invocation,

script execution and HTML document creation. The following briefly describes two

examples to illustrate the composition of RESTful web services implemented on the

cyberinfrastructure platform.

Figure 13(a) shows the JOpera data flow of the first demonstrative application

named “DataRetrievalByLocation”. This application composes two web services

“Sensor list retrieval” and “Sensor data retrieval” in order to retrieve sensor data

measured at a specified location by a specified type of sensor. Here, the hollow arrows

describe the input and the output flow of each program, while the solid arrows describe

the data flow and control flow between programs.

As described in Figure 13(a), the application consists of three programs, namely

“SensorListRetrieval”, “SearchByLocation” and “SensorDataRetrieval”, and processes

a request in five steps:

(1) The application accepts input arguments including target time period

(“start_time”, “end_time”), sensor type (“sensor_type”) and local coordinate

(“loc_X” and “loc_Y”) from a client.

6 http://www.jopera.org/

22

(2) The “start_time”, “end_time” and “sensor_type” are passed to the program

“SensorListRetrieval” as input parameters. The program invokes the “Sensor list

retrieval” service with the input parameters, and then returns an output

parameter “SYS.page” enclosing the retrieved sensor list.

(3) The “loc_X” and “loc_Y” and the “SYS.page” from the previous step are passed

to the program “SearchByLocation” as input parameters. The program searches

a sensor corresponding to the “loc_X” and “loc_Y” from the sensor list, and

then returns “sensor_id” of the searched sensor.

(4) The “start_time”, “end_time” and the “sensor_id” from the previous step are

passed to the program “SensorDataRetrieval” as input parameters. The program

invokes the “Sensor data retrieval” service with the input parameters, and then

returns an output parameter “SYS.page” enclosing the retrieved sensor data.

(5) Finally, the “SYS.page” from the previous step is passed to the application’s

output “sensor_data” which is returned to the client.

Figure 13(b) shows the retrieved sensor data when the application is executed with the

input arguments “2014-08-01T00:00:00”, “2014-08-10T00:00:00”, “Accelerometer”,

“102” and “-50”, which correspond to “start_time”, “end_time”, “sensor_type”,

“loc_X” and “loc_Y”, respectively.

Figure 13. A composite application DataRetrievalByLocation: (a) Data flow, (b)

Execution example

Figure 14(a) shows the data flow of the second application named

“SensorInfoOnMap” that composes an internal web service “Sensor information

retrieval” and an external service “Google Map API”. Given a sensor’s ID, the

application shows sensor information at the location of the sensor on the map. As shown

23

in Figure 14(a), the application consists of three programs, including

“SensorInfoRetrieval”, “SensorInfoParser” and “MapHandler”, and processes a request

in five steps:

(1) The application accepts an input argument “sensor_id” from a client.

(2) The “sensor_id” is passed to the “SensorInfoRetrieval” as an input parameter.

The program invokes the “Sensor information retrieval” service with the input

parameter, and then returns an output parameter “SYS.page” enclosing the

sensor information.

(3) The output parameter of the previous step (i.e., “SYS.page”) is passed to the

“SensorInfoParser” as an input parameter. The program parses the sensor

information and returns extracted data entities including sensor’s ID, coordinate,

type, position and description.

(4) The data entities from the previous step are passed to the “MapHandler”. The

program returns an HTML document that displays extracted data entities on the

Google Map by using the Google Map JavaScript API7.

(5) Finally, the HTML document from the previous step is passed to the

application’s output that can be visualized by a web browser.

Figure 14(b) shows the result of the “SensorInfoOnMap” application with an input

argument “TRB_u07_ch0”, where the sensor information and the location marker are

displayed on the Google map.

Figure 14. A composite application SensorInfoOnMap: (a) Data flow, (b) Execution

example

7 https://developers.google.com/maps/documentation/javascript/

24

3.3.3 Web server

A web server is a computer system that processes clients’ requests and returns responses

to the corresponding clients. The cloud-based cyberinfrastructure platform deploys web

servers to host the RESTful web services. Given the high volume and high velocity of

SHM data, a web server that can process intensive input/output (I/O) requests is needed.

The proposed cyberinfrastructure platform employs Node.js8, a server-side JavaScript

runtime environment. Based on the non-blocking I/O feature, Node.js is suitable for

intensive I/O processing (Lei et al. 2014, Chaniotis et al. 2015).

While a single web server can serve multiple web services for all the clients, the

web server would become a bottleneck of the cyberinfrastructure platform due to the

limited capabilities of a single machine. To improve the scalability of the web server,

the cyberinfrastructure platform deploys duplicated web servers that process requests in

a distributed manner. Figure 15 depicts a demonstrative situation in which two separate

sensor networks are transmitting sensor data to a cyberinfrastructure platform

simultaneously and, at the same time, a local computer attempts to retrieve sensor data

from the cyberinfrastructure. Three duplicated web servers offering the same web

services are implemented on three cloud VMs. The web servers balance loads as

follows:

(1) The local computer sends a GET request with URI “/serverIP” to any of the web

servers (e.g., “Web server 2” in this example) in order to find the least busy web

server.

8 https://nodejs.org/en/

25

(2) The “Web server 2” communicates with the other web servers to check if the

other servers are up and, if so, to count the number of current connections of

each server.

(3) The “Web server 2” sends a response enclosing the IP address of the web server

having least connection (e.g., “Web server 3” in this example) to the local

computer.

(4) Given the IP address, the local computer starts to invoke the “Sensor data

retrieval” service via the “Web server 3”.

Figure 15. Duplicated web servers

4. Implementation

This section describes the implementation of the prototype cloud-based

cyberinfrastructure platform for real bridge monitoring systems. For demonstration

purposes, bridge monitoring applications (e.g., automated data store application,

automated data retrieval and analysis application and user interfaces) built upon the

cloud-based cyberinfrastructure platform are presented.

