
Sensor Data Reconstruction and Anomaly Detection using
Bidirectional Recurrent Neural Network

Seongwoon Jeong*, Max Ferguson, Kincho H. Law

Department of Civil and Environmental Engineering, Stanford University
Stanford, CA 94305, USA

ABSTRACT

With advances in sensing and communication technologies, engineering systems are now commonly instrumented with
sensors for system monitoring and management. Occasionally, when sensors become malfunction, it is advantageous to
automatically determine faulty sensors in the system and, if possible, recover missing or faulty data. This paper investigates
the use of machine learning techniques for sensor data reconstruction and anomaly detection. Specifically, bidirectional
recurrent neural network (BRNN) is employed to build a data-driven model for sensor data reconstruction based on the
spatiotemporal correlation among the sensor data. The reconstructed sensor data can be used not only for recovering the
data of the faulty sensors, but also for detecting anomalies based on an analytical redundancy approach. The proposed
method is tested with vibration data based on a numerical simulation of a sensor network for bridge monitoring application.
In terms of prediction accuracy, the results show that the BRNN-based sensor data reconstruction method performs better
than other existing sensor data reconstruction methods. Furthermore, the sensor data reconstructed can be used to detect
and isolate the anomalies caused by faulty sensors.

Keywords: Sensor data reconstruction, anomaly detection, sensor validation, bidirectional recurrent neural network

1. INTRODUCTION
In today’s engineering applications, sensors serve a critical role in monitoring and controlling the operations of an
engineering system. Data collected from sensors enables fault detection and evaluation of the health of the system [1, 2].
However, sensors can become faulty due to various reasons, including noise, poor installation, harsh environment, aging,
battery problem, etc. [3]. Faulty sensors generate various types of faulty data, such as bias, drift, complete failure and
precision degradation [4]. Some faults (e.g., complete failure of a sensor) are relatively easy to detect, whereas other faults
(e.g., precision degradation in the sensor output) are relatively difficult to identify. Faulty sensors not only cause permanent
loss of valuable data, but also can lead to inaccurate diagnosis of the monitored system. For successful deployment of a
sensing system, sensors need to be validated and the faulty data from faulty sensors should be reconstructed.

Sensor validation consists of three basic problems, namely sensor fault detection, fault isolation and fault reconstruction
[4]. The three faulty sensor problems are closely related to each other. For example, sensor data reconstruction (i.e., fault
reconstruction) can be used to recover the data of faulty sensors detected by fault detection and isolation. Furthermore,
sensor data reconstruction can be used to detect and isolate faulty sensors via an analytical redundancy method that captures
anomalies based on the discrepancy between the measurement data and the reconstructed data [5]. Abilities to accurately
reconstruct sensor data are important for maintaining a healthy sensor network. This paper discusses a highly accurate
sensor data reconstruction method that can potentially be used for data recovery, as well as for anomaly detection and
isolation.

Typically, sensor data reconstruction methods attempt to predict the data of a target sensor based on the data collected by
other sensors. One approach is to use the spatial correlation among the sensors. Sensor data reconstruction methods based
on spatial correlation have been proposed using statistical and machine learning approaches, such as principal component
analysis (PCA) [6], minimum mean square error (MMSE) estimation [7], support vector regression (SVR) [8] and artificial
neural network (ANN) [9, 10, 11, 12]. While the studies have shown that the spatial correlation-based methods can

* e-mail: swjeong3@stanford.edu

reconstruct the sensor data well, the accuracy can be improved by considering additional information, such as the temporal
correlation among the sensor data. For example, Kullaa [7] extends the MMSE-based sensor validation approach by
utilizing the linear spatiotemporal correlation among the sensors. To handle the nonlinear spatiotemporal correlation
among the sensor data, various architectures of ANN have been investigated. Moustapha and Selmic [13] propose a sensor
validation method based on the recurrent neural network (RNN) to take into consideration both the spatial and the temporal
correlations among the data. So far, most studies have considered only the data from the past to reconstruct the sensor data.
A future context, if available, can help improve the accuracy of data reconstruction and anomaly detection.

This paper describes a data-driven sensor data reconstruction and anomaly detection method that leverages the spatial and
the past and future temporal correlations among the sensor data. Specifically, bidirectional recurrent neural network
(BRNN) [14] is employed to construct a sensor data reconstruction model. In the next section, BRNN-based method for
sensor data reconstruction will be described. We then discuss faulty sensor detection and isolation using the data
reconstructed by the BRNN-based method. The proposed methods are demonstrated and validated with bridge monitoring
application using numerical simulations. The paper concludes with a brief summary and discussion.

