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ABSTRACT  

The widespread availability of cost-effective sensing technologies is translating into an increasing number of highway 

bridges being instrumented with structural health monitoring (SHM) systems. Current bridge SHM systems are only 

capable of measuring bridge responses and lack the ability to directly measure the traffic loads inducing bridge responses. 

The output-only nature of the monitoring data available often leaves damage detection algorithms ill-posed and incapable 

of robust detection. Attempting to overcome this challenge, this study leverages state-of-the-art computer vision techniques 

to establish a means of reliably acquiring load data associated with the trucks inducing bridge responses. Using a cyber-

enabled highway corridor consisting of cameras, bridge monitoring systems, and weigh-in-motion (WIM) stations, 

computer vision methods are used to track trucks as they excite bridges and pass WIM stations where their weight 

parameters are acquired. Convolutional neural network (CNN) methods are used to develop automated vehicle detectors 

embedded in GPU-enabled cameras along highway corridors to identify and track trucks from real-time traffic video. 

Detected vehicles are used to trigger the bridge monitoring systems to ensure structural responses are captured when trucks 

pass. In the study, multiple one-stage object detection CNN architectures have been trained using a customized dataset to 

identify various types of vehicles captured at multiple locations along a highway corridor. YOLOv3 is selected for its 

competitive speed and precision in identifying trucks. A customized CNN-based embedding network is trained following 

a triplet architecture to convert each truck image into a feature vector and the Euclidean distance of two feature vectors is 

used as a measure of truck similarity for reidentification purposes. The performance of the CNN-based feature extract is 

proved to be more robust than a hand-crafted method. Reidentification of the same vehicle allows truck weights measured 

at the WIM station to be associated with measured bridge responses collected by bridge monitoring systems. 
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1. INTRODUCTION 

Tremendous progress has been made over the past decade in computer vision technology. Deep learning-based approaches 

to object detection, object tracking and semantic segmentation have shown remarkable performance in solving fundamental 

problems in many application areas including in intelligent transportation systems (ITS). Particularly, learning-based 

vehicle detection and reidentification methods have been previously proposed  for large-scale urban surveillance1, traffic 

flow analysis (e.g.,  vehicle speed estimation and accident detection)2, and smart traffic signal control at road intersections3. 

Concurrent to the advancement of computer vision has been a growth in the capabilities of cost-efficient sensing 

technologies including low-cost sensors, wireless telemetry, and “smart” sensors capable of local data processing (i.e., 

edge computing)4. These advances have impacted the structural health monitoring (SHM) field as witnessed by the 

increasing number of monitoring systems that have been deployed in operational bridges5. While existing bridge SHM 

systems can accurately measure bridge responses (e.g., strain) and environmental conditions (e.g., temperature), most lack 

the capability of directly measuring traffic loads that induce bridge responses; this renders health assessment algorithms 

ill-posed and hinders their accuracy and generality6,7. The possibility of vehicle detection by computer vision stands to 

dramatically enhance bridge monitoring by integrating vehicle load data with bridge response data for SHM analysis.   

In this study, a truck reidentification framework is proposed to track truck loads in highway corridors with the 

aim of linking truck loads to bridge responses. The framework utilizes traffic video feeds acquired at bridges and a WIM 



 

 
 

 

station along the same corridor as the basis for tracking trucks. First, the framework employs a convolutional neural 

network (CNN) detector to identify and segment vehicle events at each camera location (i.e., at each bridge or WIM 

station).  Cameras are time synchronized with the bridge monitoring system and the WIM station to ensure trucks identified 

are linked to the bridge responses and vehicle weight measurements collected, respectively. Next, the trained vehicle 

detector is modified and fine-tuned within a triplet architecture to extract a vectorized feature representation of each truck 

image captured by the CNN detectors. Using a mutual nearest neighbor strategy, the Euclidean distance between the feature 

vectors of each captured truck is selected to serve as a scalar metric of truck similarity; high similarity implies the truck is 

successfully reidentified. Once a truck is detected at the bridge and later reidentified at the WIM station, measured bridge 

responses can be accurately associated with the weight parameters (i.e., gross vehicle weight, axle weight distributions, 

and axle spacings) of the truck as measured by the WIM station. Such a framework allows bridge responses to be precisely 

mapped to their corresponding vehicular loads. To demonstrate the proposed framework, a cyber-physical system (CPS) 

architecture consisting of two bridge SHM systems, four traffic cameras and a WIM station is established along a 20-mile 

highway corridor in southeast Michigan. In this paper, the CPS instrumentation installed along the connected highway 

corridor is first presented. Next, multiple CNN models are explored for vehicle detection at each measurement point in the 

CPS (namely at the bridges and WIM station). The various CNN models are compared using precision-recall curves to 

identify the most robust single-stage detector. In the next section, the implementation of the truck reidentification algorithm 

is presented. Finally, the paper concludes with a summary of key findings and a description of future work.     

