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Abstract 

Civil infrastructure monitoring is an important technology that provides accurate and 

objective data on the health condition of a structure by leveraging sensor technologies. 

Together with routine maintenance and inspection, civil infrastructure monitoring enables 

the diagnosis of potential structural problems and the prognosis for the need of structural 

strengthening and repairs. As sensor technologies mature and become economically 

affordable, their deployment for civil infrastructure monitoring will continue to grow to 

collect more detailed data about the structures. The data collected from civil infrastructure 

monitoring systems offers promising opportunities to find meaningful information, 

knowledge and insight that can improve decision making processes. Furthermore, advances 

in sensing and communication technologies will eventually realize the concept of cyber-

physical systems (CPS) that tightly integrate physical systems and cyber systems to 

monitor, analyze, coordinate and control the operations of physical systems. Nevertheless, 

the increasing use of sensors will also lead to significant data management issues. Civil 

infrastructure monitoring systems instrumented with dense sensor networks will be 

inundated with unprecedented volume and diverse types of data that need to be processed, 

interpreted and brought forth to support system operations. The utilization of such “big 

data” will be significantly limited unless a proper data management platform, which can 

efficiently store, manage, retrieve, share, interface, link and integrate data, is developed.  

This thesis describes a cyberinfrastructure platform for civil infrastructure monitoring with 

an emphasis on system scalability and interoperability. The cyberinfrastructure platform 

brings together information and communication technologies (ICT), including information 
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modeling, NoSQL database, cloud computing and web services, for effective data 

management. An information modeling framework with application to bridge monitoring 

is designed to facilitate data interoperability and data integration. A NoSQL-based data 

management system is developed to enable scalable, flexible and fault-tolerant 

management of monitoring data. Cloud computing is adopted as a scalable, reliable and 

accessible computing infrastructure. Platform-neutral web services are developed to enable 

easy access to the cloud resources and data involved in engineering systems via standard 

communication protocols. For demonstration, the cyberinfrastructure platform is 

implemented for the monitoring of bridges along the I-275 corridor in the State of Michigan. 

The results show that the cyberinfrastructure platform can effectively manage the sensor 

data and domain-specific information and facilitate data sharing, integration and utilization. 
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Chapter 1  

Introduction 

 

 

1.1 Problem Statement 

Advances in sensor and communication network technologies have led to an increasing 

deployment of sensors for civil infrastructure monitoring [1, 2]. Data collected from sensor 

networks offers promising opportunities to enhance the operation of civil infrastructure 

systems. Research efforts for sensor data utilization, ranging from short-term anomaly 

detection to long-term trend investigation, have been widely reported [3, 4, 5]. Furthermore, 

advanced data analytics and machine learning methodologies can potentially enable 

finding hidden patterns, meaningful information and insights regarding the target systems 

and their operations from the sensor data. Growth in sensor deployment, however, will also 

give rise to data management issues in civil infrastructure monitoring. The amount and 

complexity of data involved in civil infrastructure monitoring make data management a 

very difficult task, which would hinder the utilization of sensor data. Data issues are of 
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significant importance that need to be handled before sensing technologies can truly be 

useful for civil infrastructure management [6]. 

Successful data management can be achieved by using appropriate computing technologies 

with consideration of domain-specific characteristics. Until now, however, there is a huge 

gap between the computing and engineering communities. In the computing community, 

on the one hand, various technologies that can be used to cope with today’s data issues 

have emerged [7]. For example, cloud computing has become a new computing paradigm 

where scalable, reliable, cost-effective and easy-to-manage computing resources can be 

rapidly provisioned and accessed over advanced communication networks. Another 

example is NoSQL (Not-only-SQL) database systems which have been proposed as 

alternatives to traditional database systems to meet today’s data management requirements, 

such as scalability, flexibility and fast query performance [8, 9]. Furthermore, as sensing 

and Internet of Things (IoT) technologies mature and become increasingly prevalent, many 

cloud-based IoT platforms have been developed to facilitate the connection of numerous 

physical devices, as well as data exchange among the devices and applications [10]. 

Nonetheless, there is no one-size-fit-all technology: such contemporary computing 

technologies have to be tailored to meet domain-specific requirements [11]. Engineering 

applications often involve diverse types of information ranging from heterogeneous sensor 

data (e.g., high-frequency time-series data, video and camera images, etc.) to domain-

specific engineering information (e.g., geometric models, engineering simulation models, 

etc.), imposing additional data management requirements [12, 13]. For example, sensor 

data needs to be integrated with engineering information to enable effective data retrieval 

and utilization. In addition, efficient information sharing and data exchange are required 

because engineering projects typically involve a wide variety of software tools, as well as 

ad hoc analysis modules [14]. A data management platform needs to be designed to meet 

these requirements in order to support engineering applications effectively. 

In the engineering community, on the other hand, information modeling has gained 

enormous attention as a vehicle to support integrated project delivery processes [14]. 

Information modeling enables information sharing and integration, as well as seamless data 
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exchange among software based on interoperability standards [15]. However, the 

engineering community seldom pays attention to data issues involving scalable big data 

management and standardized communications with client devices. As the use of sensors 

in engineering applications continues to grow, appropriate data management tools for 

handling a large amount of sensor data together with engineering domain information will 

become very important. For effective data management in engineering applications, it is 

essential to investigate state-of-the-art information technologies and adopt them properly.  

To overcome the imminent data issues in civil infrastructure monitoring, this thesis aims 

to propose a cyberinfrastructure platform that can efficiently store, manage, retrieve, share, 

interface, link and integrate data. This thesis brings together various information and 

communication technologies (ICT), including information modeling, NoSQL database 

systems, cloud computing and web services, for effective data management, particularly, 

for civil infrastructure monitoring. 

1.2 Data Management Requirements for 
Cyberinfrastructure Platform 

“Big data” is typically characterized by three “V”’s, which are volume, velocity and variety 

[16]. Civil infrastructures instrumented with sensors also need to handle data with the same 

characteristics. First, the volume of data collected from civil infrastructure will grow 

significantly as an increasing number of sensors are deployed. The huge data volume 

requires a highly scalable data management system that can handle a large and increasing 

amount of data. Second, the velocity (or the rate) of data acquired means that data 

collection and analysis need to be conducted in a timely manner [17]. To this end, civil 

infrastructure monitoring systems need to be able to handle, manage and analyze data 

effectively. Third, civil infrastructure monitoring systems involve a high variety of data, 

including, but not limited to, time-series data, video, image, geometric models and physical 

models. Data of heterogeneous types needs to be linked and integrated in order to facilitate 
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data retrieval and utilization. A data management system that satisfies such big data 

requirements needs to be developed. Based on the big data characteristics and the domain 

requirements, the following sections summarize the desirable characteristics of a 

cyberinfrastructure platform for effective data management. 

1.2.1 Scalability 

As the deployment of sensors increases, the volume of data collected and processed will 

continue to grow. Civil infrastructure monitoring systems typically collect hundreds of 

gigabytes of data every year [18]. With the decreasing cost of sensors, the trend of civil 

infrastructure monitoring involves the instrumentation of hundreds and thousands of 

sensors to collect extensive information about the target systems [19]. Furthermore, the 

adoption of advanced sensors with very high sampling rates, such as piezo lead zirconate 

titanate (PZT) and fiber Bragg grating (FBG) sensors [3, 20, 21], and the use of image and 

video data [13] lead to a significant increase in data volume. To cope with such a 

voluminous amount of data, a cyberinfrastructure platform needs to be easily scaled 

according to processing and storage demands.  

1.2.2 Data integration and interoperability 

Civil infrastructure monitoring systems involve a wide variety of information, including 

geometry, engineering model, inspection report, sensor information and sensor data, 

collected from different data sources. Current practice typically employs isolated systems 

to manage and process different types of information wherein information managed in one 

system is neither integrated nor shared among other systems. The isolated data 

management makes it difficult to compare and combine heterogeneous data; instead, 

different types of data are manually converted, mapped and compared, which is error-prone 

and time-consuming [15, 22]. Effective sharing and integration of data would facilitate data 

utilization and, thus, enhance operation and management of engineering systems [23, 24]. 
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To this end, a cyberinfrastructure platform needs to be designed to support data integration 

and interoperability. 

1.2.3 Standardized interface 

Data managed by cyberinfrastructure needs to be easily accessed by various applications 

(e.g., visualization tools, finite element analysis tools and machine-learning modules) on 

different systems (e.g., cloud computing platforms, desktop computers and mobile devices). 

In current civil infrastructure monitoring systems, however, data management tools 

typically lack standardized interfaces, resulting in manual data download and application 

execution. To facilitate data access and utilization, standardized interfaces are essential. By 

providing standardized interfaces, machine-to-machine data exchange among 

cyberinfrastructure and different applications can be enabled. Furthermore, standardized 

interfaces can enable easy prototyping and rapid deployment of applications in a plug and 

play manner. Therefore, cyberinfrastructure needs to support standardized interface.  

1.2.4 Flexibility 

Over the lifecycle of an engineering system, the users’ (e.g., system operators and 

engineers) requirements are constantly changing. For example, new types of sensors may 

be deployed with an existing cyberinfrastructure platform to collect additional information 

about the physical system. Needs for managing previously-unmanaged information can 

arise as knowledge and insight about system operations grow. In addition, as new data 

analysis modules are developed, new services need to be deployed to interface the 

cyberinfrastructure platform with the new analysis modules. A cyberinfrastructure 

platform should be able to adapt to the changing environment in a timely and cost-effective 

manner. Therefore, a cyberinfrastructure platform has to be designed with consideration of 

system flexibility. 
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1.3 Current Sensor Data Management Practice  

1.3.1 Internet of Things (IoT) platform 

With the increasing adoption of sensor technology, many IoT platforms have been 

developed. Cloud computing service vendors offer generic IoT platforms, including AWS 

IoT by Amazon AWS [25], IoT Hub by Microsoft Azure [26], Cloud IoT Core by Google 

Cloud [27], Watson IoT Platform by IBM cloud [28], and AT&T IoT Platform by AT&T 

[29]. These generic IoT platforms support device connectivity via standard communication 

protocols with high scalability by leveraging cloud computing technology. These platforms 

also provide many tools, such as device management tools, rule engines, event processing 

modules, security tools and software development kits (SDKs). While these generic IoT 

platforms provide basic services, they lack the supporting services for domain-specific 

applications and data management tools. Instead, application services need to be developed 

and added by customers or partner companies. There have been some domain-driven IoT 

platforms, such as PTC ThingWorx [30] and AutoDesk Fusion Connect [31], particularly 

for industrial IoT (IIoT). While IIoT platforms offer some industrial applications and 

sophisticated functions, such as augmented reality (AR)-enabled user interfaces, the IIoT 

platforms are not designed to manage engineering information models and do not support 

data and software interoperability.  