2. BRNN-BASED SENSOR DATA RECONSTRUCTION METHOD
This section describes the BRNN-based method for sensor data reconstruction. First, the architecture of BRNN model for
sensor data reconstruction is described. The model training and data reconstruction processes are then discussed.

2.1 BRNN model for sensor data reconstruction

Consider a sensor network consisting of N input sensors and a single output (target) sensor, each with time series
measurement data denoted, respectively, as 𝒙(𝑡) = {𝑥((𝑡),… , 𝑥+(𝑡),… , 𝑥,(𝑡)} and 𝑦(𝑡) where 𝑡 = 1, … , 𝑇, the number
(or length) of measurements (or time steps) per each sensor, and 𝑖 = 1,… , 𝑁, the number of input sensors. The sensor data
reconstruction problem can be treated as a supervised learning or regression problem for estimating the predicted outputs
𝑦3(𝑡), where 𝑡 = 1,… , 𝑇, using the input measurement data 𝒙(𝑡), such that the predictions 𝑦3(𝑡) are good estimations of the
actual output measurements 𝑦(𝑡).

Figure 1 depicts the neural network architecture of the BRNN model and the computational flows between the layers of
the neural network per each time step and among the different time steps. For each time step 𝑡, the neural network consists
of three layers:

• An input layer consists of N input units containing the data 𝒙(𝑡) from the N input sensors.

• An output layer consists of a single output unit containing the predicted value 𝑦3(𝑡) of the target sensor.

• A hidden layer consists of M forward hidden units and M backward hidden units containing the values denoted
by 𝒉5(𝑡) and 𝒉6(𝑡), respectively.

Figure 1. Structure of bidirectional recurrent neural network with a single hidden layer

!" !" !"!# !# !#

$" $"

$# $#

%& %& %&%' %' %'

$"

$#

$"

$#

… …

)(t-1)

*&(,−1)

*'(,−1)

01(t-1)

)(,)

*&(,)

*'(,)

01(,)

)(t+1)

*&(,+1)

*'(,+1)

01(t+1)

Input layer
hidden layer

output layer

As shown in Figure 1, the hidden units at each time step 𝑡 are connected with the adjacent hidden units at time steps 𝑡 − 1
and 𝑡 + 1. Specifically, the forward hidden units are fully connected with the data flow from 𝒉5(𝑡 − 1) to 𝒉5(𝑡) and the
backward hidden units with data flow from 𝒉6(𝑡 + 1) to 𝒉6(𝑡). As depicted using the directional arrows in Figure 1, the
values of the hidden units are updated at each iteration as:

𝒉5(𝑡) = 𝑓:𝐔<𝒙(𝑡) +𝐖<𝒉5(𝑡 − 1) + 𝒃5? (1)

𝒉6(𝑡) = 𝑓:𝐔@𝒙(𝑡) +𝐖@𝒉6(𝑡 + 1) + 𝒃6? (2)

where (1) 𝐔< and 𝐔@ denote the 𝑀 ×𝑁 weights connecting the 𝑁 input units to the 𝑀 forward hidden units and to the 𝑀
backward hidden units, respectively; (2) 𝐖< and 𝐖@ denote the 𝑀×𝑀 weights between the hidden units of two
successive time steps; and (3) 𝒃5 and 𝒃6 denote the 𝑀× 1 biases for the hidden units. In addition, 𝑓(∙) denotes an
activation function which can be a linear or nonlinear function [15]. In this study, the hyperbolic tangent function is
selected as the activation function for both the forward and the backward hidden units:

𝑓(𝑧) =
(𝑒F − 𝑒GF)
(𝑒F + 𝑒GF)

(3)

Once 𝒉5(𝑡) and 𝒉6(𝑡) of the hidden units are obtained, the predicted output data 𝑦3(𝑡) at the time step 𝑡 can be computed
as:

𝑦3(𝑡) = 𝒗5 ⋅ 𝒉5(𝑡) + 𝒗6 ⋅ 𝒉6(𝑡) + 𝑐 (4)

where 𝒗5 and 𝒗6 denote a vector of 𝑀 weighting values that connect the output unit with the forward and the backward
hidden units, respectively, and 𝑐 denotes the bias for the output unit. From Eqs. (1), (2) and (4), it can be seen that the
reconstructed output data 𝑦3(𝑡) at time step 𝑡 involves the past context with the forward hidden units with 𝒉5(𝑡 − 1), the
present context from the current input data 𝒙(𝑡) and the future context with the backward hidden units with 𝒉6(𝑡 + 1).