The research team at the University of Michigan has implemented bridge

monitoring systems on the Telegraph Road Bridge (TRB) and the Newburg Road

Bridge (NRB). Both are steel girder bridges located along the I-275 corridor between

Romulus, Michigan and Toledo, Ohio (see Figure 16). The TRB has been monitored

with a wireless sensor network that consists of sixty sensors including accelerometers,

strain gauges and thermistors since 2011 (O’Connor et al. 2012, O’Connor et al. 2017).

The NRB has been monitored by a wireless sensor network that consists of twelve

sensors including accelerometers, strain gauges and thermistors since late 2016.

26

Specifically, these bridge monitoring systems are instrumented with Narada wireless

sensor nodes (Swartz et al. 2005) for the wireless data transmission from the sensors to

the onsite computers, as well as for the time synchronization. Data transmitted from the

Narada wireless sensor nodes is stored temporarily to the local file system of the onsite

computers. The sensor networks of the bridges acquire data for a one-minute duration

every two-hours. The sampling rate of the accelerometers is 200 Hz, while the sampling

rate of strain gauges and thermistors is 100 Hz. Sensor information, as well as the

geometric and engineering models of the bridges (which are created based on the 2-

dimensional drawings of the bridges), are also recorded and stored. In addition, the

monitoring systems collect traffic video images from the traffic monitoring system of

the Michigan Department of Transportation (MDOT)9. These diverse types of data are

collected and managed using the cloud-based cyberinfrastructure platform.

Figure 16. Bridges on the I-275 corridor installed with bridge monitoring systems: (a)

Telegraph Road Bridge (TRB), (b) Newburg Road Bridge (NRB)

A prototype cloud-based cyberinfrastructure platform is built upon eight Ubuntu

Linux (16.04 LTS) VMs on the Microsoft Azure cloud platform. As summarized in

Table 2, five VMs (No.1 – No.5) are used to build a multi-node Cassandra database

(Version 3.4), while three VMs (No.6 – No.8) are used to construct three duplicated

web servers using Node.js (Version 4.2.6). The web servers are connected to the

database nodes using the “DataStax Node.js Driver for Apache Cassandra” (DataStax

2017).

9 http://mdotnetpublic.state.mi.us/drive/

27

Table 2. Specification and role of virtual machines provisioned on the Microsoft Azure

cloud platform

4.1 Automated data store and retrieval

Two automated data store applications are developed using the cyberinfrastructure’s

web services to archive sensor data and video image data, respectively. Figure 17 shows

the workflow of the first application that runs on onsite computers and transmits sensor

data from an onsite computer to the cloud-based cyberinfrastructure platform. When

new data is transmitted from the sensor network to the onsite computer, the application

records the list of the new data files and labels them as “un-transmitted”. For an “un-

transmitted” file, the application parses the raw data file encoded in DAT file format

(see Figure 18(a)) into a JSON format (see Figure 18(b)) that the “Sensor data store”

service of the cyberinfrastructure can read. The application then invokes the “Sensor

data store” service with the parsed sensor data. If the service returns a status code 200,

the application changes the label of the data file to “transmitted”. Otherwise, the

application retries invoking the “Sensor data store” service up to N times (i.e., a

predefined maximum number of retries) to ensure the transmission is done properly.

This parsing and storing process is repeated until there are no “un-transmitted” data files

in the list. Since the application keeps track of data transmission status of data files, data

losses due to an unstable network connection can be minimized.

Figure 17. Workflow: application for data store automation

Figure 18. Sensor data file: (a) Raw data file, (b) Parsed sensor data

Figure 19 shows the workflow of the second application for collecting traffic

video images from an external data source (i.e., MDOT’s traffic monitoring system) and

28

the manner by which images are archived along with the camera ID and timestamp. The

application first accesses the data source to locate the dynamic Uniform Resource

Locators (URLs) of video image files. Once the URLs are found, the application fetches

the video image files and converts them to the BLOB format. The application then

transmits the BLOB data to the cyberinfrastructure by invoking the “Traffic image

store” service. The application service repeats this process every two seconds

corresponding to the time interval between new images in the MDOT’s traffic

monitoring system.

Figure 19. Workflow: traffic video image collecting application

Data stored in the cloud-based cyberinfrastructure platform can be easily

retrieved using data retrieval services. For example, Figure 20(a) shows a request for the

“Sensor data retrieval” service with query conditions including sensor ID

(“TRB_u131_ch0”), event_time_begin (“2016-09-01T12:02:00.000z”) and

event_time_end (“2016-09-12T12:02:10.000z”). Similarly, Figure 20(b) shows a

request for the “Traffic image retrieval” service with query conditions including

camera_ID (“Telegraph2”), event_time_begin (“2016-08-18T18:01:00.000z”) and

event_time_end (“2016-08-18T18:01:20.000z”).

Figure 20. Data retrieval using web services: (a) Sensor data retrieved by invoking the

sensor data retrieval service, (b) Traffic images retrieved by invoking the traffic image

retrieval service

4.2 Data integration and utilization

The advantages of the cloud-based cyberinfrastructure platform is its ability to support

easy access, integration and utilization of SHM data. This section presents a

29

demonstrative example application developed to extract patterns from heterogeneous

data (e.g., structural sensing data and environmental data) to find the relationships

between the modal frequencies derived from sensor data with temperature

measurements. The cyberinfrastructure platform enables machine-to-machine

communication so that the workflow can be fully automated with applications written

using programming scripts, for example, Python. As shown in the conceptual workflow

described in Figure 21, the application accesses the cyberinfrastructure platform via

web services, retrieve acceleration data and temperature data, and performs analyses.

The application service comprises of the following steps:

(1) the application reads the input arguments “StartTime” and “EndTime”

specifying the target time period which typically includes multiple data

acquisition events.

(2) the application service retrieves the accelerometer list for a data acquisition

event by submitting request as a web service to the “Sensor list retrieval

service” as shown in Figure 22(a).