Research efforts have been spent on the development of IoT platforms for specific 

application areas, such as healthcare [32, 33], smart cities [34, 35, 36] and agriculture [37]. 

A domain-specific platform handles not only sensor data, but also other relevant 

information. For example, Lea and Blackstock [35] describe an IoT platform for smart city 

applications to manage a wide array of data, from real-time (e.g. traffic data) to static data 

(e.g., asset lists). However, this work does not address data integration for linking 

heterogeneous sensor data and domain information. To allow software agents to easily 

discover relevant information and to perform analysis, domain information and sensor data 

need to be properly linked and integrated. Jayaraman et al. [37] describe a semantic-driven 
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IoT platform to link sensor data and domain concepts based on ontology definitions. An 

IoT platform proposed in [34] enables interoperability among heterogeneous information 

models, such as building information modeling (BIM) and system information models 

(SIM), based on sematic web technology. However, previous and current studies do not 

address the interoperability problem which is critical in engineering projects involving 

various software tools, each of which may have its own interface and data model. 

Engineering information needs to be exposed in platform-neutral and standardized data 

formats that can be easily parsed and used by different software agents, ranging from 

engineering simulation tools to data-driven analysis modules. Therefore, a data 

management platform that can deal with both data integration and data interoperability 

problems needs to be developed to facilitate data management and utilization in civil 

infrastructure monitoring.  

1.3.2 Civil infrastructure monitoring systems 

Until now, research efforts on civil infrastructure monitoring have been mostly focused on 

the development of new sensor technologies and data analysis techniques. Very little 

efforts have been devoted to the fundamental issues associated with data management. 

Early civil infrastructure monitoring systems typically collect and store measurement data 

in files on local computers [38, 39, 40]. File-based systems, however, do not directly 

support queries, which often makes data access a tedious and manual task. For systematic 

data management, relational database management systems (RDBMSs) have been used as 

centralized data storage [41, 42, 43, 44]. RDBMSs support queries with structured query 

language (SQL) to facilitate data access. However, research studies have suggested that 

current RDBMSs, which were architected decades ago when the characteristics of 

hardware and data processing requirements were very different, are often not as effective 

in meeting the data needs of today’s applications which often involve text, time-series data, 

image files and video data [45, 8]. Some fundamental limitations of RDBMSs [46, 47, 48] 

which can impact civil infrastructure monitoring applications include: 
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• Reading and writing speed for processing a large amount of time-series 

monitoring data; 

• Scalability for handling voluminous and ever-increasing amount of monitoring 

data; 

• Schema flexibility for managing engineering data that include semi- and un-

structured information (e.g., information models). 

Furthermore, civil infrastructure monitoring systems are typically designed to keep data in 

storage systems without considering how to effectively retrieve, utilize and integrate data. 

Ineffective data management often results in poor utilization of data. Some example 

problems from practical civil infrastructure monitoring systems include the following: 

• Limited data store that would lead to removing old data before utilizing it and 

require averaging time-series data to reduce data volume, resulting in the loss of 

potentially important information; 

• Limited query capability due to storing data un-systematically (which poses 

restrictions on data retrieval and query) and managing data using a data 

management tool that may not offer a good interface (requiring significant labor 

to manually download and map the data); 

• Limited data utilization due to considering sensor data only as subsidiary 

information that does not directly affect decision making process. 

In summary, current civil infrastructure monitoring systems are not designed to handle 

today’s ever-increasing heterogeneous monitoring data, resulting in data solutions not 

meeting the data management requirements demanded by the application. This thesis 

describes a cyberinfrastructure platform that satisfies the data management requirements 

of infrastructure applications by leveraging state-of-the-art information and 

communication technologies.  
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1.4 Information and Communication Technologies 
for Effective Data Management 

1.4.1 Information modeling  

Much research has been conducted in developing data exchanges and interoperability 

standards in many industry domains to avoid error-prone and time-consuming manual data 

conversion, as well as to facilitate the automated exchange of information and machine-to-

machine interaction [49, 50]. In the architecture, engineering and construction (AEC) 

industry, for example, BIM has been widely adopted as a means to support an integrated 

project delivery process and data exchange throughout the project lifecycle of buildings 

[14]. One of the de facto BIM standard data models is the Industry Foundation Classes 

(IFC) [51]. The IFC standard specifies a platform-neutral file format using EXPRESS 

modeling language to enable digital data exchange among building design and analysis 

systems. The IFC-EXPRESS schema has been translated into an XML (eXtensible Markup 

Language) format, a commonly used representation of industry standards [51]. Given the 

success of BIM, bridge information modeling (BrIM) has been developed for bridges [22, 

52, 53, 54, 55]. These efforts have so far been focused mostly on the 3-dimensional 

geometric representation of engineering systems. As such, current information modeling 

practice often lacks the data entities needed for representing the information pertinent to 

sensor networks and the data links to connect information models with sensor data stores. 

Therefore, information modeling schemas have to be extended to include data entities that 

capture information about sensor networks and engineering models.  

1.4.2 Cloud computing  

Advances in cyber physical systems and cloud computing services share many significant 

components that can be deployed for the management of infrastructure monitoring data. 

Cloud computing, as defined by the National Institute of Standards and Technology 
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(NIST), is a “model for enabling convenient, on-demand network access to a shared pool 

of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction [56].” Cloud computing can reduce the cost and lessen the 

burdens on the deployment, operation, maintenance and management of computational 

resources. Furthermore, cloud computing can provide a highly scalable and accessible 

computing environment that is cost-effective [7, 57, 58, 59]. Many state-of-the-art data 

management platforms take advantage of cloud computing to allow communication and 

data sharing among the physical systems, sensors, software applications and users. Using 

cloud computing, a civil infrastructure monitoring system can be easily scaled based on 

demand with computing and storage resources optimized. 

1.4.3 NoSQL database 

For data management on cloud computing and distributed computing environments, many 

alternative database management systems (DBMS) have been developed. Driven by the 

need for storing, managing and retrieving large online data records with heterogeneous 

formats, research has been devoted to develop non-relational database and non-traditional 

file management systems. Examples of open source database systems that have been 

deployed by cloud service providers include Apache Cassandra, Apache H-Base and 

MongoDB [9]. These non-traditional database systems are noted as NoSQL (Not only 

SQL) database systems which are designed to handle semi-structured and unstructured 

data. Recent studies have shown that NoSQL database systems have significant advantages 

over RDBMSs in terms of flexibility and scalability [46, 47, 48]. For example, Le et al. 

[60] proposed an Internet of Things (IoT) platform and concluded that NoSQL database 

systems, such as Apache Cassandra, consistently have better performance than RDBMSs 

for managing sensor data because of the flexible data structure suitable to query time series 

data. Furthermore, NoSQL database systems have been shown to have better scalability in 

handling massive IoT data and have better query performance for sensor network data [61, 

62]. 
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1.4.4 Web service 

To take advantage of cloud computing, the software framework should be designed with 

consideration of the useful features provided by cloud services (e.g., dynamic provisioning, 

distributed computing and on-demand commodity hardware), as well as domain-specific 

application requirements (e.g., information model, application, interface, etc.). In contrast 

to traditional proprietary servers, the real value of cloud computing relies upon 

interoperability among systems and engineering services [63]. For service interoperability, 

engineering services on cloud platforms need to be exposed via standard interfaces. There 

are two main web service paradigms: namely, Service-Oriented Architecture (SOA) and 

Resource-Oriented Architecture (ROA). SOA is built upon standard web service protocols, 

such as Simple Object Access Protocol (SOAP), Web Service Description Language 

(WSDL) and Business Process Execution Language (BPEL), etc. [64]. While SOA’s 

reliability and message-level security benefit enterprise-level applications, the complexity 

of the protocols makes them less attractive for basic, ad hoc integration of services [65]. 

ROA, on the other hand, is based on a simple set of Representational State Transfer (REST) 

protocols [66]. REST has become a preferable approach because of its simple and 

lightweight architecture, easy accessibility and scalability [67, 68, 69]. Through web 

services, a data management platform can enable easy access to data, information 

exchanges and integration of software services for civil infrastructure monitoring 

applications. 

1.5 Research Objectives 

As the use of sensors increases, data management issues have already started to present 

challenges to civil infrastructure monitoring practice. While there have been various 

information technologies developed to meet today’s data management requirements, 

current research efforts rarely pay attention to using such technologies to address data 

issues in civil infrastructure monitoring. The goal of this thesis is thus to propose a 
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cyberinfrastructure platform to deal with the data issues in civil infrastructure monitoring. 