2.2 Training the BRNN model

The BRNN model is trained with a dataset K:𝒙(𝑡), 𝑦(𝑡)?, 𝑡 = 1, 2,… , 𝑇M of measurements from the input and output
sensors. First, for each sensor, the time series data is normalized to have a zero mean and scaled to have values within the
range from -1 to 1 for good convergence during the training process [16]. The normalized and scaled data is then used to
train the BRNN model by calibrating the parameters (i.e., the weights 𝐔<, 𝐔@,𝐖<,𝐖@,𝒗5, 𝒗6 and the biases 𝒃5, 𝒃6, 𝑐) to
minimize the difference between the actual measurement 𝑦(𝑡) and the predicted output 𝑦3(𝑡) for each time step 𝑡 = 1, … , 𝑇.
The backpropagation through time (BPTT) algorithm is employed for training the BRNN model [17]. The BPTT algorithm
consists of three basic steps [14]:

• In the forward pass, the predicted output data 𝑦3(𝑡) is calculated for 𝑡 = 1, … , 𝑇 using the input data 𝒙(𝑡) through
Eqs. (1), (2) and (4).

• In the backward pass, the gradients of the loss (i.e., the difference) between the measured output data 𝑦(𝑡) and
the predicted output data 𝑦3(𝑡), 𝑡 = 1, … , 𝑇, with respect to the parameters are computed. The gradients are then
propagated through the connections between the layers and among the different time steps.

• For parameter update, the parameters of the BRNN model are adjusted based on the propagated gradients via an
optimization procedure, such as the Adaptive Moment Estimation (Adam) algorithm [18].

These three steps are repeated until the change of the loss is within a predefined threshold or the number of epochs (i.e.,
the number of times that the entire training dataset is being processed) reaches a prescribed limit.

2.3 Data reconstruction using trained BRNN model

Once the BRNN model is trained, the time series output data 𝑦3′(𝑡) of length 𝑇′ of the target sensor can be estimated using
the corresponding time series data 𝒙′(𝑡) from the input sensors. The sensor data reconstruction consists of two steps. First,
the input data 𝒙′(𝑡), 𝑡 = 1,… , 𝑇′, are normalized and scaled using the normalization and scaling factors obtained during
the training process. Second, the BRNN model is then used to reconstruct the output data 𝑦′(𝑡) using Eqs. (1), (2) and (4).

The reconstructed output data can have at least three different usages. First, when both the input data 𝒙′(𝑡) and the output
data 𝑦′(𝑡) are available, the BRNN model can be evaluated by computing the root-mean-square-error (RMSE) as:

𝜖 = P∑ (𝑦3′(𝑡) − 𝑦′(𝑡))RST
UV(

𝑇′ (5)

The reconstruction error 𝜖 can be used as an indicator to detect potential anomaly of the output sensor. Second, if the target
sensor is known to be faulty, the faulty measurement data 𝑦′(𝑡) can be replaced by the reconstructed data 𝑦3′(𝑡). Third, as
to be discussed in the next section, if the time series data of a sensor indicates the possibility of anomalies, the
reconstruction error 𝜖 computed by Eq. (5) can be used to detect and isolate the anomalies.

3. ANOMALY DETECTION USING RECONSTRUCTED SENSOR DATA
Among the widely used fault detection and isolation (FDI) methods is the analytical redundancy approach that determines
anomalies by comparing the original measurement data with the reconstructed data [5, 19, 20]. This section describes the
sensor validation process, which includes anomaly detection and isolation, using the analytical redundancy approach based
on the reconstructed sensor data.

3.1 Anomaly detection

The goal of anomaly detection is to determine the existence of one or more faulty sensors in a sensor network. The basic
idea of the anomaly detection is that the existence of a faulty sensor will lead to some “measurable” difference between
the measured data and the reconstructed data.