 

2. CONNECTED STRUCTURAL HEALTH MONITORING NETWORK 

A cyber-physical system (CPS) is installed along the 20-mile I-275 northbound highway corridor between Newport, 

Michigan and Romulus, Michigan. The CPS architecture is designed to correlate truck loads to bridge responses as 

acquired by SHM systems installed on the bridges. The I-275 corridor consists of three types of data acquisition systems: 

bridge SHM systems, a WIM station and traffic cameras. The SHM systems installed on the bridges utilize wireless sensors 

to measure bridge responses to vehicular loads. The WIM station measures the gross vehicle weight and the weight 

distribution on the truck axles. The camera system captures real-time traffic video. The geographic locations of the network 

components including the SHM systems on the Telegraph Road and Newburg Road bridges, the WIM station and the four 

cameras (denoted as CAM-1 through CAM-4) are illustrated in Figure 1. The northbound travel distance from CAM-1 

where the truck is first identified to the Telegraph Road Bridge, Newburg Road Bridge and WIM station are 2 miles (3.2 

km), 6.5 miles (10.4 km) and 13.5 miles (21.7 km), respectively.  

2.1 Bridge Structural Health Monitoring Systems 

The Telegraph Road Bridge (TRB) and Newburg Road Bridge (NRB) have both been instrumented with wireless sensing 

networks (WSN) in 2011 and 2016, respectively, for bridge condition monitoring8,9. Both bridges are built in 1973 and 

carry three lanes of I-275 northbound traffic. The TRB has three spans and a total length of 224 feet (86.3 m). Located 4.5 

miles (7.2 km) north of the TRB, the NRB is a single-span bridge spanning 105 feet (32.0 m). Both bridges have a concrete-

deck-on-steel-plate-girder composite superstructure consisting of seven girder lines. With the focus being truck 

reidentification, this paper only presents aspects of the WSN design that are essential to the understanding of the proposed 

framework; more details can be found in previous publications of the WSN implementations8,9. Each bridge monitoring 

 
Figure 1. Geographic locations of the bridge structural health monitoring systems and WIM station with the trigger-based data 

acquisition strategy described. 

 



 

 
 

 

system is composed of a WSN of Narada wireless sensing nodes communicating (using IEEE802.15.4) directly to a single 

base station. The base station consists of a single board computer (NVIDIA Jetson TX2 module) which is connected to an 

LTE modem (AT&T Velocity MF861) for Internet access and to a CC2420 IEEE 802.15.4 RF transceiver for wireless 

communication with the Narada nodes. The function of the base station is to: 1) send operational commands to the Narada 

nodes (e.g., sleep, wake-up); 2) time synchronize the nodes before each data collection cycle; 3) collect sensor time-

histories from the nodes; and, 4) push bridge response data aggregated to cloud-hosted services. A cloud-based data 

management system is built on Microsoft Azure for long-term storage and curation of data10. The base station is powered 

by a 12V 40 A-hr sealed lead acid (SLA) battery continuously recharged by a 160W solar panel. Similarly, each Narada 

node is powered by a 12V 2.9 A-hr SLA battery and a small solar panel. Up to four analog sensors (e.g., strain gages, 

accelerometers) can be interfaced at one time to each Narada sensing node for structural response sensing11.  

2.2 Weigh-in-motion Station  

The weigh-in-motion (WIM) station underneath the Pennsylvania Road Bridge at the north-end of the I-275 corridor 

measures the weight configuration of passing trucks without altering the flow of traffic. Located 7 miles (11.3 km) north 

of the NRB, it is the only WIM station on this segment of I-275. Being a two-lane type II station, quartz sensors are only 

installed under the pavement of the right-most and middle lanes. Each measured weight record contains 9 attributes: 1) 

measurement timestamp, 2) Federal Highway Administration (FHWA) vehicle class, 3) vehicle speed, 4) vehicle gross 

weight, 5) number of axles, 6) axle weights, 7) axle spacing, 8) vehicle direction, and 9) lane assignment. The WIM station 

is operated and maintained by the Michigan Department of Transportation (MDOT). The station continuously collects data 

and communicates data via a wired fiber network to a remote database maintained by MDOT. These databases can be 

queried to acquire truck data. 

2.3 Traffic Camera System 

As highlighted in Figure 1, four traffic cameras are installed along the corridor. The first is at the interchange with I-75 to 

identify trucks as they enter I-275 at its southern-most point. The next three cameras are at the TRB, NRB and WIM 

station. Each traffic camera consists of a Logitech C930e webcam enclosed in a water-proof enclosure. It is controlled by 

an NVIDIA Jetson TX2 module and powered by a 12V 40 A-hr SLA battery (charged using a 160W solar panel). The 

TX2 module is connected to the Internet through an LTE modem (AT&T Velocity MF861) and to the camera via a wired 

USB cable. The TX2 contains an embedded integrated 256-core NVIDIA Pascal GPU and a hex-core ARMv8 64-bit CPU 

complex, which enables stable recording of the camera and real-time embedded image processing (e.g., vehicle detection). 

The TX2 is used herein to hold the computer vision algorithms for truck identification. The TX2 commands the camera to 

capture videos at a frame rate of 10 FPS with a resolution of 1280x720 pixels.  