The cyberinfrastructure platform is designed according to the data management 

requirements of civil infrastructure monitoring applications, which are: (1) scalability, (2) 

data integration and interoperability, (3) standardized interface, and (4) flexibility. The 

platform brings together state-of-the-art information and communication technologies for 

effective data management. Specifically, an information modeling framework is developed 

to represent information involved in civil infrastructure monitoring in an integrated 

manner, as well as to facilitate data interoperability based on open standards. A prototype 

NoSQL database system is designed and deployed for the scalable management of massive 

sensor data and flexible management of semi- and un-structured engineering information 

with fast query performance on a distributed computing environment. The 

cyberinfrastructure platform is built upon a cloud computing platform for scalability, 

reliability and minimal maintenance effort of computing resources. Leveraging 

standardized web-based interfaces, the cyberinfrastructure platform offers easy-to-use data 

management services that client systems can invoke via standard communication protocols 

to store, retrieve and share different types of data involved in civil infrastructure 

monitoring.  

By orchestrating various data management technologies, the proposed cyberinfrastructure 

platform will enable scalable management of voluminous and heterogeneous data involved 

in civil infrastructure monitoring. Unlike current sensor data management systems, the 

cyberinfrastructure platform allows different data sources (e.g., sensors, cameras and 

modeling tools) and analysis modules (e.g., structural analysis tools and machine learning 

modules) to easily connect to the platform to store and retrieve various information 

involved in various monitoring applications. The demonstration results presented in this 

work show that the cyberinfrastructure platform can effectively and scalably manage 

sensor data and domain-specific information and facilitate data sharing, integration and 

utilization. 
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1.6 Thesis Outline 

The thesis presents an information modeling schema for civil infrastructure monitoring 

applications. The cyberinfrastructure platform consisting of a cloud computing platform, 

NoSQL database and web server is then presented. Finally, the implementation of a data 

analysis pipeline leveraging the cyberinfrastructure platform is then described. The 

developed cyberinfrastructure platform is demonstrated with the different types of data 

obtained from the I-275 corridor monitoring system. The thesis is organized into the six 

chapters as follows: 

• Chapter 2 presents an information modeling framework to facilitate data 

integration and interoperability for supporting civil infrastructure monitoring 

applications [70]. The framework augments and extends the prior BrIM (Bridge 

Information Modeling) standards to further capture the information relevant to 

engineering analysis and sensor network. For the representation of engineering 

analysis information, the framework draws on the data entities of one of the 

widely used commercial bridge modeling and analysis tools. For the 

representation of sensor network information, the framework adopts data entities 

defined by an open standard for describing sensor systems.  

• Chapter 3 describes a scalable and flexible data management framework for civil 

infrastructure monitoring [71, 72]. The data management framework chooses 

NoSQL database systems suitable to meet the data management requirements. 

Specifically, Apache Cassandra database is employed for scalable data 

management, whereas MongoDB is employed for efficient data retrieval. A 

database schema is defined based on the BrIM schema to enable data mapping 

between the BrIM schema and the database schema.  

• Chapter 4 presents a cloud-based cyberinfrastructure platform for civil 

infrastructure monitoring to offer scalable and interoperable data management 

services [73, 74, 75, 76]. Using the services of this cloud platform, different client 
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systems (e.g., data source and applications) can easily connect to store and 

retrieve data via standard communication protocols. Furthermore, the platform-

neutral data management services can facilitate service composition and data   

utilization. This chapter then discusses the adoption of cloud computing platform 

for the development of a scalable and easy-to-manage cyberinfrastructure 

platform. Data privacy and security concerns under cloud computing 

environments are also addressed. 

• Chapter 5 presents a sensor data reconstruction method using the 

cyberinfrastructure platform [77]. Specifically, this study develops a data-driven 

sensor data reconstruction method based on bidirectional recurrent neural 

networks, which can improve reconstruction accuracy by considering 

spatiotemporal correlation among the sensor data. An automated data analysis 

pipeline is built upon the cyberinfrastructure platform to enable efficient data 

reconstruction by training the neural network on a high-performing computer and 

sharing the trained model to local computing platforms through the 

cyberinfrastructure platform.  

• Chapter 6 summarizes the development of the cyberinfrastructure platform for 

civil infrastructure monitoring for facilitating scalability, flexibility and 

interoperability. This chapter provides the contributions of this thesis and then 

suggests potential future research directions to continue advancing the field of 

informatics in infrastructure.  

 
  



 
 
 

Chapter 2  

Information Modeling Framework for 
Bridge Monitoring 

 

 

2.1 Introduction 

Bridge management involves copious and diverse information, ranging from various semi-

structured or unstructured data (e.g., geometric model, engineering model, inspection 

report, sensor metadata, etc.) to a large amount of heterogeneous sensor data (e.g., 

acceleration, displacement, photo, video image, etc.). Current practice of bridge 

management typically employs isolated systems to manage and process different types of 

information wherein information managed in one system is neither shared among other 

systems nor integrated with information managed by other systems. However, as bridge 

monitoring and management technologies advance, the demand for efficient information 

sharing and data exchange will grow. Sharing and integration of such information would 
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enable integrated data retrieval and utilization, improve bridge management services and, 

thus, enhance bridge operation, maintenance and public safety.  

Given the success of building information modeling (BIM), research efforts have been 

initiated to develop frameworks and standards for bridge information modeling (BrIM) 

[15]. The main goals of BrIM are twofold: enabling integrated bridge data repository and 

developing electronic data exchange standards for bridge application [15]. For example, 

there have been research efforts aimed towards developing an information modeling 

framework for the integration of bridge management information and 3-dimensional bridge 

models [52, 53]. To facilitate information interoperability in the bridge domain, an 

extension of IFC, namely IFC-Bridge, has been proposed with emphasis on the spatial and 

physical entities of bridge structures [54]. As another example of BrIM standards, the 

OpenBrIM standards, which is supported by the US Federal Highway Administration 

(FHWA), have been proposed as a “bridge industry consensus standard for engineering 

data description, modeling, and interoperability for integrated structural design, 

construction, and lifecycle management of bridges [22, 55].” Efforts to advance BrIM 

standards so far have been focused on the 3-dimensional geometric representation of bridge 

structures, while the standards lack the data entities needed for representing the information 

pertinent to bridge monitoring applications.  

This chapter presents a BrIM framework for bridge monitoring applications [70]. The 

framework aims to facilitate the exchange and integration of information involved in bridge 

management applications. The BrIM framework adopts and extends the data schema of the 

OpenBrIM standards to support data interoperability between bridge monitoring and 

management applications. New data entities are defined to capture information associated 

with bridge engineering analyses, sensor descriptions and bridge monitoring systems. The 

framework also provides a data link to the time-series sensor data so as to allow users to 

locate the data via the information model.  

This chapter is organized as follows. Section 2.2 presents the bridge information modeling 

framework for bridge monitoring. Specifically, the BrIM schema of the OpenBrIM 
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standards is employed as a base model and enriched to include data entities for the 

representation of finite element models and sensor information. Section 2.3 demonstrates 

the bridge information modeling framework with the bridge information collected from the 

Telegraph Road Bridge (TRB) located in Monroe, Michigan. This chapter is concluded 

with a summary in Section 2.4. 

2.2 Bridge Information Modeling Schema Definition 

This section describes the design of a bridge information modeling schema for bridge 

monitoring applications [70]. Engineering information modeling, such as BIM, typically 

adopts an object-based approach that describes a target system (e.g., building) using objects 

and their attributes [23]. Information modeling standards and tools specify a predefined set 

of object families that are used to capture the data entities involved in the targeted domain. 

For instance, the OpenBrIM standards include object families for describing the 3-

dimensional geometry of bridge structures [78]. The BrIM schema developed in this study 

extends the data schema of the OpenBrIM standards with newly defined objects for 

representing engineering analysis models and sensor information. New objects are 

identified based on relevant standards and software tools to ensure that the BrIM schema 

is capable of supporting typical applications in bridge engineering. Specifically, CSiBridge 

(a structural modeling and analysis software tool) [79] and SensorML (an open standard 

for describing sensors) [80] are examined for the definition of engineering analysis models 

and sensor information, respectively. 

2.2.1 Base model: OpenBrIM 

The OpenBrIM standards describe a bridge structure as a collection of hierarchical objects 

and their parameters [78]. Each object represents either a physical entity (e.g., beam, 
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column and deck) or a conceptual entity (e.g., project, group and unit system) of a bridge 

structure, whereas each parameter either represents a property (e.g., length, width and 

thickness) of an object or refers to another object. Figure 2.1(a) and (b) show the schema 

definitions of a basic Object entity and a Parameter entity, respectively, in OpenBrIM 

[81]. The data schema of the basic Object entity includes attributes, such as N (name), X, 

Y and Z (coordinates), RX, RY and RZ (angles of rotation), and AX, AY and AZ (angles of 

rotation about the origin of the 3-dimensional workspace). Similarly, the data schema of 

basic Parameter entity includes attributes, such as V (value), T (type), D (description), 

UC (name of unit system), UT (type of unit), Category (category of the parameter) and 

Role (specifying whether a user can edit the parameter). The data schema of any other 

data entities in OpenBrIM is defined by extending the basic Object and Parameter 

entities. 

 
(a) Definition of Object entity 

 
(b) Definition of Parameter entity 

Figure 2.1 Definition of a fundamental Object and Parameter entities [78] 

<xs:complexType name="Object" abstract="true" mixed="false">
<xs:attribute name="N" type="xs:string" />
<xs:attribute name="X" type="xs:string" />
<xs:attribute name="Y" type="xs:string" />
<xs:attribute name="Z" type="xs:string" />
<xs:attribute name="RX" type="xs:string" />
<xs:attribute name="RY" type="xs:string" />
<xs:attribute name="RZ" type="xs:string" />
<xs:attribute name="AX" type="xs:string" />
<xs:attribute name="AY" type="xs:string" />
<xs:attribute name="AZ" type="xs:string" />
<!-- The rest is omitted-->

</xs:complexType>

<xs:complexType name="Parameter" abstract="true">
<xs:attribute name="V" type="xs:string" use="required" />
<xs:attribute name="T" type="xs:string" default="Expr" />
<xs:attribute name="D" type="xs:string" />
<xs:attribute name="UC" type="xs:string" />
<xs:attribute name="UT" type="xs:string" />
<xs:attribute name="Category" type="xs:string" />
<xs:attribute name="Role" type="xs:string" />

</xs:complexType>
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To encode bridge information, OpenBrIM standards use ParamML [82], an XML-based 

mark-up language for engineering applications. For example, Figure 2.1(a) shows the 

OpenBrIM schema definition for the Shape object written in the XML schema definition 

(XSD) format [81]. In the schema definition, xs refers to the XML schema namespace 

[83]. The definitions of the elements from the XML schema namespace are as follows [84]. 