For the anomaly detection of a system with 𝑁 sensors, it is necessary to consider the 𝑁 combinations of the input and
output pairs of sensors. That is, for the 𝑛UX combination, the 𝑛UX sensor is considered as the output (target) sensor while
all other sensors are treated as input sensors. Therefore, prior to the anomaly detection, the BRNN models 𝑔((∙),… , 𝑔,(∙)	
for all 𝑁 input-output combinations are first created and trained. Furthermore, the trained models are employed for testing
on a number of trial datasets to establish the confidence levels for the anomaly detection. In this study, the confidence
thresholds 𝐶(,… , 𝐶, are defined for each input-output combination based on a 95% confidence interval established for the
trained BRNN models 𝑔((∙),… , 𝑔,(∙). As summarized in Algorithm 1, the anomaly detection proceeds as follows:

(1) Select an output, say 𝑛UX, sensor from the N sensors in the network.
(2) Reconstruct the output data for the 𝑛UX sensor using the corresponding BRNN model 𝑔\(∙) and the input data

from all other sensors through Eqs. (1), (2) and (4) (see line 3 of Algorithm 1).
(3) Compute the reconstruction error of the target sensor using Eq. (5) (see line 4 of Algorithm 1).
(4) Repeat steps (1), (2) and (3) for all N input-output combinations (see line 1 of Algorithm 1).
(5) If the reconstruction error from any of the 𝑁 input-output combinations exceeds the defined confidence thresholds,

the system is assumed to have at least one faulty sensor (see line 6 of Algorithm 1).

Algorithm 1. Anomaly detection using BRNN model
Input:

 𝑔((∙),… , 𝑔,(∙): trained BRNN models
𝐶(,… , 𝐶,: thresholds for anomaly detection
𝐃^ = [𝒅(^ ,… , 𝒅+^, … , 𝒅,^]: preprocessed testing dataset collected by the 𝑁 sensors where 𝒅+^ consists of the
measurement data {𝑥′+(1), … , 𝑥′+(𝑇′)} for sensor i.

1: for each 𝑛 ∈ [1,𝑁] do
2: Set output 𝒚′ ← 𝒅\^ and input 𝐃^\𝒅\^ = [𝒅(^ ,… , 𝒅\G(^ , 𝒅\f(^ ,… , 𝒅,^]
3: Compute 𝒚g′ of the 𝑛UX sensor using BRNN model 𝑔\(∙) and input 𝐃^\𝒅\^ according to Eqs. (1), (2) and (4)
4: Compute the reconstruction error 𝜖\ for the 𝑛UX sensor between 𝒚′ and 𝒚g′ using Eq. (5)
5: end for
6: if ∃𝑛 ∈ [1,𝑁]		𝜖\ > 𝐶\, then there exist anomalies (i.e., at least one faulty sensor exists among the 𝑁 sensors)

3.2 Anomaly isolation

The goal of anomaly isolation is to identify the faulty sensor in a system. A simple approach for anomaly isolation would
be to infer the sensors with reconstruction errors exceeding their thresholds as faulty sensors. However, this approach is
prone to false positive error because a faulty sensor can increase the reconstruction error not only when the faulty sensor

is the output sensor, but also when the faulty sensor is one of the input sensors. Another approach is to consider the sensor
with the largest reconstruction error in comparison to the threshold as the faulty sensor. However, this approach is prone
to false negative error when there exist multiple faulty sensors. To avoid the likelihood of false positive and false negative
errors, an elimination approach is employed in this work.

The basic idea is that the faulty sensor causes only local effects and, thus, the anomaly disappears if all faulty sensors are
removed from the sensor network [21]. The procedure follows the anomaly detection algorithm by iteratively eliminating
the faulty sensors and their measurement data. Using the test dataset for anomaly detection, a set of potentially faulty
sensors, where the reconstruction errors exceed the confidence thresholds, are first identified. The elimination procedure
for isolating the faulty sensors then proceeds as shown in algorithm 2 as follows:

(1) Assign the sensor with the highest reconstruction error as a faulty sensor and remove the sensor from the network.
(2) Train and construct the BRNN models and compute the confidence threshold with the rest of the sensors in the

network without the previously identified faulty sensors.
(3) Perform the anomaly detection procedure (Algorithm 1) to identify faulty sensor, if any.

The procedure is repeated until no further faulty sensors are identified.