2.4 Data Acquisition Process 

The data acquisition process of the system is controlled via the Internet using communications based on the User Datagram 

Protocol (UDP) so as to minimize latency. Each system component including the cameras and the bridge SHM systems 

are controlled locally by TX2 modules that simultaneously communicate with one another via cellular access to the 

Internet. To capture truck loads passing the bridges, the bridge SHM systems are programmed to collect data using a 

trigger-based strategy, as illustrated in Figure 1. The first camera (CAM-1) acts as the primary system trigger by using an 

embedded detector to identify in real-time trucks entering I-275.  Once CAM-1 observes a truck entering the instrumented 

corridor, it sends a message to each of the system components located north on the corridor to activate the data collection 

process with an estimated start based on the truck speed. The camera and bridge SHM systems at the same location (e.g., 

TRB and NRB) have synchronized clocks and start their data collection processes simultaneously. After the camera or 

bridge SHM system is triggered, it is programmed to collect data for a fixed duration (e.g., 2 mins). It should be noted that 

multiple trucks can be captured at each location including at the WIM station even though the trigger only needs to detect 

one truck to activate the network. The video feed and bridge sensor data collected at each location for the same data 

collection cycle (i.e., collected by the same trigger) is uploaded to the cloud database after the collection process is 

completed10.   

3. VECHICLE DETECTION 

Object detection is a fundamental problem in the field of computer vision that has been extensively studied over the last 

decade12. The goal of object detection is to automatically identify, distinguish and locate objects from a camera image. 



 

 
 

 

Recent advances in deep learning have improved object detection techniques. This study explores deep learning methods 

for vehicle detection using roadside video. There are two main types of learning-based object detectors (i.e., one-stage and 

two-stage) that utilize convolutional neural networks (CNN) for object detection. Two-stage detectors, such as Regions 

with CNN features (R-CNN)13, Fast R-CNN14, Faster R-CNN15 and their variants, generate a plausible set of bounding 

box regions to identify an object in the first stage and perform object classification and detection refinement in each 

candidate bounding box in the second stage. Alternatively, one-stage detectors such as Single Shot Detector (SSD)16, You 

Only Look Once (YOLO)12,17,18, RetinaNet19 and their variants, cast object detection into a single regression problem which 

predicts object classes, bounding boxes and confidence scores simultaneously within a single network inference. While 

two-stage detectors generally enjoy higher precision compared to one-stage detectors, their computational speeds are 

slower19. As fast inference is essential for real-time triggering in this study, only one-stage detectors are considered. Four 

one-stage object detection paradigms proposed by other researchers are tested for truck identification: YOLOv318, 

YOLOv3-tiny18, RetinaNet19 and SSD16. All four architectures utilize CNNs as the backbone for their feature extractions. 

Camera images of a pre-determined resolution and size are set as the CNN input while the CNN output is the location (i.e., 

bounding box) and detection confidence of the target object within the box. A brief description of the four architectures 

will be presented; interested readers are invited to read the implementation details of each method in the original papers. 

3.1 You Only Look Once (YOLO) 

The YOLO architecture is a series of single-stage CNN models designed for real-time object detection. When fed with an 

input image, YOLO first divides the image into a finite number of square cells (S by S). Each cell is responsible for 

predicting a fixed number of potential object bounding boxes whose centroids fall inside the cell (although the box can be 

bigger than the cell)12. The number of predicted objects, B, depends on the number of selected bounding box priors which 

approximately represent the shape and dimension of the final bounding boxes17. Associated with each bounding box are 5 

items including its x and y coordinates, width, height and a confidence score (between 0 and 1) that measures the likelihood 

the box contains an object and the accuracy of the box’s dimension. Also assigned to the box are C conditional class 

probabilities corresponding to C detectable object classes with each reflecting the likelihood of the bounding box belonging 

to an assigned class. The YOLO architecture utilizes its convolutional layers to encode an input image into a tensor with 

a shape of S*S*B*(5+C) which contains totally S*S*B prediction outputs17. For each predicted bounding box, its final 

class confidence scores which has C entries equal the product of the box confidence and the C conditional class 

probabilities. A softmax function or independent logistic classifiers can be used to determine the final class for each 

predicted bounding box depending on the specified architecture. Considering there might be multiple bounding boxes for 

the same object, the YOLO architecture applies non-maximal suppression (NMS) to remove duplications with lower 

confidence. A global confidence threshold can also be set such that the model only offers object detection predictions with 

confidence scores higher than the threshold. The third generation of the YOLO architecture, YOLOv318, adopts a deep 53-

layer CNN architecture (i.e., Darknet-53) with skip connections to extract features and make predictions. Skip connections 

are those where the outputs of one layer may “skip” numerous sequential layers in the network and sums these skipping 

outputs to the outputs of lower layers. Skip connections were first proposed in the residual network (ResNet) to enable the 

convolutional layers to preserve an identity mapping of its input20. Another feature of YOLOv3 is that it incorporates up-

sampling techniques similar to feature pyramid networks (FPN) so that object predictions can be performed at different 

spatial scales thereby allowing smaller objects in an image to be accurately predicted21. YOLOv3-tiny follows the 

architectural principles of YOLOv3 but has a more compact CNN backbone (i.e., 13 convolutional layers) for faster 

execution in real-time systems. YOLOv3 has three variants supporting image inputs of different sizes. This study selects 

the YOLO models that accept 416-by-416 pixel images as inputs for a balance of speed and accuracy18. The input image 

resolution is fixed by the CNN architecture; images from cameras of different resolutions must be modified to conform to 

the required input image resolution. 

3.2 RetinaNet 

The RetinaNet CNN architecture consists of a backbone network and two task-specific subnetworks. The backbone 

network stacks an FPN on top of ResNet in order to extract several feature maps at different spatial scales from the input 

image19,21,22. The two subnetworks are responsible for object classification and convolutional bounding box regression 

based on the feature maps extracted by the backbone network19. In addition to its innovative unifying architecture, 

RetinaNet utilizes a novel loss function called focal loss. Focal loss was designed to resolve the challenging issue of class 

imbalance which is often encountered in one-stage detectors19. Towards this end, focal loss dynamically scales a cross-

entropy function during training to allow the training to focus more on those objects difficult to classify. The version which 



 

 
 

 

has the ResNet-50-FPN as its backbone is used in this study because it offers a good balance between  speed and precision19. 