• complexType is an element that contains other elements and/or attributes.  

• complexContent specifies extensions or restrictions on a complexType 

element. 

• extension extends an existing complexType element. 

• sequence defines the child elements that can occur. 

• element defines an XML element. 

• alternative dynamically assigns the type of its parent element based on the 

specified test condition. (available from XSD 1.1) 

• attribute contains data related to its parent entity. 

• assert specifies the condition used to validate XML data entity. 

Given the definitions of the XML elements, the schema definition for a Shape object as 

shown in Figure 2.2(a) specifies the following. The extension element indicates that 

Shape is a subtype of the Object entity. The sequence element specifies the eligible 

child objects and parameters using O and P tags, respectively. As shown in the alternative 

element, the type of child objects is assigned based on the T (type) attribute of the objects. 

Similarly, the type of child parameters is assigned based on the N (name) attribute of the 

parameters. Furthermore, the data schema allows rules to be specified for the object. For 

example, the use="required" option in the attribute element enforces that every 

Shape object must include the T (type) attribute, which has value Shape. Another 

example is the assert element that specifies the condition that the “Shape object must 

contain at least 3 Point objects.”  
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The XML schema written in XSD can be displayed as an XSD diagram using visualization 

tools, such as Liquid XML Studio [85] and XMLSpy [86]. For example, the schema 

structure of the Shape object as shown in Figure 2.2(a) can be displayed by an XSD 

 
(a) Data schema in XSD format 

 

 
(b) XSD diagram 

Figure 2.2 Data schema of the Shape object [78] 
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diagram as shown in Figure 2.2(b). It should be noted that the names of the data 

components are abbreviated in the diagram. The numbers written at the left side of the 

XML components represent the possible numbers of the components. For example, in 

Figure 2.2(b), the numbers 0..* at the left side of the O element indicate that the parent 

component (i.e., Shape object) can have zero to any number of child O elements (i.e., 

child objects). In the following sections, XML data schema will be described using the 

XSD diagrams for readability purpose.  

The current OpenBrIM standards include schema definitions for a collection of objects and 

parameters with particular emphasis on the geometry information of a bridge, but with few 

entities related to the engineering model and material for structural analysis and structural 

monitoring.  

2.2.2 Finite element modeling 

The OpenBrIM standards currently include only a few basic objects for finite element (FE) 

modeling [81]. The objects defined in the OpenBrIM standards are insufficient for FE 

modeling because structural analysis software tools often involve much more complex data 

entities. Using CSiBridge, one of the widely used commercial bridge modeling and 

analysis tools [79], as an example, an FE model of an overpass bridge would consist of 

about fifty tables, where each table contains several attributes, many of which are not 

defined in the current OpenBrIM standards. For the representation of FE model, we extend 

the OpenBrIM standards’ model by adding the data entities required by CSiBridge software 

to OpenBrIM standards’ data schema definition.  

While information models related to finite element analysis exist (such as STEP Part 104 

[87] and Industry Foundation Classes [51]), the existing models usually lack the data 

entities to represent complex load and analysis conditions (such as time-variant vehicle 

loads) required in bridge engineering applications. This study focuses specifically on FE 

model for bridge engineering applications. In this work, the data entities for FE modeling 

are divided mainly into two categories: data entities for representing bridge structure and 
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data entities for representing load and analysis conditions. The OpenBrIM standards 

include some of the objects that can be extended to represent the bridge structure 

information; however, the OpenBrIM standards include very limited objects for 

representing load and analysis conditions. Therefore, we focus on enhancing the data 

entities of existing objects with new parameters and child objects for data entities that 

represent a bridge structure, as well as on defining new objects for representing load and 

analysis conditions. It should be noted that the data schema is extended solely based on the 

CSiBridge so far and, thus, additional data entity definitions will be required to enable data 

mapping between other FE software packages. 

2.2.2.1 Data entities for representing finite element model 

The OpenBrIM standards include Node, FELine, FESurface and Material objects 

that can be used for the representation of the geometry and material properties of bridge 

structures. However, the current OpenBrIM schema definitions of these objects are not 

sufficient for describing an FE model for a typical software tool. For instance, a Node 

object, which is the most fundamental data entity in FE modeling for specifying the nodal 

coordinates and restraints, currently defined in the OpenBrIM standards, do not have the 

parameters necessary for defining a reference coordinate system to conveniently create 

models using multiple coordinate systems. To augment the Node object in OpenBrIM, we 

create a new object FECoordniateSystem that includes information about the 

coordinate type and the origin of the reference system. We add to the data schema of Node 

object a reference to FECoordniateSystem as shown in the XSD diagram in Figure 

2.3. 

An FELine object represents an element that consists of two nodes and section 

information in an FE model. The current definition of FELine object in OpenBrIM 

includes data entities for describing the two Nodes and Section, but the object definition 

does not include data entities to represent information about discretization and member-

end-release. In addition, the Section object, while it is suitable to represent a user-
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defined section shape composed of many section points, it does not allow for representing 

standard section shapes that are described by other parameter types. We extend the 

description of FELine by creating new objects, namely FELineMesh, 

FELineRelease and FELineSection to represent mesh information, member-end 

release information and standard section shapes, respectively. The data schema diagram of 

the FELine object that includes parameters referring to the new objects is shown in Figure 

2.4.  

Similarly, the current definition of FESurface object in OpenBrIM represents an element 

consisting of vertices, thickness and material types, such as shell and wall, but the schema 

 
Figure 2.3 Entity: Node 

 
Figure 2.4 Entity: FELine 
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does not include discretization information, section information (e.g., surface type and 

material angle) and surface-constraint information (e.g., edge constraint). Furthermore, the 

current FESurface object can only have up to four vertices, while elements such as shell 

element can compose of more than four vertices. To extend the description of the 

FESurface object, we create new objects, namely FESurfaceMesh, 

FESurfaceSection and FESurfaceConstraint, to represent, respectively, the 

discretization information, section information, and surface constraint information. We 

also increase the number of vertices (i.e., Nodes) that an FESurface object can contain 

up to thirty vertices. (It should be noted that the number can easily be modified. 

Furthermore, as discussed later, a NoSQL database allows variable length records to easily 

handle any number of vertices in an element.) The data schema diagram of the enhanced 

FESurface object is shown in Figure 2.5.   

 
Figure 2.5 Entity: FESurface 
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A Material object defined in OpenBrIM is used to represent material property data for 

concrete and steel elements. The Material object includes basic material properties, such 

as modulus of elasticity, Poisson ratio, density, steel yield stress and concrete 28-day 

compressive strength. To further enhance the definition of the Material object for structural 

analysis purposes, new parameters, such as Symmetricity, 

TemperatureDependency, ShearModulus and various damping properties, are 

added. The enhanced the Material object can describe uniaxial and isotropic materials 

in linear analyses. Currently, the definition of Material object does not include material 

properties for describing orthotropic materials and for performing nonlinear structural 

analysis. Figure 2.6 shows the data schema diagram of the enhanced Material object.  

 
Figure 2.6 Entity: Material 
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In addition to the entities described above, new data entities and their parameters are 

defined, as summarized in Table 2.1, to complete the schema definitions of the Node, 

FELine, FESurface and Material objects in OpenBrIM. 

2.2.2.2 Data entities for representing load and analysis conditions 

OpenBrIM standards include AnalysisCase, NodeLoad and Combination objects 

for the representation of load conditions and analysis conditions [81]. While these objects 

are able to describe simple load conditions, they do not have sufficient detailed information 

to describe complex load conditions (e.g., time-variant loading) and detailed analysis 

conditions (e.g., convergence tolerance). CSiBridge, for example, describes load 

conditions and analysis conditions using “load patterns” and “load cases”, respectively [79]. 

The load patterns are the spatial distribution and magnitude of forces and other effects 

acting on a structure, while the load cases are the analysis options that include applied load 

Table 2.1 Objects added to the OpenBrIM model for representing structural elements 

Object Parameters 
FECoordinateSystem FECoordinateType, OriginX, OriginY, 

OriginZ, OriginRX, OriginRY, OriginRZ 
FELineMesh AutoMesh, MeshAtJoints, MeshAtFrames, 

NumberOfSegments, MaxMeshLength, 
MaxMeshDegree 

FELineSection Material, Shape, Width, Height, 
WebThickness, FlangeThickness 

FELineRelease NodeV1, Node1V2, Node1V3, Node1M1, 
Node1M2, Node1M3, NodeV1, Node2V2, 
Node2V3, Node2M1, Node2M2, Node2M3 

FESurfaceMesh Meshtype, MeshGroup, NumberOfObject1, 
NumberOfObject2,  
MaxSize1, MaxSize2, 
MeshFromSelectedLine, 
MeshFromSelectedPoint, ConstraintEdge, 
ConstraintFace 

FESurfaceSection Material, MaterialAngle, SurfaceType, 
Thickness, BendThickness 

FESurfaceConstraint EdgeConstraint 
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pattern, type of response, and type of analysis. The load patterns and load cases are further 

divided into many different types of loads (e.g., dead load, wind load and moving load) 

and different cases of analyses (e.g., static analysis, modal analysis, multi-step static 

analysis and time history analysis). Instead of extending the existing objects, we define a 

set of new objects based on the data entities defined in CSiBridge software to describe 

practical load and analysis conditions. 

We create a new object FELoadPattern to represent data corresponding to load patterns. 