Algorithm 2. Anomaly isolation based on elimination approach
Input:
 𝑋 = {1, … ,𝑁}: a list of all N sensors

 𝑆 = {𝑛 ∈ 𝑋|𝜖\ > 𝐶\}: a list of potentially faulty sensors with 𝜖\ > 𝐶\
𝐹 = ∅: a list of faulty sensors, initially set to null
𝐃 = [𝒅(,… , 𝒅,]: preprocessed training dataset collected by the 𝑁 sensors
𝐃′ = [𝒅(^ ,… , 𝒅,^]: preprocessed testing dataset collected by the 𝑁 sensors

1: Loop until 𝑆 = ∅
2: Append a sensor 𝑖 with the highest reconstruction error in the list 𝑆 to the list 𝐹
3: Update the training dataset 𝐃 ← 𝐃\𝒅+ and the testing dataset 𝐃′ ← 𝐃^\𝒅+^
4: Construct and train BRNN models 𝑔\(∙), 𝑛 ∈ 𝑋\𝐹 with the remaining training dataset 𝐃 from sensors

 𝑋\𝐹
5: Compute the confidence threshold 𝐶\, 𝑛 ∈ 𝑋\𝐹
6: Perform Algorithm 1 for anomaly detection with the testing dataset 𝐃′
7: Update the list of the potentially faulty sensors 𝑆 ← {𝑛 ∈ 𝑋\𝐹|𝜖\ > 𝐶\}
8: end loop
9: Identify the sensors in the list 𝐹 as potentially faulty

4. NUMERICAL SIMULATIONS
Numerical simulations are conducted to demonstrate and evaluate the BRNN-based sensor data reconstruction method.
As shown in Figure 2(a), a finite element (FE) model for the Telegraph Road Bridge located in Monroe, Michigan is
employed [22, 23]. Here, the FE model is constructed using CSI Bridge [24], a commonly used bridge analysis tool.
Vertical vibration responses due to randomly traveling vehicles are simulated and recorded at 18 (sensor) locations on the
two exterior girders, as shown in Figure 2(b).

(a) 3-D FE model (b) Sensor layout

Figure 2. Finite element model and sensor layout of the Telegraph Road Bridge

Direction

68m

15m

Lane 1 Lane 2 Lane 3

Span
considered

9 1210 15 16 1711 13 14

0 31 6 7 82 4 5
Direction

Lane 1

Lane 2

Lane 3

Span
considered

To emulate the load conditions on the bridge, moving vehicles are randomly defined using the variables summarized in
Table 1. The vehicle types (labelled as auto, H-20, HS-20 and HS-25), as shown in Figure 3, and their loads are defined
based on the AASHTO (American Association of State Highway and Transportation Officials) standard [25]. Dynamic
time history analyses are performed with randomized traffic patterns on the bridge to generate the vertical vibration
response (sensor) data. Each analysis assumes a 10-second duration with incremental time step size of 0.005 (i.e., a
sampling rate of 200 Hz). To generate sufficient amount of data for the data-driven method, a total of 300 analyses are
conducted with randomized moving vehicle loads. Through 300 analyses, 600,000 data points per sensor location are
collected and preprocessed (i.e., normalized and scaled) as shown in Figure 4.

Figure 3. Vehicle load definition

Figure 4. Simulated vertical acceleration measurements

Table 1. Random variables composing randomized traffic
Factor Values

Number of vehicles 1, 2, …, 9
Vehicle type Auto, H-20, HS-20, HS-25

Vehicle speed 70 – 120 km/h (45 – 75 mph)
Vehicle lane Three lanes (lane 1, lane 2 and lane 3)

Vehicle interval in a lane 1.5, 3.0, 4.5, 6.0 seconds

4.1 Evaluation of BRNN for sensor data reconstruction

In this section, the BRNN-based sensor data reconstruction method is evaluated by comparing with other existing methods,
including principal component analysis (PCA) [6], minimum mean square error (MMSE) estimation [7], feedforward
neural network (FNN) [11] and recurrent neural network (RNN) [13]. Two BRNN models for reconstructing the data of
Sensor 4 and Sensor 9 are created for the testing purpose. For comparison, PCA-, MMSE-, FNN- and RNN-based models
corresponding to the two BRNN models are also created. The hyperparameters of neural network models, including FNN,
RNN and BRNN, are determined heuristically, as listed in Table 2. Neural network models are constructed and trained
using PyTorch [26].

8 kips 32 kips

14'

H-20

8 kips 32 kips

14'

32 kips

28'

HS-20

10 kips 40 kips

14'

40 kips

28'

HS-25

Auto

4 kips 4 kips

9'

1

3

2

4

5

6

7

8

9

10

11

13

15

17

12

14

16

0

Table 2. Hyperparameters of neural network models
 FNN RNN BRNN

Number of hidden layers 1 1 1

Number of hidden units 100 100 100 (50 forward and 50
backward hidden units)

Activation function for hidden layer Hyperbolic tangent function Hyperbolic tangent function Hyperbolic tangent function
Activation function for output layer Linear function Linear function Linear function