(3) the application service retrieves the acceleration data collected from the data

acquisition event for each accelerometer in the list by submitting a request

(as another web service) to the “Sensor data retrieval” service, as shown in

Figure 22(b).

(4) the application executes the subspace identification module service

(Overschee 2012) to compute the modal frequency from the retrieved

acceleration data.

(5) the application service retrieves the thermistor list for the data acquisition

event by submitting a request (as a web service) to the “Sensor list retrieval

service” as shown in Figure 22(c).

30

(6) the application service retrieves temperature data collected from the data

acquisition event by submitting a request to the “Sensor data retrieval”

service, as shown in Figure 22(d).

(7) Executing Gaussian Process Regression (GPR) service to find the general

pattern on the variation between the fundamental modal frequency and

temperature measurements.

The application service repeats step 2 to step 6 by moving on to the next data

acquisition event until reaching the EndTime of the targeted period. Once modal

frequencies and temperature measurements that share the same timestamps are

collected, the application service proceeds to step 7 to perform regression analysis.

Figure 23(a) shows the history of the first modal frequency over the duration

from June 2013 to August 2015. The modal frequencies vary with a seasonal trend and

tend to increase during the winter and decrease during the summer. As shown in Figure

23(b), the GPR analysis result shows a nearly bilinear relation between the modal

frequency and temperature. This example application shows that the cyberinfrastructure

platform can be used to automate repetitive tasks involving multiple SHM data sets.

Figure 21. A workflow for relating structural behaviour with temperature data

Figure 22. HTTP requests and corresponding CQL queries for sensor list and data

retrieval: (a) HTTP request for accelerometer list retrieval, (b) HTTP request for

acceleration data retrieval (c) HTTP request for thermistor list retrieval, (d) HTTP

request for temperature data retrieval

Figure 23. Patterns of modal frequency of the Telegraph Road Bridge: (a) History of

first modal frequency (from August 2013 to August 2015) (b) Gaussian process

regression showing the confidence interval of modal frequency according to

temperature changes

31

4.3 Web and mobile interface

To facilitate ubiquitous access to the bridge monitoring information, preliminary web

and mobile user interfaces are developed based on the cloud-based cyberinfrastructure

platform. A web interface is an interactive program that reads user inputs via a web

browser (e.g., Google Chrome), invokes the requested web services and returns a web

page displayed on a web browser. The preliminary web interface supports the retrieval

of sensor list, sensor data, traffic video images and bridge models. The sensor

information retrieval interface (Figure 24(a)) allows users to retrieve the sensor list with

query parameters (e.g., “Sensor ID”, “Sensor type”, “Install before” or “Removed

after”) by invoking the “Sensor list retrieval” service. The sensor data retrieval interface

(Figure 24(b)) accepts query parameters (e.g., “Sensor ID, “Begin timestamp” and “End

timestamp”) and returns corresponding sensor data by invoking the “Sensor data

retrieval” service. Similarly, the traffic video image retrieval interface (Figure 24(c))

accepts query parameters (e.g., “Camera ID”, “Begin timestamp” and “End timestamp”)

and returns corresponding traffic video images by invoking the “Traffic image retrieval”

service. The bridge model retrieval interface (Figure 24(d)) allows users to download

bridge models by invoking either the “Geometric model retrieval” or “Engineering

model retrieval” service. Through this interface, users can specify the “Bridge name”

and model type (e.g., “GeometricModel”, “FEModel (xml)” and “FEModel (xlsx)”).

The bridge models downloaded can be regenerated by proper software tools, such as the

OpenBrIM viewer10 for geometric models (Figure 25(a)) and CSI Bridge for

engineering models (Figure 25(b)).

10 https://openbrim.org/

32

Figure 24. Prototype web-based user interface: (a) Sensor information retrieval, (b)

Sensor data retrieval, (c) Traffic image retrieval, (d) Bridge model retrieval

Figure 25. Telegraph road bridge model downloaded from the web-based user interface:

(a) Geometric model visualized by OpenBrIM viewer, (b) Engineering model visualized

by CSI Bridge

A mobile user interface is also developed based on the cyberinfrastructure

platform. The mobile user interface reads user inputs via the mobile devices, invokes

the web services, and displays the retrieved information on the mobile devices. The

preliminary mobile user interface is built upon iOS operating system and supports the

retrieval of sensor list, sensor information and sensor data. For example, Figure 26(a)

shows the sensor list view that reads user’s search keyword (e.g., “Accelerometer”) and

retrieves sensor list by invoking the “Sensor list retrieval” service. Figure 26(b) shows

the sensor map view that displays the retrieved sensor list on a map view. Figure 26(c)

shows the sensor detail view that displays brief information about a sensor along with

its sensor data by invoking the “Sensor data retrieval” service. Figure 26(d) shows the

sensor information view that displays a sensor’s detailed information by invoking the

“Sensor information retrieval” service.

Figure 26. Prototype mobile interface: (a) Sensor list view, (b) Sensor map view, (c)

Sensor detail view, (d) Sensor information view

5. Summary and conclusion

Cloud computing has become a popular computing paradigm that offers many benefits

such as cost-effectiveness, scalability and accessibility for developing large scale

software application. In this study, cloud computing technology is explored to develop a

33

cloud-based cyberinfrastructure platform for SHM systems. Specifically, the cloud-

based platform is demonstrated to have the ability to handle a wide variety of data

including sensor data, sensor information, bridge geometry, engineering models and

traffic video images.

For the scalable data management on a distributed cloud computing

environment, Apache Cassandra database is employed. The Cassandra database enables

high availability, partitioning-tolerance and scalability, which are the most important

features for the management of large scale SHM data sets. For data interoperability, a

database schema is defined based on a BrIM framework which is intended for SHM

applications. Specifically, the BrIM framework extends the OpenBrIM standards by

adding new data entities for the representation of engineering models and sensor

information. For service interoperability, RESTful web services are implemented to

support store and retrieval of sensor data and bridge information. For the scalability of

web services, the cloud-based platform employs duplicated web servers that handle

requests in a distributed manner.