Input images of the RetinaNet model are resized such that the shorter side equals 600 pixels 

3.3 Single Shot Detector (SSD) 

The SSD architectures select the VGG-1622 CNN architecture as the base network but discards the fully connected layers 

and adds auxiliary convolutional layers for extracting features at multiple scales16. The SSD divides each feature map into 

grid cells where each cell has a set of default boxes of different dimensions and aspect ratios associated16. For each default 

bounding box, the confidence for all object classes are predicted and the box location is adjusted to better match the object 

location through regression performed by the CNN. The SSD version which takes 300-by-300 pixels images as the network 

inputs is adopted in this study.  

3.4 Model Training  

The primary objective of this study is to detect three vehicle classes from camera images: large trucks, pick-up trucks and 

cars (e.g., sedans, SUV, vans). The four selected single-stage object detectors (YOLOv3, YOLOv3-tiny, RetinaNet, SSD) 

have their initial CNN architectures fixed with preliminarily weights pre-trained on ImageNet23 included. These four 

detectors are further fine-tuned and later tested using a diverse set of images manually prepared to improve the detectors 

for vehicle detection. The resultant data set is a combination of pictures of trucks crawled from the Internet and those 

manually selected from the traffic images captured by the four cameras installed along the I-275 corridor. Ground truth 

bounding boxes are manually labelled in all figures by the authors using a customized annotation tool. The entire data set 

used to train the four detectors contains a total of 3,500 vehicle images. Approximately 70% of the pictures are used for 

CNN training with 30% held for testing. As listed in Table 1, the training set has 2,600 vehicle images that contain a total 

of 4,391 vehicle instances. In contrast, the test set is composed of 900 vehicle images with a total of 1,226 vehicle instances. 

One additional arrangement of the split is that all the vehicle pictures obtained online belong to the training data set. The 

reason for selecting online images for training is to generalize the detection capability of the CNN so that it can potentially 

detect vehicles that may not commonly appear in the videos captured on the I-275 highway corridor. To further generalize 

the detection capabilities of the four detectors, vehicle images from the Internet and the I-275 cameras are intentionally 

diversified to include a wide range of weather and illumination conditions (e.g., snow, rain or glare). This tactic ensures 

the final trained CNN architectures will offer robust detection performance even under harsh operational circumstances. 

Some sample images used to train the CNN architectures are shown in Figure 2. 

The four object detectors are based on open-source scripts published by the authors of the original work. More 

specifically, the implementation of YOLOv3 and YOLOv3-tiny is based on Darknet which is an open source neural 

network framework written in C and CUDA24. RetinaNet is based on Detectron which is a software system developed by 

Facebook based on Python and the Caffe2 deep learning framework for novel object detection models25. The SSD 

implementation adopts the original open source code using the Caffe framework16. The model parameters of all four CNN 

architectures are initialized using the publicly available weights pre-trained based on the ImageNet dateset23. Only minor 

changes are made to the original scripts to accommodate the training process based on the images and hardware available 

(i.e., GPU platform) in this study. For example, the number of classes, the number of GPUs, the learning rate and the batch 

 

Figure 2. Sample images in the customized vehicle detection data set: (top row) images from the Internet; (middle) images from 

the I-275 corridor; (bottom) images from the I-275 corridor under varying weather conditions. 

 
 

 



 

 
 

 

size are modified according to the hybrid (i.e., Internet and from I-275) training set. Both the training and testing processes 

are performed on an NVIDIA Titan Xp GPU.   

3.5 Model Testing 

After training, the four detectors are evaluated using the independent testing data set. The performance of each detection 

is based on average precision (AP) per class26, mean AP (mAP)26 and inference speed. Precision is a measure of the true 

positives among all of the positive detections in the testing data.  Recall is the number of true positives identified among 

all the positive (true positive plus false negatives). Hence, average precision is an average of the maximum precision 

metrics at various recall rates. In the four object detectors, a global confidence threshold can be established to control the 

lower bound of the confidence score that a detector can have, and thus the number of prediction outputs. Consequently, a 

change of the global confidence threshold leads to a change of the precision and recall obtained on the test data. AP is 

calculated by averaging maximum precisions at different recall levels per class and mAP is the mean of AP of all detectable 

classes. In this study, mAP and AP per class are both evaluated for two different intersection over union (IOU) thresholds: 

0.5 and 0.75. A higher IOU threshold means the predicted bounding box of the detected object needs to have a larger 

overlap with the ground truth to be considered as a correct detection. Since predicted bounding boxes are also used for 

further data analysis such as truck reidentification, the detection accuracy of each single-stage detector at a threshold of 

0.75 is explored in addition to the most common threshold of 0.5. The detailed evaluation results for the four detectors are 

shown quantitatively in Table 2 with the most competitive result bolded in each column. The IOU threshold is denoted 

using superscripts such as mAP0.5. In addition, the precision-recall curves per vehicle class of the four detectors with two 

different IOU thresholds are presented in Figure 3 for comparison. The inference time refers to the average time needed to 

perform vehicle detection on one image by forward execution of the CNN architecture. 