Optimization algorithm Adam Adam Adam
Loss function MSE MSE MSE
Learning rate 10Gp 10Gp 10Gp

Maximum number of epochs 200 200 200

(a) Sensor 4

(b) Sensor 9

Figure 5. Sensor data reconstruction results for different methods (PCA, MMSE, FNN, RNN and BRNN)

For each of the output target sensors (i.e., Sensors 4 and 9), five data reconstruction models (i.e., PCA, MMSE, FNN,
RNN and BRNN) are trained with 80,000 data points (from data points 1 to 80,000) per sensor and tested with 40,000 data
points (from data points 80,001 to 120,000) per sensor. Figure 5 shows the sensor data reconstruction results for the
different methods. It should be noted that, for the sake of readability, the plots in Figure 5 show only 100 data points out
of 40,000 reconstructed data points.

As can be seen in Figure 5(a), all methods work well for Sensor 4 which locates at the center of the bridge. For Sensor 9,
which locates near the support, RNN and BRNN work better than the other methods as shown in Figure 5(b). Table 3
provides detailed information on the reconstruction results, including the computation time and the testing errors. A notable
aspect shown in the results is that the testing error for the sensor at the center of the bridge (i.e., Sensor 4) is generally
lower than the sensor located near the support of the bridge (i.e., Sensor 9). This is because the sensor located near the
support has only one adjacent sensor, which means that there exists less spatial information for estimating the sensor data.
Nevertheless, BRNN models yield much smaller RMSE error for Sensor 9 than all other methods, as the method takes
both spatial and bidirectional temporal correlation into account. One tradeoff for the BRNN model is the amount of training
time required. Once BRNN model is trained, the reconstruction process can be executed very efficiently even though the
computing time remains higher than the other methods.

Table 3. Computing time and testing error of different sensor data reconstruction methods
 PCA MMSE FNN RNN BRNN

Training time per epoch (sec/epoch) - - » 0.51 » 34.19 » 86.21
Total training time (sec) » 0.053 » 0.026 » 510 » 6,838 » 17,242

Testing time (sec) » 2.155 » 0.006 » 0.049 » 7.445 » 8.3971
RMSE for Sensor 4 0.0154 0.0151 0.0125 0.0034 0.0035
RMSE for Sensor 9 0.0658 0.0432 0.0308 0.0105 0.0070

4.2 Anomaly detection and isolation

To test the BRNN-based method for sensor validation problem, a faulty sensor scenario, in which the response datasets
generated at Sensors 4 and 6 are corrupted with noise, is considered. Three test cases, each of which consists of 40,000
data points (selected from the data points from 480,001 to 600,000) per sensor are considered. Random noises are applied
to each dataset of the test cases on Sensors 4 and 6 such that:

𝑥′+(𝑡) ← 𝑥′+(𝑡) × 𝑠, 𝑠 ∈ 𝑁(1, 𝜎R) (6)

where 𝑖 is the index of the faulty sensors (i.e., 4 and 6) and 𝑡 = 480,001,… , 600,000. The level of noise is set by varying
𝜎 = 0, 0.05, 0.1. The experimental tests are conducted as follows:

(1) Baseline models with good quality data without noise are constructed. First, 18 BRNN models (i.e., 18 input-
output combinations) are created by treating one sensor as the output while all other 17 sensors as input. For
training, 80,000 data points (from the data points 1 to 80,000) per each sensor are employed.

(2) The confidence thresholds of the reconstruction errors are determined by computing the 95% confidence interval
of the reconstruction errors for 10 test case scenarios, each has 40,000 data points (with good quality and without
noise) selected from the data points 80,001 to 480,000.

(3) The reconstruction error for the three test cases with abnormal (noisy) datasets are computed for the 18
combinations of input and output sensor locations. For each test case, the computed reconstruction errors are then
averaged over the entire dataset of 40,000 points. The reconstruction errors are compared with the thresholds.

Figure 6(a) shows the difference (𝜖 − 𝐶) between the average reconstruction error 𝜖 and the threshold 𝐶 at each sensor
location. Here, the range of the y-axis is set to be greater than 0 to visualize only the reconstruction errors exceeding their
thresholds. As shown in Figure 6(a), the reconstruction errors exceed the thresholds when the noise level 𝜎 ≥ 0.05. As the
noise level increases, the discrepancy between reconstruction error from the faulty data and the thresholds of the base
model increases. It can also be seen that the discrepancies appear on all sensors (1-8) along the same girder with Sensors
4 and 6. This result is probably due to higher correlations among the response data on the same girder. This result also
shows that while the anomaly is detected by comparing the reconstruction errors and thresholds, further analysis is needed
to identify the location of faulty sensor.