The prototype cloud-based cyberinfrastructure platform has been implemented

for the bridge monitoring systems along the I-275 corridor between Romulus, Michigan

and Toledo, Ohio. Eight VMs are created on the Microsoft Azure cloud platform, where

five VMs serve as the distributed database and three VMs serve as the web servers.

Several demonstrative applications built upon the cloud-based platform are developed.

For example, automated data store applications are developed to transmit sensor data

and traffic video image to the cyberinfrastructure platform. Furthermore, a

demonstrative application that calculates the modal frequency history is developed to

show that the cloud-based platform is useful for complex queries, iterative jobs and

batch operations. Finally, preliminary web and mobile user interfaces are developed to

34

facilitate ubiquitous access to the bridge monitoring data residing in the cloud-based

cyberinfrastructure platform.

In the current design and development of cloud-based cyberinfrastructure

platform for SHM systems, this paper mainly focuses on the cloud-based data

management with emphasis on scalability and interoperability. One of the important

aspects that could be explored in the future studies is meaningful analyses of large scale

heterogeneous data set. The authors’ current work attempts to develop data analysis

applications that extract meaningful information from the large data sets collected from

sensors to help bridge managers evaluate bridge conditions. In addition, cloud security

is another important topic that was not discussed in this paper. For secure data

management, the proper use of cryptography and authentication schemes is

indispensable. Another concern regarding the cloud security is that bridge managers

may not desire to store their sensitive data on public cloud platforms. To address such

issues, the authors’ current work attempts to develop a hybrid cloud computing

framework in which the sensitive data sets are stored in private data centers, while the

public cloud service is used to guarantee high scalability and availability of a system.

Acknowledgement

This research is supported by a Grant No. 13SCIPA01 from Smart Civil Infrastructure

Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT)

of Korea government and Korea Agency for Infrastructure Technology Advancement

(KAIA). The research is also partially supported by a collaborative project funded by

the US National Science Foundation (Grant No. ECCS-1446330 to Stanford University

and Grant No. CMMI-1362513 and ECCS-1446521 to the University of Michigan). The

authors thank the Michigan Department of Transportation (MDOT) for access to the

35

Telegraph Road Bridge, Newburg Road Bridge and for offering support during

installation of the wireless monitoring system. The in-kind support by Computers and

Structures, Inc. for providing the CSI Bridge software to the research team at Stanford

University is gratefully appreciated. Any opinions, findings, conclusions or

recommendations expressed in this paper are solely those of the authors and do not

necessarily reflect the views of NSF, MOLIT, MDOT, KAIA or any other organizations

and collaborators.

Reference

Agrawal, D., Das, S. and Abbadi, A. E. (2011). “Big data and cloud computing: current

state and future opportunities,” In Proceedings of the 14th International

Conference on Extending Database Technology (EDBT/ICDT '11), New York,

NY, USA, pp. 530-533.

Alampalli, S., Alampalli, S. and Ettouney, M. (2016). “Big data and high-performance

analytics in structural health monitoring for bridge management,” Proceedings

of the SPIE Smart Structures/NDE Conference, Las Vegas, NV, USA, March

20-24, art no. 980315.

Arumugam, R., Enti, V. R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F. F.,

Kumar, A. S., Meng, K. D. and Kit, G. W. (2010). “DAvinCi: A cloud

computing framework for service robots,” 2010 IEEE International Conference

on Robotics and Automation, Anchorage, AK, 2010, pp. 3084-3089.

Bartholomew, M., Blasen, B. and Koc, A (2015). “Bridge Information Modeling

(BrIM) Using Open Parametric Objects,” Report No. FHWA-HI F -16-010,

Federal Highway Administration.

Belqasmi, F., Singh, J., Melhem, S. Y. B. and Glitho, R.H. (2012). “Soap-based vs.

restful web services: A case study for multimedia conferencing,” IEEE internet

computing, 16(4), pp.54-63.

Brownjohn, J.M.W., Zasso, A., Stephen, G.A. and Severn, R.T. (1995). “Analysis of

experimental data from wind-induced response of a long span bridge,” Journal

of wind engineering and industrial aerodynamics, 54, pp.13-24.

36

Chaniotis, I. K., Kyriakou, K. I. D. and Tselikas, N. D. (2015). “Is Node.js a viable

option for building modern web applications? A performance evaluation study,”

Computing, 97(10), pp. 1023–1044.

Chen, S. S. and Shirolé, A. M. (2013). “Implementation Roadmap for Bridge

Information Modeling (BrIM) Data Exchange Protocols,” Federal Highway

Administration.

Cross, E. J., Koo, K. Y., Brownjohn, J. M. W. and Worden, K. (2013). “Long-term

monitoring and data analysis of the Tamar Bridge,” Mechanical Systems and

Signal Processing, 35(1), pp. 16-34.

Das, M., Cheng, J. C. P. and Kumar, S. S. (2015). “Social BIMCloud: a distributed

cloud-based BIM platform for object-based lifecycle information exchange,”

Visualization in Engineering, 3(8), pp. 1-20.

DataStax. (2017). “DataStax Node.js Driver for Apache Cassandra,” [programming

library], Retrieved from: https://github.com/datastax/nodejs-driver (accessed on

30 January 2017).

Deckler G. (2016), “Cloud vs. On-Premises – Hard Dollar Costs,” [online article],

Retrieved from: https://www.linkedin.com/pulse/cloud-vs-on-premises-hard-

dollar-costs-greg-deckler/?trk=pulse_spock-articles (accessed on 5 December

2017).

Dervilis, N., Worden, K. and Cross, E. J. (2015). “On robust regression analysis as a

means of exploring environmental and operational conditions for SHM data,”

Journal of Sound and Vibration, 347, pp. 279-296.