As shown in Figure 3, all four detectors achieve relatively high mAPs. This may be because vehicles have low variance 

on their appearance and the test images are limited to ones captured from the four identical cameras along the I-275 

corridor. More specifically, YOLOv3 shows the highest accuracy for truck detection while RetinaNet slightly outperforms 

others in pickup and car detection due to the use of focal loss which addresses the class imbalance between large truck 

classes and small car classes. However, the lightweight YOLOv3-tiny model exhibits the fastest inference time while still 

achieving a sufficiently high level of accuracy, especially for truck detection. Consequently, the YOLOv3-tiny model is 

deployed in the NVIDIA TX modules in the field for real-time truck detection at CAM-1 where latency is the most 

important performance metric. The YOLOv3-tiny model can run at 15 FPS when embedded in NVIDIA TX2, which 

satisfies the requirement of real-time detection. When using the model, the confidence threshold is set to 0.8 with the model 

only returning predictions with class probabilities higher than this threshold. This ensures false alarms are minimized in 

the deployed system. YOLOv3 is selected as the primary detector used to detect trucks in the bridges and WIM station 

images offline because real-time performance is not required. As a result, the higher precision and recall performance of 

YOLOv3 is desirable for confirmation of trucks crossing the bridges and WIM station. The YOLOv3 detection is an offline 

post-processing process performed on a server using an NVIDIA Titan Xp GPU after all data is uploaded into the cloud. 

Some qualitative detection results are shown in Figure 4. 

 

Table 1. Statistics of vehicles in the training and testing dataset 

Stage 
Number of 

Images 

Pct. 

(%) 

Total Vehicle 

Instances 

Pct. 

(%) 

Large  

Trucks 

Pct. 

(%) 

Pick-ups 

Trucks 

Pct. 

(%) 

Small  

Cars 

Pct. 

(%) 

Training  2600 74% 4391 78% 2947 84% 344 66% 1100 70% 

Testing  900 26% 1226 22% 566 16% 178 34% 482 30% 

Total 3500 100% 5617 100% 3513 100% 522 100% 1582 100% 

 
Table 2. Test results of four selected single-stage vehicle detection models trained using the customized dataset 

Model 𝑚𝐴𝑃0.5 𝑚𝐴𝑃0.75 Time 𝐴𝑃𝑡𝑟𝑢𝑐𝑘
0.5

 𝐴𝑃𝑝𝑖𝑐𝑘𝑢𝑝
0.5  𝐴𝑃𝑐𝑎𝑟

0.5
 𝐴𝑃𝑡𝑟𝑢𝑐𝑘

0.75   𝐴𝑃𝑝𝑖𝑐𝑘𝑢𝑝
0.75  𝐴𝑃𝑐𝑎𝑟

0.75  

YOLOv3 93.64% 92.56% 19.7 ms 98.91% 88.44% 93.58% 98.91% 85.73% 93.04% 

YOLOv3-Tiny 88.11% 86.20% 3.2 ms 97.46% 82.13% 84.73% 96.65% 79.25% 82.71% 

RetinaNet 93.98% 92.50% 77.3 ms 97.67% 90.02% 94.25% 96.80% 86.82% 93.89% 

SSD 90.68% 88.57% 48.2 ms 98.03% 81.77% 92.26% 95.89% 78.58% 91.25% 
 

 

 



 

 
 

 

4.  TRUCK REIDENTIFICATION 

The YOLOv3-tiny single-stage detector trained in the previous section and embedded in CAM-1 is used for real-time truck 

detection with the CPS architecture designed to autonomously trigger the bridge monitoring systems and subsequent 

cameras along the I-275 corridor. This triggering strategy is designed to capture bridge responses and truck weight 

measurements for the same truck as it may travel north on I-275. To confirm the same truck is evident at each section of 

the corridor, the YOLOv3 detector is implemented offline to extract truck events at each bridge and WIM station using 

videos from CAM-2, CAM-3 and CAM-4. Identified truck objects at each camera are collected during the data collection 

window triggered by CAM-1. This section describes the truck reidentification method used to match the same truck at 

different locations based on a mutual nearest neighbor strategy using extracted features from the truck objects identified.  

As multiple images (video frames) are associated with a single truck, the image that has the largest bounding box while 

shows the entire truck head is selected for the reidentification purpose. The image is cropped around the bounding box to 

remove redundant background information. Such an image is assumed to contain the most useful information of that truck’s 

appearance and thus gives the best accuracy for reidentification. 

Two approaches are explored to extract features from cropped truck images and to measure the similarity between 

a pair of images. One approach is to use traditional hand-crafted features and match detected key points between two 

candidate images. For example, the percentage of matched key points can be a direct measure of similarity between two 

 

Figure 3. Comparison of precision-recall curves of the trained detection models per object category using different IOU 

threshold. 

 

 
Figure 4. Qualitative vehicle detection results from the trained YOLOv3 model: (a) truck; (b) pickup truck; (c) cars 

 
 

 



 

 
 

 

trucks from two different images. The second approach is to extract a feature vector from each image using a learning-

based CNN model and use the reciprocal of the Euclidean distance between the two feature vectors as a similarity metric.  