To identify the faulty sensors, the dataset for Sensor 6, which has the highest discrepancy between the reconstruction errors
from the noisy dataset and the threshold, is removed. For the remaining 17 sensors, the procedures for model training (with

the 1 to 80,000 data points), computing the thresholds using 10 test cases each with 40,000 data points (from 80,001 to
480,000) and calculating the reconstruction errors with the three abnormal (noisy) datasets each with 40,000 data points
(from 480,001 to 600,000) are repeated. Figure 6(b) shows the results without the dataset from Sensor 6. The results,
however, still show detected anomalies, where Sensor 4 has the highest discrepancy between the reconstruction errors and
its threshold. Therefore, the anomaly isolation procedure is continued by removing the dataset for Sensors 4 and 6. For the
remaining 16 sensors, the procedures for model training, computing the threshold and calculating the reconstruction error
are repeated with the same data points. Figure 6(c) shows the results without the datasets from Sensors 4 and 6. As no
anomaly is detected after removing the dataset for Sensors 4 and 6, this implies that Sensors 4 and 6 are the potentially
faulty sensors. This example shows that the data reconstruct using the BRNN method can detect and identify multiple
faulty sensors.

(a) Anomaly detection with all

sensors
(b) Anomaly detection after

excluding Sensor 6
(c) Anomaly detection after

excluding Sensor 4 and 6
Figure 6. Anomaly detection and isolation for the anomaly due to noise at Sensor 4 and Sensor 6

5. SUMMARY AND CONCLUSION
This paper discusses a data-driven sensor data reconstruction and anomaly detection method using bidirectional recurrent
neural network. Unlike existing methods that typically use only the spatial correlation among the sensor data, the proposed
method utilizes spatiotemporal correlation among sensor data to improve sensor data reconstruction accuracy. The
bidirectional recurrent neural network capture spatiotemporal correlation in both positive time direction (i.e., past to
present) and negative time direction (i.e., future to present). The BRNN-based sensor data reconstruction method consists
of two phases, namely the training phase and the data reconstruction phase. In the training phase, a BRNN model is trained
with training dataset that contains input sensors’ data, as well as output sensor’s data. In the data reconstruction phase, the
trained BRNN model reads the input sensors’ data and predicts the output sensor’s data. The reconstructed sensor data can
be used not only to recover faulty or missing sensor data, but also to detect and isolate anomalies by computing the
difference between the measured sensor data and the reconstructed sensor data. The proposed method is demonstrated with
the vibration data collected from numerical simulations that emulate a bridge structure under dynamic moving vehicle
loads. The simulation results show that although with higher computational costs, the BRNN-based sensor data
reconstruction method gives better accuracy on the predicted data than other existing data reconstruction methods, such as
PCA-, MMSE-, FNN- and RNN-based methods. Furthermore, the results show that by combining with the analytical
redundancy approach the sensor data reconstructed using BRNN-based method is able to detect and isolate anomalies for
the faulty sensors.

ACKNOWLEDGEMENT
This research is supported by a Grant No. 13SCIPA01 from Smart Civil Infrastructure Research Program funded by
Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure
Technology Advancement (KAIA). The research is also partially supported by a collaborative project funded by the US
National Science Foundation (Grant No. ECCS-1446330 to Stanford University). The collaboration and support from the
research team led by Prof. Jerome Lynch at University of Michigan are gratefully acknowledged. Any opinions, findings,
conclusions or recommendations expressed in this paper are solely those of the authors and do not necessarily reflect the
views of NSF, MOLIT, KAIA or any other organizations and collaborators.

REFERENCES

[1] V. Venkatasubramanian, R. Rengaswamy, S. Kavuri and K. Yin, "A review of process fault detection and
diagnosis: Part III: Process history based methods," Computers & chemical engineering, vol. 27, no. 3, pp. 327-
346, 2003.

[2] H. Sohn, C. Farrar, F. Hemez and J. Czarnecki, "A review of structural health review of structural health
monitoring literature 1996-2001," Los Alamos National Laboratory, Los Alamos, NM, 2002.

[3] K. Ni, N. Ramanathan, M. Chehade, L. Balzano, S. Z. S. Nair, E. Kohler, G. Pottie, M. Hansen and M. Srivastava,
"Sensor network data fault types," ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, p. 25, 2009.