Farrar, C.R., Cornwell, P.J., Doebling, S.W. and Prime, M.B. (2000). “Structural health

monitoring studies of the Alamosa Canyon and I-40 bridges,” No. LA-13635-

MS. Los Alamos National Lab., NM (US).

Fielding, R. T. (2000). “Architectural styles and the design of network-based software

architectures,” Doctoral dissertation, University of California, Irvine.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee,

T. (1999). “Hypertext transfer protocol--HTTP/1.1” (No. RFC 2616).

Fraser, M., Elgamal, A., He, X. and Conte, J. P. (2009). “Sensor network for structural

health monitoring of a highway bridge,” Journal of Computing in Civil

Engineering, 24(1), pp.11-24.

37

Gillis, T. (2015), “Cost Wars: Data Center vs. Public Cloud,” [online article], Retrieved

from: https://www.forbes.com/sites/tomgillis/2015/09/02/cost-wars-data-center-

vs-public-cloud/#60c91b11923f (accessed on 5 December 2017).

Grolinger, K., Higashino, W. A., Tiwari, A. and Capretz, M. A. (2013). “Data

management in cloud environments: NoSQL and NewSQL data stores,” Journal

of Cloud Computing: Advances, Systems and Applications, 2(1), pp. 22–41.

Guinard, D., Trifa, V. and Wilde, E. (2010). “A resource oriented architecture for the

Web of Things,” 2010 Internet of Things (IOT), Tokyo, 2010, pp. 1-8.

Haas, H. and Brown, A. (2004). “Web Services Glossary,” W3C Working Group Note,

[online article], Retrieved from: https://www.w3.org/TR/ws-gloss/ (accessed on

30 January 2017).

Hewitt, E. (2010). “Cassandra: the definitive guide,” O'Reilly Media, Inc.

Jeong, S., Zhang, Y., O'Connor, S. M., Lynch, J. P., Sohn, H. and Law, K. H. (2016a).

“A NoSQL Data Management Infrastructure for Bridge Monitoring,” Smart

Structures and Systems, 17(4), pp. 669-690.

Jeong, S., Zhang, Y., Hou, R., Lynch, J. P., Sohn, H. and Law, K. H. (2016b). “A Cloud

based Information Repository for Bridge Monitoring Applications,”

Proceedings of the SPIE Smart Structures/NDE Conference, Las Vegas, NV,

USA, March 20-24, art no. 980313.

Jeong, S., Hou, R., Lynch, J. P., Sohn, H. and Law, K. H. (2016c). “Cloud-based cyber

infrastructure for bridge monitoring,” Proceedings of the 14th International

Symposium on Structural Engineering (ISSE-14), Beijing, China, Oct.12-15,

2016.

Jeong, S., Hou, R., Lynch, J. P., Sohn, H. and Law, K. H. (2017). “An information

modelling framework for bridge monitoring,” Advances in engineering software

(accepted).

Koo, K. Y., Battista, N. D. and Brownjohn, J. M. W. (2011). “SHM data management

system using MySQL database with MATLAB and web interfaces,” In 5th

International Conference on Structural Health Monitoring of Intelligent

Infrastructure (SHMII-5), Cancún, México, pp. 589-596.

Law, K. H., Smarsly, K. and Wang, Y. (2014). “Sensor data management technologies

for infrastructure asset management,” In Sensor Technologies for Civil

Infrastructures: Applications in Structural Health Monitoring, (Eds., Wang,

38

M.L., Lynch, J.P. and Sohn, H.), Woodhead Publishing, Cambridge, UK, 2(1),

3-32.

Law, K. H., Cheng, J. C. P., Fruchter, R. and Sriram, R. D. (2016). “Engineering

Applications of the Cloud,” In Encyclopedia of Cloud Computing, (eds S.

Murugesan and I. Bojanova), John Wiley & Sons, Ltd, Chichester, UK.

Le, T. D., Kim, S. H., Nguyen, M. H., Kim, D., Shin, S. Y., Lee, K. E. and da Rosa

Righi, R. (2014) “EPC information services with No-SQL datastore for the

Internet of Things,” 2014 IEEE International Conference on RFID (IEEE

RFID), Orlando, FL, 2014, pp. 47-54.

Lea, R. and Blackstock, M. (2014). "City Hub: A Cloud-Based IoT Platform for Smart

Cities," 2014 IEEE 6th International Conference on Cloud Computing

Technology and Science, Singapore, pp. 799-804.

Lei, K., Ma, Y., and Tan, Z. (2014). “Performance Comparison and Evaluation of Web

Development Technologies in PHP, Python, and Node.js,” Proceedings of 2014

IEEE 17th International Conference on Computational Science and Engineering

(CSE), pp. 661–668.

Li, H., Ou, J., Zhao, X., Zhou, W., Li, H., Zhou, Z. and Yang, Y. (2006). “Structural

health monitoring system for the Shandong Binzhou Yellow River highway

bridge,” Computer-Aided Civil and Infrastructure Engineering, 21(4), pp.306-

317.

Liao, Y., Mollineaux, M., Hsu, R., Bartlett, R., Singla, A., Raja, A., Bajwa, R. and

Rajagopal, R. (2014). “Snowfort: An open source wireless sensor network for

data analytics in infrastructure and environmental monitoring,” in IEEE Sensors

Journal, 14(12), pp. 4253-4263.

Lim, H. J., Sohn, H. and Liu, P. (2014). “Binding conditions for nonlinear ultrasonic

generation unifying wave propagation and vibration,” Applied Physics Letters,

104(21), 214103.

Lin, W., Dou, W., Zhou, Z. and Liu, C. (2015). “A cloud-based framework for Home-

diagnosis service over big medical data,” Journal of Systems and Software, 102,

pp.192-206.