The data schema of the FELoadPattern object is shown in Figure 2.7. The new object 

FELoadPattern has parameters representing the types of a load (LoadType) and the 

self-weight factor (SelfWeightFactor). The FELoadPattern may have child 

objects that contain the details of specific load patterns. For example, a new child object 

FEMultiStep is created to contain information about the vehicle crossing the bridge, its 

traveling lane and speed. Furthermore, a new object FELane is created to describe the 

vehicle lane information, including referencing objects, stations (i.e., longitudinal distance 

from the referencing objects) and width of the lane. We also create FEVehicle object 

and its child object FEVehicleLoad to capture vehicle axle load data. FEVehicle 

object includes parameters for the name of the vehicle, a scale factor and the number of 

axle loads, and FEVehicleLoad object includes parameters such as the type of load (e.g., 

uniform load, axle load), width of an axle, and distance between axles.  

 
Figure 2.7 New entity: FELoadPattern 
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For the representation of analysis conditions, we create a new object FEAnalysisCase. 

Figure 2.8 shows the schema diagram of FEAnalysisCase. The FEAnalysisCase 

object contains descriptions for different types of analysis. The parameters are LoadType 

(e.g., dead load and live load), AnalysisCaseType (e.g., static, modal, multistep-static 

and direct integration time history analysis) and InitialCondition. Furthermore, 

FEAnalysisCase consists of child objects for specific analysis cases. For instance, 

FEStatic contains data entities for representing a static analysis case and the FEModal 

contains data entities for representing a modal analysis case. The object 

FEMultiStepStatic includes data entities for representing the applied vehicle and the 

object FEDirectIntegrationHistory includes data entities about the time-step 

information. Table 2.2 summarizes the new data entities created under the 

FELoadPattern and FEAnalysisCase objects to represent load and analysis 

conditions.  

2.2.3 Sensor description 
 
There have been several standards developed to describe sensor information and 

measurement data [88, 89]. The Sensor Web Enablement (SWE) standards by the Open  

 
Figure 2.8 New entity: FEAnalysisCase 
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Table 2.2 Objects added to the base OpenBrIM model for representing load and analysis 
conditions 

Object Parameters Child object 
FEMultiStep LoadDuration, 

LoadDiscretization, 
Vehicle, Lane, Station, 
StartTime, Direction, 
Speed 

- 

FEVehicle VehicleName, NumLoad FEVehicleLoad 
FEVehicleLoad LoadType, UniformLoad, 

UniformType, AxleLoad, 
AxleType, AxleWidth, 
MinDistance, MaxDistance 

- 

FEVehicleClass VehicleName, ScaleFactor - 
FELane LaneFrom, ReferenceLayout, 

ReferenceFrame, Station, 
Width, Offset, Radius, 
DiscretizationAlongLane, 
DiscretizationAcrossLane, 
LeftEdgeType, 
RightEdgeType 

- 

FEStatic LoadType, LoadName, 
ScaleFactor 

- 

FEModal ModeType, MaxNumModes, 
MinNumModes, 
FrequencyShift, 
CutoffFrequency, 
ConvergenceTolerance 

- 

FEMultiStepStatic LoadType, LoadName, 
ScaleFactor 

- 

FEDirect-
Integration-
History 

NumStep, LoadType, 
LoadName, Function, 
ScaleFactor, 
TimeFactor, ArrivalTime, 
IntegrationMethod, 
Alpha/Beta/Gamma (Integration 
parameters) 

- 
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Geospatial Consortium (OGC) are among the most common suites adopted by the sensor 

web community. The SWE includes suites of standards such as Sensor Model Language 

(SensorML), Observation & Measurement (O&M) and Sensor Observation Service (SOS). 

Among these standards, SensorML standards provide an XML-based data format for the 

description of sensor metadata as well as processes and processing components associated 

with the sensors [80]. In this work, we draw on the data entities defined by the SensorML 

standards to enable the BrIM schema to include the sensor information. Specifically, we 

import SensorML’s schema and namespace to the BrIM schema by adding XSD codes as 

shown in Figure 2.9, where the xmlns:sml prefix in the figure refers to the namespace 

of SensorML standards.  

For the description of sensors, we mainly use two SensorML elements: namely 

DescribedObjectType and PositionUnionPropertyType. The 

DescribedObjectType contains a rich set of data entities to encode common sensor 

information as follows [80]: 

• keywords are short strings that can be understood by the general users or certain 

community of users. 

• identification includes the terms (e.g., long name, short name, serial 

number and manufacturer) that are used to identify sensors.  

 
Figure 2.9 Importing SensorML’s schema 
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• classification includes terms (e.g., sensor type and intended application) 

that can be used to classify sensors.  

• validTime denotes the time period during which the sensor information is 

valid. 

• securityConstraints describe security tags for the sensor description 

document. 

• legalConstraints define the legal terms (e.g., privacy acts, intellectual 

property rights and copyrights) for the sensor information.  

• characteristics represent the physical properties (e.g., dimension and 

weight) and the electrical requirements (e.g., voltage and current) of the sensor. 

• capabilities are the properties (e.g., sensing range, sensitivity and threshold) 

that describe the sensor measurement outputs.  

• contacts refer to the information about the person or group (e.g., 

manufacturers, experts and equipment owner) with knowledge of the sensor. 

• documentation refers to the additional information (e.g., manual, datasheets 

and images) from external sources  

• history records the list of events (e.g., calibration event and maintenance 

event) related to the sensor.  

Additionally, the PositionUnionPropertyType includes data entities to describe 

the sensor location in a number of formats (e.g., textual form, coordinate and vector), so 

that users can choose the most appropriate way to describe the sensor location.  

Based on the DescribedObjectType and PositionUnionPropertyType 

defined in SensorML, we define SensorMetadata and SensorLocation objects to 

describe sensor metadata and sensor location, respectively. While we define the 

SensorMetadata object by simply referring to the DescribedObjectType, we 

add optional data entities to the PositionUnionPropertyType to enable 

SensorLocation object to describe the sensor location in a structural monitoring 
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system. One of the added entities is the TargetObject, whose value type is a string to 

refer to the ID of a geometric element that the sensor is attached to. Another entity added 

is the FENode, whose value type is also a string, to include the ID of the finite element 

model’s node in the case that the sensor position coincides with the node.  

To describe a complete sensor that includes both the metadata and location information, 

we create an object called Sensor. A Sensor object includes parameters referring to the 

SensorMetadata and SensorLocation objects. The data schema diagram of the 

Sensor object is shown in Figure 2.10. 

As shown in Figure 2.11, the sensors, such as SingleAxisAccelerometer, 

TriAxisAccelerometer, StrainGauge, Thermistor and VideoCamera that 

are commonly employed in bridge monitoring, are defined as subtypes for the Sensor 

object. Furthermore, each of the subtype objects contains data entities describing the input, 

output, parameters and data link for the particular sensors. Table 2.3 summarizes the new 

data entities for the different sensor types. The data entities (as denoted as grandchild 

elements in Table 2.3) of the subtype objects are designed to reflect the features of each 

object. For example, the SingleAxisAccelerometer object has a single input 

element and a single output element, while the TriAxisAccelerometer object has 

three inputs and three outputs to represent 3-dimensional acceleration measurements. Last 

but not least, the DataLink entity is defined to allow linking to the data storages of the 

sensor measurements. 

 

 
Figure 2.10 New entity: Sensor 
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Figure 2.11 New entities: Sensor subtype object 
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2.3 Case Example 

This section demonstrates the use of the proposed BrIM schema for the representation of 

bridge information. For demonstration, the bridge information of the Telegraph Road 

Bridge (TRB) is employed. The TRB is a 68-meter long highway overpass located at 

Monroe, Michigan, as shown in Figure 2.12. The TRB has been monitored with a structural 

Table 2.3 Data entities included in the Sensor subtype objects. 

Sensor subtype 
object 

Child 
element 

Grandchild elements 

SingleAxis- 
Accelerometer 

Input RawAccelerationData 
Output  Acceleration 
Parameter  Gain, ConversionFactor, 

SamplingRate 
Datalink - 

TriAxis- 
Accelerometer 

Input RawAccelerationDataX, 
RawAccelerationDataY, 
RawAccelerationDataZ 

Output  AccelerationX, AccelerationY, 
AccelerationZ 

Parameter  Gain, ConversionFactor, 
SamplingRate 

Datalink  - 
StrainGauge Input  RawStrainData 

Output  Strain 
Parameter Gain, ConversionFactor, 

SamplingRate 
Datalink  - 

Thermistor Input  RawTemperatureData 
Output  Temperature 
Parameter  C1/C2/C3 (J-Curve Coefficient), 

SamplingRate 
Datalink  - 

VideoCamera Output  Image 
Parameter  FramePerSecond, Resolution 
Datalink  - 
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monitoring system installed and operated by a research team at University of Michigan 

since 2011 [90, 91]. The information considered in this case example includes the geometry 

and finite element model of the bridge, as well as sensor description. The geometry of the 

bridge is currently described using 2-dimensional drawings. The finite element model of 

the bridge is created using CSiBridge [79] to perform numerical simulation of structural 

behavior of the bridge. The sensor information, including sensor ID, sampling rate, 

physical characteristic, electrical characteristics, etc., is currently recorded in a Microsoft 

Excel Spreadsheet.  

The following sections describe the representation of geometric model, engineering model 

and sensor information of the TRB using the proposed BrIM schema. While the TRB also 

involves sensor data, it is not efficient to represent sensor data using the object-oriented 

BrIM schema; instead, sensor data is stored in a database system (which will be discussed 

in Chapter 3) and linked via uniform resource identifiers (which will be discussed in 

Chapter 4).  