4.1 Hand-crafted Feature Extraction  

In the first approach, the truck reidentification problem is posed as a wide baseline stereo matching problem. Stereo 

matching aims to estimate the fundamental matrix of a geometric transformation between images and to extract a common 

set of key points given two images with distinct views (e.g., views differing by rotation, translation or significant changes 

in illumination) of an identical object27. In a standard baseline matching problem, the first step is to detect key points and 

describe local features in two input images separately. The second step involves tentatively linking extracted key points of 

the two images followed by geometric verification using parameter estimation techniques such as RANSAC28,29. In this 

study, two bounding box images of the same truck taken at different locations are treated like two images taken at the same 

location with distinct views. Thus, the ratio of the number of matched key points to the number of total extracted key points 

from the two input images can be used as a metric to describe the similarity between them. Due to large view 

transformations (e.g., tilt) and environment changes (e.g., illumination) associated with images taken at different locations 

in the I-275 corridor, commonly used short baseline stereo algorithms such as SIFT30 and SURF31 prove to be unsuccessful 

in robustly detecting key points; they are not considered further due to their lower than desired performance levels. As an 

alternative, the Affine-SIFT (ASIFT) algorithm which is designed for wide baseline stereo matching is explored32. ASIFT 

is fully affine invariant and has improved matching accuracy by synthesizing a series of views for both input images 

through image deformation (i.e., scale and tilt) before the feature detection step32. The approach entails 𝑛2 independent 

matching problems derived from the original single matching problem where n is the number of synthesized (deformed) 

views per image. ASIFT also has a step of filtering out accumulated false matches that enhances its performance32. ASIFT 

is more robust than SIFT and SURF but its speed is not sufficiently fast in this application. In this study, the SIFT and 

SURF implementations in OpenCV and the ASIFT code published by the original author are evaluated. 

The final approach explored is a wide baseline stereo matching algorithm called matching on demand with view 

synthesis (MODS)29. In addition to view synthesis introduced in ASIFT, the most significant advantage of MODS is the 

employment of a combination of different detectors and descriptors. Following an iterative strategy, MODS adaptively 

 
Figure 5. (a) The traditional YOLOv3-tiny CNN architecture; (b) 

the modified CNN architecture for truck image matching. 

Table 3. Layer types and primary parameters of the 

embedding network for truck matching (Figure 6b) 

Layer Type #Filter Size Stride 

0 Convolutional 16 3 1 

1 Max pooling  2 2 

2 Convolutional 32 3 1 

3 Max pooling  2 2 

4 Convolutional 64 3  

5 Max pooling  2 2 

6 Convolutional 128 3 1 

7 Max pooling  2 2 

8 Convolutional 256 3 1 

9 Max pooling  2 2 

10 Convolutional 512 3 1 

11 Max pooling  2 2 

12 Convolutional 1024 3 1 

13 GAP   13 

14 Fully connected  1024  

15 Fully connected  512  
 

 

 
Figure 6. Same truck with top matched feature points highlighted by the MODS algorithm: (left) TRB and (right) NRB. 

 



 

 
 

 

attempts more powerful but slower detectors and descriptors until sufficient proof is found for a match29. In the meantime, 

MODS also synthesizes more views for each image, if necessary. Such an on-demand approach tackles the matching 

problem with a balance between matching robustness and computational speed. The implementation of MODS published 

in C++ by the original author is adopted in this study29. An example of matched pairs using the MODS algorithm is shown 

in Figure 5 with matched key points highlighted between the two views of the same truck at TRB and NRB. It is observed 

that the algorithm works well even in the case of harsh weather conditions (e.g., raining or snowing) or blurred images due 

to low light conditions and a slow shutter speed. As shown, MODS is able to match two truck images even when the views 

are transformed and with a partial occlusion of the complete truck. However, MODS performance is degraded with low 

contrast images such as those with glare or haze.  

4.2 CNN-based Feature Extraction  

CNNs have been shown to be a powerful tool for the extraction of meaningful features (e.g., lines, shapes, colored patterns) 

from images; as a result, they can potentially be used for object reidentification. Within a CNN, each intermediate 

convolutional layer is responsible for extracting a feature map from previous network outputs. Some particular 

combination of those convolutional layers can be used to serve as a feature extractor to convert the characteristics of an 

image into a feature vector33,34. In this study, a CNN-based approach to vehicle reidentification is considered; the approach 

leverages the previously trained YOLOv3-tiny model to extract features from traffic images for truck reidentification. The 

first 12 layers of the YOLOv3-tiny model are preserved and combined with: 1) a global average pooling (GAP) layer35 

(layer 13) and 2) two fully connected layers as a new embedding network (layers 14 and 15). The architectures of the two 

models are illustrated in Figure 6 and the layer types and primary parameters of the embedding network are listed in Table 

318. The first 12 layers of the embedding network are identical to those of the YOLOv3-tiny network and thus each 

convolutional layer is followed by a batch normalization and then activated by a leaky rectified linear unit (ReLU)18. The 

total number of convolutional layers and fully connected layers in the CNN, seven and two, respectively, are determined 

by ablation experiments in order to extract the most profitable features for vehicle reidentification. The idea of adding the 

GAP layer is to enforce each feature map to represent meaningful characteristics of trucks and to reduce the dimensionality 

of the input fed into the subsequent fully connected layers to try to avoid overfitting. The proposed embedding network 

takes 416-by-416 pixels images as inputs, which is similar to the original YOLOv3-tiny model but is fed cropped truck 

images instead of the entire raw traffic images. The network output is a 512-entry feature vector for each truck image for 

matching.  