Lynch, J. P. and Loh, K. J. (2006). “A summary review of wireless sensors and sensor

networks for structural health monitoring,” Shock and Vibration Digest, 38(2),

pp. 91-130.

39

Mell, P. and Grance, T. (2011). “The NIST definition of cloud computing -

Recommendations of the National Institute of Standards and Technology,” NIST

Special Publication 800-145, Computer Science Division, Information

Technology Laboratory, National Institute of Standards.

Mulligan, G. and Gracanin, D. (2009). “A comparison of SOAP and REST

implementations of a service based interaction independence middleware

framework,” Proceedings of the 2009 Winter Simulation Conference (WSC),

Austin, TX, 2009, pp. 1423-1432.

O'Connor, S. M., Lynch, J. P., Ettouney, M., vander Linden, G. and Alampalli, S.

(2012). “Cyber-enabled decision making system for bridge management using

wireless monitoring systems: Telegraph Road Bridge demonstration project,” In

Structural Materials Technology 2012, pp. 177-184.

O’Connor, S. M., Zhang, Y., Lynch, J. P., Ettouney, M. M. and Jansson, P. O. (2017).

“Long-term performance assessment of the Telegraph Road Bridge using a

permanent wireless monitoring system and automated statistical process control

analytics,” Structure and Infrastructure Engineering, 13(5), pp.604-624.

Overschee, P.V. (2002), “Subspace Identification for Linear Systems,” [Matlab

package]. Retrieved from:

http://www.mathworks.com/matlabcentral/fileexchange/2290-subspace-

identification-for-linear-systems (accessed on 27 June 2017).

Open Geospatial Consortium (2014). “OGC® SensorML: Model and XML Encoding

Standard” [online article], Retrieved from:

http://www.opengeospatial.org/standards/sensorml (accessed on 1 June 2017)

ParamML, “ParamML Author's Guide,” [Online article], Retrieved from:

https://sites.google.com/a/redeqn.com/paramml-author-s-guide/ (accessed on 1

June 2017)

Pautasso, C. (2008). “BPEL for REST,” In International Conference on Business

Process Management, pp. 278–293.

Pautasso, C. and Alonso, G. (2005). “The JOpera visual composition language,”

Journal of Visual Languages and Computing, 16(1-2), 119–152.

Pautasso, C., Zimmermann, O. and Leymann, F. (2008). “Restful web services vs.

“Big” web services: making the right architectural decision,” In Proceedings of

the 17th international conference on World Wide Web, pp. 805-814. Beijing,

China, April 21 - 25, 2008.

40

Pautasso, C. (2009). “Composing RESTful Services with JOpera,” Proceeding of

International Conference on Software, Zurich, Switzerland, pp 142–159.

Rosenberg, F., Curbera, F., Duftler, M. J. and Khalaf, R. (2008). “Composing RESTful

Services and Collaborative Workflows: A Lightweight Approach,” In IEEE

Internet Computing, 12(5), pp. 24–31.

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S. and Xu, X. (2014).

“Web services composition: A decade’s overview,” Information Sciences, 280,

pp. 218-238.

Smarsly, K., Law, K. H. and Hartmann, D. (2012). “Multiagent-based collaborative

framework for a self-managing structural health monitoring system,” Journal of

computing in civil engineering, 26(1), pp.76-89.

Smith, J. E. and Nair, R. (2005). “The architecture of virtual machines,” Computer,

38(5), pp. 32-38.

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N. and Helland,

P. (2007). “The end of an architectural era (it's time for a complete rewrite),”

Proceedings of the 33rd International Conference on Very large data bases, pp.

1150–1160.

Strukhoff, R. (2017), “Adopting an IoT Platform: Things to Know and Pitfalls to

Avoid,” [online article], Retrieved from:

https://www.altoros.com/blog/adopting-an-iot-platform-things-to-know-and-

pitfalls-to-avoid/ (accessed on 5 December 2017).

Swartz, R., Jung, D., Lynch, J. P., Wang, Y., Shi, D., and Flynn, M. P. (2005). “Design

of a wireless sensor for scalable distributed in-network computation in a

structural health monitoring system.” 5th International Workshop on Structural

Health Monitoring (IWSHM), Stanford, CA.

W3C. (2014). “XML Schema,” [Online article], Retrieved from:

https://www.w3.org/2001/XMLSchema (accessed on 1 June 2017)

Wong, K.Y., Lau, C.K. and Flint, A.R. (2000). “Planning and implementation of the

structural health monitoring system for cable-supported bridges in Hong Kong,”

Proceedings of the SPIE 3995, Nondestructive Evaluation of Highways,

Utilities, and Pipelines IV.

Xu, X. (2012). “From cloud computing to cloud manufacturing,” Robotics and

computer-integrated manufacturing, 28(1), pp.75-86.

41

Ye, X. and Huang, J. (2011). “A framework for cloud-based smart home,” Proceedings

of 2011 International Conference on Computer Science and Network

Technology, Harbin, 2011, pp. 894-897.

Zaslavsky, A., Perera, C. and Georgakopoulos, D. (2013). “Sensing as a service and big

data,” In International Conference on Advances in Cloud Computing (ACC-

2012), Bangalore, India, July 2012, pp. 21–29

Zhang, Q., Cheng, L. and Boutaba, R. (2010). “Cloud computing: state-of-the-art and

research challenges,” Journal of Internet Services and Applications, 1(1), 7–18.

Zhang, Y., O’Connor, S. M., van der Linden, G., Prakash, A. and Lynch, J. P. (2016).

“SenStore: A Scalable Cyberinfrastructure Platform for Implementation of Data-

to-Decision Frameworks for Infrastructure Health Management,” Journal of

Computing in Civil Engineering, 04016012

Zhou, G. D. and Yi, T. H. (2013). “Recent developments on wireless sensor networks

technology for bridge health monitoring,” Mathematical Problems in

Engineering, art no. 947867.