[4] S. Qin and W. Li, "Detection, identification, and reconstruction of faulty sensors with maximized sensitivity,"
AIChE journal, vol. 45, no. 9, pp. 1963-1976, 1999.

[5] A. Pouliezos and G. Stavrakakis, "Analytical redundancy methods," in Real Time Fault Monitoring of Industrial
Processes, Dordrecht, Springer, 1994.

[6] G. Kerschen, P. De Boe, J. Golinval and K. Worden, "Sensor validation using principal component analysis,"
Smart Materials and Structures, vol. 14, no. 1, pp. 36-42, 2005.

[7] J. Kullaa, "Sensor validation using minimum mean square error estimation," Mechanical Systems and Signal
Processing, vol. 24, no. 5, pp. 1444-1457, 2010.

[8] K. Law, S. Jeong and M. Ferguson, "A data-driven approach for sensor data reconstruction for bridge monitoring,"
in 2017 World Congress on Advances in Structural Engineering and Mechanics, 2017.

[9] X. Xu, J. Hines and R. Uhrig, "Sensor validation and fault detection using neural networks," in Maintenance and
Reliability Conference (MARCON 99), 1999.

[10] I. Eski, S. Erkaya, S. Savas and S. Yildirim, "Fault detection on robot manipulators using artificial neural
networks," Robotics and Computer-Integrated Manufacturing, vol. 27, no. 1, p. 115–123, 2011.

[11] K. Smarsly and K. H. Law, "Decentralized fault detection and isolation in wireless structural health monitoring
systems using analytical redundancy," Advances in Engineering Software, vol. 73, p. 1–10, 2014.

[12] K. Dragos and K. Smarsly, "Distributed adaptive diagnosis of sensor faults using structural response data," Smart
Materials and Structures, vol. 25, no. 10, p. 105019–15, 2016.

[13] A. I. Moustapha and R. R. Selmic, "Wireless Sensor Network Modeling Using Modified Recurrent Neural
Networks: Application to Fault Detection," IEEE Transactions on Instrumentation and Measurement, vol. 57, no.
5, p. 981–988, 2008.

[14] M. Schuster and K. Paliwal, "Bidirectional recurrent neural networks," IEEE Transactions on Signal Processing,
vol. 45, no. 11, pp. 2673-2681, 1997.

[15] M. Hagan, H. Demuth, M. Beale and O. De Jess, Neural network design, 2014.
[16] Y. LeCun, L. Bottou, G. Orr and K. Müller, "Efficient backprop," in Neural networks: Tricks of the trade, Berlin,

Heidelberg., Springer, 1998, pp. 9-50.
[17] P. Werbos, "Backpropagation through time: what it does and how to do it," Proceedings of the IEEE, vol. 78, no.

10, pp. 1550-1560, 1990.
[18] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," in The 3rd International Conference for

Learning Representations, 2015.
[19] X. Dai and Z. Gao, "From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis,"

IEEE Transactions on Industrial Informatics, vol. 9, no. 4, p. 2226–2238, 2013.
[20] A. B. Trunov and M. Polycarpou, "Automated fault diagnosis in nonlinear multivariable systems using a learning

methodology," IEEE Transactions on Neural Networks, vol. 11, no. 1, p. 91–101, 2000.
[21] J. Kullaa, "Distinguishing between sensor fault, structural damage, and environmental or operational effects in

structural health monitoring," Mechanical Systems and Signal Processing, vol. 25, no. 8, p. 2976–2989., 2011.
[22] Y. Zhang, S. O’Connor, G. van der Linden, A. Prakash and J. Lynch, "SenStore: a scalable cyberinfrastructure

platform for implementation of data-to-decision frameworks for infrastructure health management," Journal of
Computing in Civil Engineering, vol. 30, no. 5, p. p.04016012, 2016.

[23] S. O’Connor, Y. Zhang, J. Lynch, M. Ettouney and P. O. Jansson, "Long-term performance assessment of the
Telegraph Road Bridge using a permanent wireless monitoring system and automated statistical process control
analytics," Structure and Infrastructure Engineering,, vol. 13, no. 5, pp. 604-624., 2017.

[24] Computers and Structures, Inc., "Structural bridge design software | CSiBridge," [Online]. Available:
https://www.csiamerica.com/products/csibridge. [Accessed 1 February 2018].

[25] Standard specifications for highway bridges, 17th edition ed., Washington D.C.: AASHTO, 2002.
[26] PyTorch, "PyTorch," [Online]. Available: http://pytorch.org/. [Accessed 1 February 2018].