Two general architectures, Siamese network36 and triplet network37, are used during training to learn similarity 

metrics between input images. The goal is to let the embedding network learn to extract vision features useful for truck 

reidentification. The primary differences between the two architectures are their input forms and the loss functions used. 

As shown in Figure 7(a), two identical CNNs, namely the prementioned embedding network, exist in a Siamese network 

with both CNNs sharing the same weights at all times36. During training, a pair of images either of the same truck or of 

different trucks is taken as an input to the Siamese network with each image fed to one of the two CNNs. The outputs of 

the two CNNs (i.e., two feature vectors) are then passed to a contrastive loss function36. The contrastive loss function, L, 

has the form: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = (1 − 𝑌)
1

2
(𝐷𝑤)

2 + (𝑌)
1

2
{max⁡(0,𝑚 − 𝐷𝑤)}

2     (1) 

𝐷𝑤 = ‖𝐺𝑤(𝑥1) − 𝐺𝑤(𝑥2)‖2     (2) 

where Y is the label of an image pair that is set to 0 if two input images belong to the same truck and 1 if the they are from 

different trucks, 𝐷𝑤 is the Euclidean distance between the outputs of the two branch networks which can be computed by 

Equation (2) where 𝐺𝑤(𝑥1) and 𝐺𝑤(𝑥2) are the vectorized outputs of the two CNNs, and m is a positive distance margin. 

The role of the contrastive loss function is to train the embedding networks to pull the feature vectors of two similar trucks 

together while separating those of dissimilar trucks. If the distance between two different trucks is larger than the specified 

margin, it then stops contributing to the loss. 

A triplet network, shown in Figure 7(b), has three identical embedding networks. All three subnetworks have 

identical weights. During training, the network is fed with a triplet of truck images without any explicit labels attached. 

Among the three input images, one image is the anchor image, one is the positive image which shows the same truck as 

the anchor image and the last is the negative image of a truck that is different from the anchor image37. A triplet loss 



 

 
 

 

function (Equation (3)) is employed to learn the parameters of the embedding network, in such a way that the feature vector 

of the positive truck image is trained to be closer to that of the anchor image than the negative sample by a margin 𝛼37.  
 

          𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 =⁡∑ [‖𝐺𝑤(𝑥𝑖
𝑎) − 𝐺𝑤(𝑥𝑖

𝑝
)‖

2

2
− ‖𝐺𝑤(𝑥𝑖

𝑎) − 𝐺𝑤(𝑥𝑖
𝑛)‖2

2 + 𝛼]
+

𝑛
𝑖=0   (3) 

To train the embedding network, 1,300 truck image pairs are manually picked by the authors. Within each pair, 

the two images belong to the same truck but are captured at different locations in the I-275 corridor. Each traffic image is 

cropped and resized to 416-by-416 pixels to remove background objects; samples are shown in Figure 8. To prevent 

overfitting of the embedding network during training, the datasets are also augmented by flipping the images both vertically 

and horizontally, which results in a total of 3,900 image pairs for training. During the training of the Siamese network, 

negative pairs are randomly generated in each iteration by combining a truck image from one pair to a different truck 

image that has been processed identically (i.e., flipping vertically, flipping horizontally or unchanged). The total number 

of negative pairs is set to be equal to that of positive pairs in each iteration. The negative samples in each data set for the 

triplet network are generated following the same logic. Following this approach, the Siamese and triplet networks see an 

abundance of different negative samples than positive samples throughout the entire training process.  

The CNN of the embedding network is initialized using the corresponding weights of the trained YOLOv3-tiny 

model. The weight of this part is frozen for the first 5 epochs and then fine-tuned in the training process along with the 

fully connected layers which are randomly initialized using an Xavier uniform distribution38. A dropout rate of 0.5 is also 

added before the first fully connected layer to overcome overfitting. The two embedding networks are trained using the 

Adam optimizer39 with a base learning rate of 5x10-4 and a batch size of 32. The entire process is implemented using the 

PyTorch framework40 and is executed on an NVIDIA Titan Xp GPU. After the training of the embedding network, the 

reciprocal of the Euclidean distance (i.e., L2 distance) between the two truck images’ embedding vectors is selected to be 

the proxy for their similarity.  

4.3 Reidentification Strategy 

A mutually nearest neighbor strategy is adopted in this study for the reidentification of the truck events captured at different 

locations along the corridor within the same data acquisition cycle. In a single cycle, multiple truck events can be captured 

at each corridor data collection site. Also, the sets of trucks captured at two adjacent locations may not be identical because 

trucks may enter or exit the corridor in between the sites. To perform truck reidentification between two locations, each 

possible pair of truck images are compared and measured by the similarity metrics discussed in Section 4.1 and 4.2. A 

correlation matrix with m rows and n columns is constructed for storing the computed pairwise indices, where m and n are 

 
Figure 7. Coupled network architectures for the embedding network training: (a) Siamese network architecture; (b) triplet 

network architecture. 

 

 

Figure 8. Samples of manually prepared positive truck image pairs. 