2.3.1 Geometric model 

The 3-dimensional geometry of the TRB can be represented using the OpenBrIM’s original 

data entities. In this study, the geometric model of the TRB is created by writing a 

ParamML script based on the 2-dimensional drawings of the bridge. The script has a 

 
Figure 2.12 Telegraph Road Bridge (Monroe, Michigan) 
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hierarchical object-oriented structure which can describe the hierarchical relationship 

among the bridge elements. For example, Figure 2.13 shows a high-level structure of the 

ParamML script. In this figure, the geometric model (i.e., geometry object) is composed 

of its child objects, such as Deck, Superstructure and Substructure. This figure 

also shows that the Superstructure object consists of child objects SteelGirder 

and bracing, where the SteelGirder object has child objects from girder1 to 

girder7. In addition, the Substructure object has child objects RCPierCap and 

RCColumn. The created geometric model can be visualized using applications that support 

OpenBrIM standards. For example, Figure 2.14 shows the geometric model of TRB 

visualized using OpenBrIM Viewer [81].  

2.3.2 Finite element model 

The BrIM data schema proposed in this study can be used for the representation of finite 

element models. To validate the BrIM data schema, data mapping between the CSiBridge’s 

data schema and the BrIM data schema is performed using the TRB’s finite element model. 

Figure 2.15 shows the TRB’s finite element model which is created using the CSiBridge.  

 
Figure 2.13 High-level structure of geometric model written in ParamML 
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For data mapping from CSiBridge’s data schema to the BrIM data schema, the finite 

element model is first exported to an Excel Spreadsheet file using CSiBridge’s “export” 

function to parse the data. The exported file consists of over 40 tables, each of which 

contains a number of tuples in a tabular format. Here, each table is related to an object type 

in the BrIM data schema, whereas each tuple contains data that can be represented with an 

instance of the object type. Figure 2.16, for example, shows the data mapping from a tuple 

to a BrIM object. In this example, the type of the object is FECoordinateSystem, 

which is determined based on the name of the table “Coordinate Systems”. The name of 

 
Figure 2.14 Geometric model visualized using OpenBrIM Viewer 

 
Figure 2.15 TRB’s FE model created using CSiBridge (1st natural frequency: 2.324 Hz) 
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the object is GLOBAL which corresponds to the “Name” attribute of the tuple. In addition, 

the figure shows that the parameters of the BrIM object correspond to the attribute of the 

tuple.  

For convenient data mapping from the CSiBridge’s data schema to the BrIM data schema, 

an automation script (written in Python) is developed. The script performs data mapping 

as described in the pseudo code shown in Figure 2.17. This script reads each tuple in each 

table, determines the corresponding BrIM object type based on the table name, creates (or 

 
Figure 2.16 Data mapping from Excel Spreadsheet to OpenBrIM object 

 
Figure 2.17 Pseudo code for data mapping from CSiBridge’ data schema to BrIM data 

schema 

CSI Bridge Data Table: Coordinate Systems

BrIM data entity

Create an object tree
For each table:
Determine object type based on the name of the table
For each tuple:

Read the name of the tuple and assign it as a name of object
If there is an object with the same type and name in the object tree:
Load the object

Else:
create a new object with the object type in the object tree

For each attribute:
Determine the parameter name based on the attribute name
Determine the parameter value based on the value of the attribute
Attach the parameter to the object
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load) BrIM object and records the attribute data to the parameter of the BrIM object. The 

high-level structure of the resulting file is shown in Figure 2.18. In this file, the objects 

with the same types are grouped together for the convenient data retrieval. 

An FE model represented in BrIM data schema can potentially be used by FE analysis tools 

by mapping BrIM data entities into the FE analysis tools’ data entities. As an example, this 

work develops an automation script (also written in Python) for data mapping from BrIM 

to CSiBridge. Figure 2.19 shows the pseudo code of the automation script. This script reads 

each of the objects from the data represented in BrIM data schema and select related tables 

based on the object type. For each of selected tables, the script determines the parameters 

relevant to the table and then creates a new tuple containing the name of the object and the 

selected parameters’ data. The created Excel Spreadsheet can be imported by CSiBridge 

and then be used to perform structural analysis. For example, Figure 2.20 shows the result 

of the modal analysis using the re-generated finite element model. The result shows that 

the first natural frequency computed using the re-generated model match with the first 

natural frequency computed using the original finite element model (see Figure 2.15), 

 
Figure 2.18 High-level structure of the finite element model represented in BrIM data 

schema 
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which indicates that the data mapping process is performed without missing data or 

unintended modification of data.  

2.3.3 Sensor description 

The proposed BrIM data schema includes object definitions for the representation of 

sensors. To validate the sensor data schema, the sensor description for the structural 

monitoring system of the TRB is represented using the BrIM schema. Sensor objects are 

created based on the sensor information which is recorded in an Excel Spreadsheet file. For 

example, Figure 2.21 shows a SingleAxisAccelerometer object written in 

ParamML. This object includes information, such as sensor ID (u131ch0), output type 

(Acceleration) and parameters (Gain, ConversionFactor, Sampling rate). 

 
Figure 2.19 Pseudo code for data mapping from BrIM data schema to CSiBridge’ data 

schema 

 
Figure 2.20 Modal analysis with the re-generated finite element model (1st natural 

frequency: 2.324 Hz) 

Create a spreadsheet file 
For each object:
Find related tables based on the object type
For each table:
Select the parameters relevant to the table
Write a tuple containing the object name and the selected parameters’ data
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In addition, the object includes SensorMetadata object, as well as 

SensorLocation object. 

The BrIM data schema can describe the relation between sensor objects and other objects 

(e.g., geometric element and finite element nodes). For example, a sensor object can be 

 
Figure 2.21 Sensor description represented using BrIM data schema and SensorML data 

schema 

<O N="u131ch0" T="SingleAxisAccelerometer">
<P N="SensorMetadata" V="Metadata" />
<P N="SensorLocation" V="Location" />
<Output>

<Acceleration>
<swe:label>Acceleration</swe:label>
<swe:uom code="mg" />

</Acceleration>
</Output>

<Parameter>
<Gain>

<swe:uom code="V/V" />
<swe:value>1</swe:value>

</Gain>
<ConversionFactor>

<swe:uom code="None" />
<swe:value>0.015258789</swe:value>

</ConversionFactor>
<SamplingRate>

<swe:uom code=”Hz" />
<swe:value>200</swe:value>

</SamplingRate>
</Parameter>

<Datalink>http://uri_to_sensordata</Datalink>
</O>

<O N="Metadata" T="SensorMetadata">
<Metadata gml:id=”acc">

<sml:identification>
<sml:IdentifierList>

<sml:identifier>
<sml:Term>

<sml:label>Model Number</sml:label>
<sml:value>CXL02LF1</sml:value>

</sml:Term>
</sml:identifier>

</sml:IdentifierList>
</sml:identification>

</Metadata>
</O>

<O N="Location" T="SensorLocation">
<Location>

<TargetObject>Girder1</TargetObject>
<FENode>718</FENode>

</Location>
</O>

<gml:identifier codeSpace="UID">u131ch0
</gml:identifier>
<sml:outputs>

<sml:OutputList>
<sml:output name="Acceleration">

<swe:DataRecord>
<swe:field> 

          <swe:Quantity> 
<swe:label>Uni-Acceleration</swe:label>

            <swe:uom code="mg" /> 
          </swe:Quantity> 
        </swe:field> 

</swe:DataRecord>
    </sml:output> 

</sml:OutputList>
</sml:outputs>

<sml:parameters>
<sml:ParameterList>

<sml:parameter>
<swe:DataRecord>

        <swe:field> 
          <swe:Quantity> 
            <swe:label>Gain</swe:label>

<swe:value>1</swe:value> 
          </swe:Quantity> 
        </swe:field>

...
            <swe:label>ConversionFactor</swe:label>

<swe:value>0.015258789</swe:value>
... 
<swe:label>SamplingRate</swe:label>
<swe:value>200</swe:value>
<swe:uom code=”Hz" />

... 
</swe:DataRecord>

</sml:parameter>
</sml:ParameterList>

</sml:parameters>

<sml:identification>
<sml:IdentifierList>

<sml:identifier>
      <sml:Term> 

<sml:label>Model Number</sml:label>
<sml:value>CXL02LF1</sml:value>

      </sml:Term> 
</sml:identifier>

</sml:IdentifierList>
</sml:identification>

BrIM SensorML
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assigned as a child object of a geometric object, which indicates that the sensor object is 

instrumented on that geometric object. This relation can also be described using the 

TargetObject data in the SensorLocation object of the sensor object. Furthermore, 

the SensorLocation object can include the ID of an FENode object to indicate that 

the sensor’s location corresponds to the FENode in the finite element model.  

Since the BrIM data schema is defined based on SensorML, the sensor description in BrIM 

data schema can be mapped to SensorML data schema. Figure 2.21 shows that the 

SingleAxisAccelerometer object represented in BrIM data schema can be mapped 

to a SensorML instance. Therefore, the sensor description represented in the BrIM data 

schema can be parsed, mapped, read and utilized by applications that support SensorML 

standard. 

2.4 Summary 

This chapter presents an information modeling framework to facilitate data interoperability 

and integration for bridge monitoring applications. Bridge monitoring involves a wide 

variety of information collected from different data sources, including geometric modeling 

and engineering analysis tools, bridge management systems (BMS) and structural health 

monitoring (SHM) systems. While the different types of information are related to each 

other, current practice of bridge management typically handles them using isolated systems, 

followed by inefficient and error-prone manual data conversion. Using the OpenBrIM data 

schema [81] as the base model, the proposed BrIM data schema is designed to capture the 

engineering model and sensor description by examining relevant software tools and data 

modeling standards. Specifically, data entities for the representation of finite element 

models are defined based on the data entities of CSiBridge [79] a structural analysis 

software tool. In addition, data entities for sensor description are defined based on the data 

entities of SensorML [80], an open standard for sensor description. 
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The proposed BrIM data schema is demonstrated using bridge information, including 

geometry, finite element model and sensor information, of the Telegraph Road Bridge 

(Monroe, MI). The 3-dimensional geometric model of the TRB is created using the 

OpenBrIM’s original object definitions. Data mapping between the CSiBridge native data 

schema and the proposed BrIM data schema is demonstrated by developing automated 

mapping scripts. The demonstration also describes the representation of sensors using the 

proposed BrIM data schema. The results show that the proposed BrIM data schema can 

effectively represent various types of information involved in bridge monitoring and their 

relationship.  