Zhao, H. and Doshi, P. (2009). “Towards automated restful web service composition,”

2009 IEEE International Conference on Web Services, Los Angeles, CA, 2009,

pp. 189-196.

42

Table 1. RESTful web services currently implemented on the cyberinfrastructure

platform

Service Method URI Parameter

Sensor data store POST /sensordata -

Sensor data retrieval GET /sensordata/{sensorID} event_time_begin, event_time_end

Traffic image store POST /imagedata -

Traffic image retrieval GET /imagedata/{cameraID} event_time_begin, event_time_end

Sensor information store POST /sensor

Sensor list retrieval GET /sensor sensor_type, install, remove

Sensor information retrieval GET /sensor/{sensorID} install, remove

Geometric model store POST /geometricmodel

Geometric model retrieval GET /geometricmodel/{BridgeID}

Engineering model store POST /femodel

Engineering model retrieval GET /femodel/{BridgeID} file_format (xml or xlsx)

Table 2. Specification and role of virtual machines provisioned on the Microsoft Azure

cloud platform

No. Spec Role

1,2,3,4,5 Azure Standard_A2m_v2 (2 cores, 16 GB memory) Database node

6,7,8 Azure Standard DS2 v2 (2 cores, 7 GB memory) Web server

43

Figure 1. A model of cloud computing for SHM

Cloud-based	cyberinfrastructure	platform

Computing	Infrastructure
(e.g.,	Public	 cloud,	private	cloud,	hybrid	cloud)

Sensors,	applications,	users

Computing	 infrastructure	and	platform	(IaaS,	PaaS)

Data	management	and	application	services	(PaaS,	SaaS)	

44

(a) Web-based cloud interface

(b) Shell interface

(c) List of virtual machines deployed on Azure cloud platform

Figure 2. Virtual machine created on Microsoft Azure cloud platform

45

Figure 3. Conceptual framework of cloud-based cyberinfrastructure platform

End	users	/	
Client	systems

(Onsite/local	computer,	 cloud	
VM,	mobile	devices,	etc.)

Service	provider
(Cyberinfrastructure	 built	 on	

cloud	 VMs) A	distributed	NoSQL	database	management	system	(DBMS)

Built-in	
ApplicationsWeb	servers

Internet

Bridge	information	modeling	(BrIM)-based	data	schema

Data	sources Applications

Sensor	data FEM	
representationGeometry

Etc.Video	imageSensor	
information

Data	analysis	
modules

CAD	
software	/	
engineering	

tools

Web/mobile	
interfaces

46

Figure 4. A Cassandra cluster instance

Figure 5. Ring topology of Cassandra database

<ip address	1>
<ip address	2>
<ip address	3>
<ip address	4>
<ip address	5>

<host	ID	1>
<host	ID	2>
<host	ID	3>
<host	ID	4>
<host	ID	5>

Datacenter	ID Rack	ID

N5

N1

N4

N2

N3

r1 r2R

Client	
INSERT	R<r1,	r2>

r1

r1 r2

r2 Cassandra	Cluster
Replication	Factor:	2

47

(a) Entity: Shape

(b) Entity: FELine

(c) Entity: StrainGauge

Figure 6. Data schema definition in BrIM for bridge monitoring applications: (a) Shape,

(b) FELine, (c) StrainGauge entity types

“O”	 represents	a	BrIM object.

A	“Shape”	object	can	have	0..*	
number	 of	child	 objects	having	
either	“Point”,	“Shape”	or	“Circle”	
type.

A	“Shape”	object	can	have	0..*	
number	 of	parameters	having	
name	“Material”.

“P”	 represents	a	BrIM parameter.

Parameters	defined	in	the	original	
BrIM schema.

Parameters	newly	defined	in	the	
extended	 BrIM schema	

48

Figure 7. Data mapping between BrIM schema “FELine” and corresponding Cassandra

column family.

(a) Rows storing Shape object and its child Point objects

(b) Rows storing heterogeneous FELine objects

Figure 8. Database schema for BrIM objects

<<ColumnFamily>>	FELine
uid
N
T
FELineMesh
FELineRelease
FELineSection
Node1
Node2
Section
Parent
Child

UUID
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

MAP<UUID,TEXT>
MAP<UUID,TEXT>

Primary	Key

pt001
T X Y Parent

"Point" "-10" "-10" [“shp001”, “Shape”]

shp001
T Material Child

”Shape" “Concrete” ["pt001”: “Point”, "pt002”: “Point”, …]

pt002
T X Y Parent

"Point" "-10" "10" [“shp001”, “Shape”]

FELine001
T FELineRelease FELineSection Node1 Node2

”FELine" “FELineReleaseType1” “Steel I-Beam	type1” ”Node090” ”Node091”

FELine002
T FELineSection Node1 Node2

”FELine" “Steel I-Beam	type1” ”Node091” ”Node092”

49

(a) Row storing sensor measurement data

(b) Row storing traffic video image data

Figure 9. Database schema for time-series data

Figure 10. Select query for sensor data retrieval and query result in a tabular format

u07ch0
|2014

2014-08-02T00:00:08 2014-08-01T00:00:09
Array[32792.0,	32776.0,	32803.0,	...] Array[32849.0,	32849.0,	32867.0,	...]	

2014-08-01T00:00:10
Array[32851.0,	32863.0,	32842.0 ...]	