 



 

 
 

 

the number of truck events captured at the first location and the second location, respectively. A sample of the correlation 

matrix is plotted in Figure 9 to showcase the matching between the NRB and WIM station using MODS. Two images with 

index i and j are considered to contain the same truck if and only if the similarity measure with a coordinate of (i, j) is 

greater than a pre-determined threshold (e.g., 12) and is the maximum metric of the i-th row and the j-th column at the 

same time. In other words, truck i and truck j are mutually nearest neighbors. For instance, considering the matrix shown 

in Figure 9 (NRB trucks compared to WIM station trucks), four matched truck pairs are extracted: namely, W4 & N4, W6 

& N5, W7 & N2 and W9 & N1, if the threshold is set to be 12.   

4.4 Evaluation 

To the evaluate the performance of the two approaches (i.e., hand-crafted features and CNN-based embedding network) 

for truck reidentification, 150 truck image pairs that are not included in the training set of the CNN-based embedding 

networks are selected to serve as a testing data set. The 150 images are split into 15 sets of 10 trucks to mimic the real 

application in this study, which leads to 1500 (15*10*10) similarity metric calculations. The performance of the models is 

evaluated in terms of precision, recall, F1 score41 and inference speed. The F1 score is the harmonic mean of precision and 

recall which can calculated as (2*recall*precision)/(recall*precision)41. The results are compared in Table 4. Since the 

CNN embedding networks trained from the Siamese and the triplet network follow the same procedure during testing, they 

have inference speeds close to one another. In addition, cumulative match characteristic (CMC) curves averaged from all 

15 test sets are plotted in Figure 10. According to the evaluation results, the embedding network trained from the triplet 

architecture gains the highest F1 score as well as the fastest speed; it is thus employed for the truck reidentification in the 

production version of the system. Nevertheless, all methods fail to distinguish some extremely similar truck pairs. For 

examples, some trucks seen at different locations along the corridor may come from the same freight transportation 

company or they are of the same truck type with the same color. Besides, a truck image in one set might be matched with 

a distinct but similar truck in another set if the same truck is not captured in the second set. 

4.5 Integrated Data 

With the truck reidentification framework in place, truck events (bridge responses to truck loads and truck load information 

measured by the WIM station) are integrated using the matched truck images. An example of the integrated data set 

corresponding to the same truck load is illustrated in Figure 11. While a dense network of various types of sensors are 

installed in the two bridges, this paper only showcases strain responses measured by one strain gauge (Hitec HBWF-35-

 
Figure 9. A sample of correlation matrix for truck reidentification by MODS between two data sets collected at different locations. 

 
Table 4. Evaluation results of truck reidentification using MODS, embedding network trained from Siamese and triplet network 

Method Precision Recall F1-score 
Speed per comparison 

(sec) 
Device 

CNN-

based 

triplet 100% 95.00% 0.9743 0.0035 GPU 

Siamese 100% 93.57% 0.9668 0.0032 GPU 

Wide 

baseline 

MODS 98.49% 93.57% 0.9597 1.73 CPU 

ASIFT 99.22% 91.43% 0.9517 20.52 CPU 

Short 

baseline 

SIFT 93.68% 63.57% 0.7574 0.06 CPU 

SURF 90.13% 52.14% 0.6606 0.08 CPU 

 



 

 
 

 

125-6-10GP-TR) in each bridge to demonstrate the proposed computer vision framework. In each bridge, the selected 

strain gage is installed 3 inches (7.6 cm) above the top surface of the bottom flange on the middle girder web at mid-span. 

The strain gauge is notated as ST for the TRB and SN for the NRB in Figure 11. Both sensors are programmed to have a 

sampling frequency of 100 Hz. 

 

5. CONCLUSIONS 

In this paper, a computer vision-based truck reidentification framework is proposed to automatically link truck-induced 

bridge response data measured by bridge SHM systems to truck load data measured by a nearby WIM station. A connected 

network composed of two bridge SHM systems, one WIM station and four traffic cameras is installed along the I-275 

northbound corridor between Newport, Michigan and Romulus, Michigan to evaluate the framework. The first stage of 

the truck reidentification involves training CNN models for vehicle detection. Trained using a customized data set, four 

advanced CNN architectures are evaluated in this study in terms of average precision and inference speed. Being the fastest 

detector, YOLOv3-tiny is selected for real-time detection of incoming trucks to trigger the subsequent systems so that all 

systems can track the same trucks along the corridor. YOLOv3 is used to identify truck events captured by the cameras at 

the bridge SHM systems and the WIM station offline due to its high precision and fast execution speed. At the second 

 

Figure 10. Cumulative match characteristic curves for truck matching using SURF, SIFT, ASIFT, MODS, and CNN-based 

embedding networks (Siamese and triplet networks). 

 

 

Figure 11. Example of integrated bridge response data and truck load weight data 



 

 
 

 

stage, features are extracted from identified truck images to match identical trucks captured at different locations following 

a mutual nearest neighbor fashion. Multiple hand-crafted feature extraction algorithms and customized CNN-based feature 

extraction models are compared for truck reidentification purpose. It is shown that the CNN-based embedding network 

trained using a triplet architecture outperforms its hand-crafted counterparts. Linked by the matched truck images, the 

corresponding data collected by different systems (i.e., bridge SHM systems and WIM station) can be fused. The paper 

showcases a sample of the integrated multi-source data set. Such data sets can be potentially utilized to develop highly 

innovative methods for bridge SHM and load rating. Future work will be focused on adopting a deeper CNN architecture 

to extract features from truck images and visualizing extracted features for a better interpretation of the model working 

mechanism.  
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