As a research prototype, the BrIM data schema considers a limited number of standards 

and applications. For practical use of the BrIM, its data schema needs to be extended to 

support different standards and applications. Furthermore, the proposed BrIM schema does 

not consider inspection information which is critical in decision making process for bridge 

management. The future work will need to investigate additional data sources, such as 

bridge inspection data, bridge management system (BMS) data, etc., involved in bridge 

monitoring and management and extend the BrIM data schema accordingly. 



 

Chapter 3  

A NoSQL-based Scalable Data 
Management Framework for Civil 
Infrastructure Monitoring 

 

 

3.1 Introduction 

As sensor technologies mature, there have been increasing interests in the deployment of 

sensors for the structural health monitoring (SHM) of large-scale civil infrastructures. The 

advent of wireless sensor technologies has led to significant reduction in the installation 

cost of sensor network on civil infrastructures [1]. Many civil infrastructures are now 

instrumented with dense sensor network to collect valuable information for management 

purposes [12, 92]. With the permanent installation of sensors, recent research efforts have 

been attempted to extract statistically meaningful information and to apply data-driven 

predictive analysis with the collected long-term sensor data [4, 93]. Furthermore, the 

developments of advanced nondestructive evaluation technologies have facilitated the 



CHAPTER 3.    NOSQL-BASED SCALABLE DATA MANAGEMENT  
 

 

45 

assessment of the integrity and health of a structure by enabling the detection of the onset 

of damages [94]. Advances in sensor technologies and increasing deployment of sensors 

result in the tremendous amount of data that needs to be handled in civil infrastructure 

monitoring systems. While current SHM research continues to develop and explore new 

sensor technologies, very little efforts have been spent to investigate proper data 

management tools. The data issues are of fundamental importance that need to be dealt 

with before sensing technologies can truly find useful for civil infrastructure lifecycle 

assessment and management. 

Selecting an appropriate database tool for specific application is key to successful 

deployment of a data management system. Different database tools have different strength 

and properties. Given the potentially enormous quantity and diversity of sensing data and 

complexity of civil infrastructure model, it would be desirable that the database tools 

employed for civil infrastructure monitoring and management system are highly scalable 

and flexible. Traditional relational database management systems (RDBMS) have the strict 

table-type data structure and explicit relationships defined among the data. Recent studies 

have shown that RDBMS do not perform well when dealing with large volume of 

unstructured data [46, 95]. NoSQL database systems, which are highly scalable and support 

flexible data schema, have been proposed as an alternative to RDBMS [47, 96]. It has been 

reported that NoSQL database system can achieve better performance than RDBMS in 

terms of scalability, flexibility, and low latency by relaxing the rigid data consistency and 

strict data schema definition of RDBMS [46, 47]. This chapter thus focus on the use of 

NoSQL database system for data management in civil infrastructure monitoring [71, 72]. 

The described NoSQL-based data management framework is designed to support not only 

the scalability to manage a large amount of sensor data, but also the flexibility to manage 

semi- and un-structured civil infrastructure information.  

This chapter is organized as follows. Section 3.2 investigates the data management 

requirements in civil infrastructure monitoring and describes the selection of NoSQL 

database tools based on the requirements. Section 3.3 presents a NoSQL-based data 

management framework and describes BrIM-based database schema that supports the 
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management of various data, including sensor data, image data, sensor information, 

geometry and engineering model, involved in civil infrastructure monitoring. Section 3.4 

demonstrates the NoSQL-based data management through simple data store and retrieval 

examples, as well as complex data integration examples based on the information model 

and the monitoring data of the Telegraph Road Bridge (TRB) in Monroe, Michigan. This 

chapter is concluded with a summary in Section 3.5. 

3.2 Selection of NoSQL Data Management Tools 

This section discusses the data management requirement of civil infrastructure monitoring 

systems and the selection of the data management tools [71, 72]. There exist many NoSQL 

database systems, each has its own pros and cons. The successful development of a data 

management system depends on the understanding of target systems’ requirements, as well 

as choosing appropriate NoSQL database systems satisfying the requirements. This section 

describes the overall organization of a typical civil infrastructure monitoring system and 

discusses the data management requirement of each component in a civil infrastructure 

monitoring system. NoSQL database tools are then selected based on the defined 

requirements. 

3.2.1 Data management requirements in civil 

infrastructure monitoring system 

Figure 3.1 depicts an overview of a typical data management system structure for SHM 

systems [6, 72, 97]. In this figure, the shaded boxes refer to the components of the data 

management system, whereas the arrows describe the data flow. The data management 

system consists of four main components: (1) onsite computers, (2) main (data repository) 

server, (3) local (desktop) computer and (4) end-user devices. The roles and data 

management requirements of the four components are as follows: 
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• An onsite computer, which is an autonomous in situ computing system, serves the 

role of an intermediary between the sensor network and the main server for data 

acquisition (DAQ). An onsite computer interacts with DAQ as follows. First, the 

onsite computer sends messages to the sensor nodes via local communication 

network to begin a sampling process. Next, once the sampling process has 

finished by the sensor nodes, the onsite computer receives the collected data from 

the sensor nodes and temporarily stores the data in its storage (e.g., a file system 

or a database system). If necessary, the onsite computer pre-processes and 

converts the sampled signals into physical values or performs analysis for 

extracting meaningful information from the collected data. Finally, the onsite 

computer then transmits the collected data to the main server through a 

communication network, such as the Internet. Since onsite computers only need to 

store a limited amount of data temporarily, onsite computers can use a file system 

(particularly, when the computing capacity of an onsite computer is limited) or a 

lightweight database system to support query for analysis and pre-processing of 

the data. 

• The main server, which can be implemented on private servers or cloud 

computing environments, plays a pivotal role for the data management in civil 

infrastructure monitoring system. Specifically, the main server stores and 

manages heterogeneous data, including sensor data, sensor information, geometric 

models, engineering models and analysis results. Furthermore, the main server 

allows other components (e.g., onsite computer, local computers and end-user 

 
Figure 3.1 Overall structure of data management system for civil infrastructure 
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devices) to access the database via communication network (e.g., the Internet and 

local area network) and to store and retrieve data using database query languages. 

Given the voluminous and increasing amount of sensor data and semi- and un-

structured information, the main server will potentially handle significant amount 

of data records, which are not necessarily homogeneous or of the same data types. 

Therefore, the backend database for the main server needs to be highly flexible 

and scalable to allow long term data archival and extendibility. 

• A local (desktop) computer serves as a computing platform that engineers employ 

to conduct computational tasks (e.g., structural analysis and data-driven analysis) 

involved in civil infrastructure monitoring and management. For example, the 

local computer may periodically retrieve sensor data and relevant engineering 

model from the main server and performs analysis to determine the integrity of 

the target structure. The local computer can also store some of the data (e.g., 

recently collected sensor data) in a local database system to prevent unnecessarily 

repetitive data retrieval from the main server and to enable efficient local data 

query. Upon finishing data analysis, the local computer sends the analysis results 

back to the main server to share the results with other components and project 

participants. Since a local computer needs to store a limited amount of data 

temporarily, the focuses of the database system for a local desktop computer are 

not necessarily related to the long-term archiving of large amount of data but 

should be on efficient data retrieval to support data parsing and analysis. 

• An end-user device, such as a laptop computer or a personal device, allow users 

direct, real-time and ubiquitous access to the data residing in the main server via 

web and mobile applications. Furthermore, with the development of appropriate 

interfaces, the end-user devices can access computational tools (e.g., local 

computer) to remotely conduct engineering analysis. Since an end-user device 

focuses mainly on information retrieval, no database system is necessary.  
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3.2.2 Selection of NoSQL database tools 

There have been a number of NoSQL database systems with different features and 

properties. Selecting an appropriate database tool for specific application is very important 

for successful deployment of data management system [46]. Based on the data model, 

current NoSQL database tools can be categorized into column family stores, document-

oriented stores, key-value stores, and graph databases [46, 47, 48], as shown in Figure 3.2. 

The features and properties of the four categories of NoSQL database systems can be 

summarized as follows: 

• Column family stores (or wide column stores), which are originated from Google 

Bigtable [98], aim to handle a large amount of data in a distributed manner. The 

column family data model has ability to handle a large number of dynamic 

columns (e.g., billions of columns), which enables flexible data schema.  

• Document-oriented stores (or document stores) offer schema-free data model in 

which different documents (i.e., unit data entities) may have different set of key-

value pairs without having a pre-defined data schema. Furthermore, document-

oriented database systems typically support convenient queries for heterogeneous 

data and hierarchical data.  

 
Figure 3.2 Four categories of NoSQL database systems 
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• Key-value stores offer simple data model that consists of key and value, where the 

value is opaque to system and cannot be used for data query (i.e., only the key-

based query is supported). Based on a simple data model, as well as in-memory 

operation, key-value stores guarantees fast read and write performance. 

• Graph databases use graph structure consisting of nodes and edges to represent 

the data. Based on the graph structure, graph databases are optimized to manage 

data records with complex relationships. Furthermore, graph databases enable 

efficient query performance, in particular, for recursive join operations involving 

complex relationship among data entities.  

In this study, we employ Apache Cassandra [99], one of the most widely used column 

family stores, to satisfy the scalability and flexibility requirements of the main server, and 

MongoDB [100], one of the most widely used document-oriented stores, for convenient 

and efficient queries on the onsite computer and the local computer. Key-value stores, 

while suitable for fast data store and retrieval, are ruled out in this study, because of their 

limitation in terms of the data capacity. Lastly, the data schemas, to be described in the 

latter section, do not lend themselves suitable for the graph database. 