Incoming	measurement	data

TRB_01
|201608

2016-08-23T10:02:08 2016-08-23T10:02:13
BLOB(/9j/4AAQSkZJ	… H//Z) BLOB(/9j/4AAQSkZJ	… /9k=)

2016-08-23T10:02:19
BLOB(/9j/4AAQSkZJ	… Af/Z)

Incoming	image	data

50

Figure 11. Web service example: sensor data store service

Figure 12. Web service example: sensor data retrieval service

Cl
ie
nt

W
eb
	s
er
ve
r

Database

POST /sensordata HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com
Content-Type: application/json

{"Content": [{"sensor_id":"TRB_u131_ch0",
"event_time":"2016-09-01T12:02:12.000z",
"data":[32227,32189,32293,...,32361]}, ...], ...}

HTTP/1.1 200 OK

INSERT INTO
sensordata(sensor_id, year, event_time, data)
values ("TRB_u131_ch0", "2016", "2016-09-
01T12:02:12.000z", [32227,32189,32293,..., 32361])

Complete

①

②

③

④

Cl
ie
nt

W
eb
	s
er
ve
r

Database

GET /sensordata/TRB_u131_ch0?event_time_begin=
2016-09-01T12:02:00.000z&event_time_end=
2016-09-01T12:02:10.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

HTTP/1.1 200 OK
Content-Type: application/json

{"Content": [{"sensor_id":"TRB_u131_ch0",
"event_time":"2016-09-01T12:02:12.000z",
"data":[32227,32189,32293,...,32361]}, ...], ...}

SELECT sensor_id, event_time, data
FROM sensordata
WHERE sensor_id="TRB_u131_ch0" AND year="2016"
AND event_time>="2016-09-01T12:02:00.000z"
AND event_time<="2016-09-01T12:02:10.000z"

[{"sensor_id":"TRB_u131_ch0",
"event_time":"2016-09-01T12:02:12.000z",
"data":[32227,32189,32293,...,32361]}, ...]

①
②

③

④

51

(a) Data flow

(b) Execution example

Figure 13. A composite application DataRetrievalByLocation

Input	screen

Retrieved	data

52

(a) Data flow

(b) Execution example

Figure 14. A composite application SensorInfoOnMap

Input	screen

Sensor	information	visualized	on	Google	map

53

Figure 15. Duplicated web servers

(a) Telegraph Road Bridge (TRB) (b) Newburg Road Bridge (NRB)

Figure 16. Bridges on the I-275 corridor installed with bridge monitoring systems

Sensor	network 1 Sensor	network 2 Local	computer 1
POST
/sensordata/acc1

Web	server	1
#	connection	=	1

Web	server	2
#	connection	=	1

Web	server	3
#	connection	=	0

POST
/sensordata/str1

GET
/sensorIP

Server	is	on?
Yes

#	connection	?
1

Distributed	
database

Yes

#	connection	?
0

IP	address	of	
Web	server	3

GET
/sensordata
/{sensorID}

N5

N1

N4

N2

N3

①

②

③
④

②
Server	is	on?

54

Figure 17. Workflow: application for data store automation

(a) Raw data file (b) Parsed sensor data

Figure 18. Sensor data file

Start

Is	there	a	new	data	file(s)?

n:	number	of	re-trying	web	service
N:	max	#	of	re-try	web	service
W:	waiting	time	between	loops

Store	data	file	list	to	a	local	storage	and	label	“un-transmitted”	

Parse	an	“un-transmitted”	data	file	and	set	n=0

Invoke	 the	sensor	data	store	service

Is	status	code	200?

Wait	for	W	
seconds

Mark	the	file	“transmitted”	(or	“failed”)

Is	there	un-transmitted	file?

Yes

No

n=n+1
No

Yes	(or	n=N)

Yes

No

Is	stop	requested?
No

Finish

Yes

55

Figure 19. Workflow: traffic video image collecting application

(a) Sensor data retrieved by invoking the sensor data retrieval service

(b) Traffic images retrieved by invoking the traffic image retrieval service

Figure 20. Data retrieval using web services

Start

n:	number	of	re-trying	web	service
N:	max	#	of	re-try	web	service
W:	waiting	time	between	loops

Is	status	code	200? n=n+1

No

Access	to	traffic	monitoring	system	and	download	HTML	document

Parse	the	HTML	document	to	find	the	URL	to	image	file

Fetch	the	image	data	and	convert	 into	BLOB	format	and	set	n	=	0

Invoke	 the	traffic	image	store	service

Is	stop	requested?

Finish

Yes

No

Yes	(or	n=N)

Wait	for	W	
seconds

GET /sensordata/TRB_u131_ch0?
event_time_begin=2016-09-
01T12:02:00.000z
&event_time_end=2016-09-
01T12:02:10.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

GET /imagedata/Telegraph2?
event_time_begin=2016-08-
18T18:01:00.000z
&event_time_end=2016-08-
18T18:01:20.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

56

Figure 21. A workflow for relating structural behaviour with temperature data

Cyberinfrastructure

Internet

(1)	Read	input	
“StartTime”	and	

“EndTime”

(2)	Retrieve	
accelerometer	list

(3)	Retrieve	
acceleration	data

(4)	Calculate	natural	
frequency

(5)	Retrieve	
thermistor	list

(6)	Retrieve	
temperature	data

(6)	Run	Gaussian	
process	regression	

analysis

57

(a) HTTP request for accelerometer list retrieval

(b) HTTP request for acceleration data retrieval

(c) HTTP request for thermistor list retrieval

(d) HTTP request for temperature data retrieval

Figure 22. HTTP requests and corresponding CQL queries for sensor list and data

retrieval

GET /sensor?sensorType=Accelerometer&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u07_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensor?sensorType=Thermistor&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u45_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

58

(a) History of first modal frequency (from August 2013 to August 2015)

(b) Gaussian process regression showing the confidence interval of modal frequency

according to temperature changes

Figure 23. Patterns of modal frequency of the Telegraph Road Bridge

59

(a) Sensor information retrieval (b) Sensor data retrieval

(c) Traffic image retrieval (d) Bridge model retrieval

Figure 24. Prototype web-based user interface

(a) Geometric model visualized by

OpenBrIM viewer

(b) Engineering model visualized by CSI

Bridge

Figure 25. Telegraph road bridge model downloaded from the web-based user interface

60

(a) Sensor list view (b) Sensor map

view

(c) Sensor detail

view

(d) Sensor

information view

Figure 26. Prototype mobile interface