3.2.2.1 Apache Cassandra: column family database for supporting 

persistent data archiving 

Given the scalability requirements of the main server, Apache Cassandra database [99], 

which was originally developed to meet the reliability and scalability needs of Facebook 

[101], is selected. Cassandra database is designed to handle a very large volume of data 

based on a peer-to-peer (P2P) architecture which is a preferable approach for a highly 

available and scalable distributed database [45]. Specifically, in the P2P architecture, each 

node (i.e., a database instance) is self-sufficient and all nodes have an identical role, which 

ensures that, in the worst-case scenario, the failure of some nodes results in degradation of 

the database operation but remains able to guarantee a high possibility of availability. 

Furthermore, the P2P architecture ensures high scalability in that the number of nodes can 
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be easily modified without causing operational downtime and the database performance is 

linearly scaled as new nodes are added to an existing Cassandra database cluster.  

To maintain the consistency of the database and to process requests in a decentralized 

manner, nodes in a Cassandra database cluster communicate among one another according 

to a “ring” topology as shown in Figure 3.3. Data is replicated and distributed over multiple 

nodes to ensure high availability and fault-tolerance, as well as to maintain efficient reading 

and writing performances. Figure 3.3, for instance, illustrates how sensor measurement 

data is stored in a Cassandra database cluster. In this example, the incoming data R has two 

records r1 and r2 which could be sensor measurement data collected by different sensors. 

The replication factor (i.e., the number of replicas in a cluster) is two. Any node (say, node 

N5 in the example) can accept the write request. The incoming sensor data is partitioned 

into two pieces and then copied twice over the nodes. Since the sensor data is replicated 

over the cluster, writing and reading the data can still be performed even when a node is 

down, as long as other nodes remain available for processing the requests. 

Another advantage of using the Cassandra database is the flexible data schema. Figure 3.4 

depicts the Cassandra database’s data structure consisting of “keyspace,” “column family,” 

 
Figure 3.3 Ring topology of Cassandra database 
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“row” and “column,” which are analogous to “database,” “table,” “tuple” and “attribute” 

of relational database, respectively. The top-level keyspace is defined for a specific project. 

The column family consists an array of rows where each row consists of a set of columns. 

Each column represents a basic element in the Cassandra database and is assigned a name 

and value pair. One of the most significant differences from relational databases is that the 

column family stores allow different rows to store different combinations of columns. The 

flexible data structure has advantages on storing semi-structured data (e.g., bridge 

information models) by allowing different attribute sets for different records. Furthermore, 

Cassandra’s dynamic column feature, which allows new records to be attached at the end 

of an existing row, and supports effective query performance for time-series data by storing 

contiguous time-series data in contiguous disk locations [60]. Last but not least, Cassandra 

database supports a variety of data types (e.g., number, array, dictionary, binary data, etc.), 

which can be an advantage for SHM data management which often involves time-series 

sensor data and video image data.  

3.2.2.2 MongoDB: document store for supporting efficient data 

retrieval 

MongoDB features schema-free data structure and powerful query capability. The data 

structure of MongoDB consists of the database, collection, and binary JSON (BSON) 

 
Figure 3.4 Data structure of Cassandra database 
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schema-less document, as shown in Figure 3.5 [102]. The JSON document enables easy 

change or extension of the data model and human-understandable data structure such as 

object-oriented data format. MongoDB also has the advantage of representing complex 

data structure by enabling relationships between documents and supporting hierarchical 

data structure. Moreover, MongoDB offers fast read and write performance [102]. 

Although MongoDB does not support the “join” query, it still supports a rich set of query 

operations including indexing, range query, and aggregation operations. With the flexible 

schema and high performance, MongoDB is particularly suitable when complex SQL-like 

queries and transactions are not required. 

Based on its flexibility and speed, MongoDB has been widely used in many fields including 

Internet of Things (IoT) applications and real-time analysis [102, 103]. In the proposed 

framework, MongoDB is employed for onsite computers and local (desktop) computers to 

support temporary data store with convenient and efficient queries.  

3.3 A NoSQL-based Data Management Framework 
for Civil Infrastructure Monitoring 

This section describes the data management framework for civil infrastructure monitoring 

based on NoSQL database tools [71]. Specifically, data schema definition for NoSQL 

 
Figure 3.5 Data structure of MongoDB 
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database systems and data store and retrieval processes are discussed. The design and 

implementation of the framework is described with a bridge monitoring system as an 

example. Figure 3.6 depicts the overall data management framework employing NoSQL 

database systems. The onsite computer and the local computer employ MongoDB for 

convenient and efficient querying, while the main server employs Cassandra database for 

the long-term archiving of a large amount of data. To facilitate system automation and 

improve data management efficiency, data schemas are defined considering the data 

requirements in civil infrastructure monitoring. Data involved in civil infrastructure 

monitoring applications can be divided into sensor data (typically time-series data) and 

civil infrastructure information (typically object-oriented data). Sensor data schema is 

defined in a way that can facilitate range query, whereas civil infrastructure information 

 
Figure 3.6 Data management framework for civil infrastructure monitoring based on 

NoSQL database 
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(including geometry, finite element model and sensor information) schema is defined based 

on the BrIM schema, as discussed in Chapter 2, to facilitate data interoperability.  

3.3.1 Onsite computer 

An onsite computer receives sensor measurement data from sensor networks, stores the 

data temporarily, and sends the data to the main server for permanent archiving. In case 

when the onsite computer has enough computational power to run a local database and is 

required to support data queries for data analyses, a document database can be employed 

to support efficient querying. For this study, a version of MongoDB (version 2.0.6) is 

employed because some onsite computers in practice use older versions of the Microsoft 

operating systems (OSs) which is not compatible with recent versions (i.e., version 2.2 or 

higher) of the MongoDB. 

3.3.1.1 Data scheme for document database on onsite computer  

In the current design of the data management framework, an onsite computer stores sensor 

data and sensor information but not bridge information, because an onsite computer 

performs typically simple data analyses which do not involve bridge information. In 

MongoDB, a database, which is equivalent to the database of RDBMS, can be created (if 

not already exists) and selected using MongoDB’s use command as follows: 

use mybridgedb 

which creates a new database named mybridgedb (if not already exists) and accesses to 

the database. A collection, which is equivalent to the database and table of RDBMS, in 

MongoDB can be created without defining data schema using MongoDB’s 

createCollection command as follows: 

db.createCollection("sensor_data") 
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which creates a new collection named sensor_data in the current database. Data 

schema is created dynamically as a new document, which is equivalent to a tuple of 

RDBMS, is inserted to a collection. It should be noted that documents in a collection do 

not need to have the same data schema; they can have different set of key-value pairs.  

Figure 3.7 shows the data schema of sensor data collection, named sensor_data, in 

MongoDB. Each document stores sensor data in a list along with the sensor_id and 

event_time of data acquisition. In the current implementation, each document collects 

a list of measured data over a period of a second. For example, as shown in Figure 3.7, if 

the sampling rate is 5Hz, the sampled data is divided into buckets; each bucket has five 

consecutive data and is stored in a single document. Since a document in MongoDB can 

have up to 16MB of storage [100], the strategy to partition the data according to sampling 

rate and the data storage is necessary to prevent data overflow which can be caused by 

sensors that have high sampling rate. 

In addition to sensor data collection, data schema for sensor information collections are 

defined as shown in Figure 3.8. The schema takes advantage of MongoDB’s hierarchical 

data structure to categorize sensors for ease of sensor information retrieval. For example, 

 
Figure 3.7 Data schema of sensor data in MongoDB 
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the sensor_group collection is defined to store documents containing the list of 

sensor_ids of certain types of sensors (e.g., accelerometer, strain gauge and 

thermistor). In addition, the sensor_info collection is defined to store documents 

containing sensor metadata (e.g., sensor_id, sensor_type, 

conversion_factor, sampling_rate, etc.). With the schema definition, data store 

to and data retrieval from the onsite computer can be performed with MongoDB’s query 

language. 

3.3.1.2 Data store and retrieval processes on onsite computer  

An onsite computer needs to not only store incoming sensor data stream, but also allow 

data retrieval for data analyses and for uploading data to the main server. MongoDB offers 

data manipulation language (DML) to support data store and retrieval operations. 

Furthermore, MongoDB supports application programming interfaces (API) in different 

scripting languages. After selecting a database using the use statement, data store process 

can be performed using MongoDB’s save command. For example, a sensor data store 

process can be performed using the save command as follows: 

 
Figure 3.8 Data schema of sensor information in MongoDB 
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db.sensor_data.save({sensor_id: "sID001", event_time: 

ISODate("2014-01-22T01:34:44"), data: [1001, 1002, 1003, 

1004, 1005]}) 

where the document (i.e., the contents inside the curly brackets) containing the 

sensor_id (i.e., sID001), event_time (i.e., 2014-01-22T01:34:44) and the 

data (i.e., [1001, 1002, 1003, 1004, 1005]) is stored to the collection 

sensor_data.  

Similarly, the data retrieval process can be performed using another MongoDB command 

find. For example, application programs, such as data analysis module and data 

transmission module, can retrieve sensor data collected from certain time period by a 

certain sensor as follows: 

db.sensor_data.find({sensor_id: "sID001", event_time: 

{$gte: ISODate("2014-01-22"), $lte: ISODate("2014-01-

23")}}) 

which retrieves sensor data collected by sensor sID001 during the time period from 

2014-01-22 to 2014-01-23 from the collection sensor_data. MongoDB returns 

all corresponding documents according to the specified data schema as follows: 

{sensor_id: "sID001", event_time: ISODate("2014-01-

22T01:34:44"), data: [1001, 1002, 1003, 1004, 1005]} 

The module that runs the find operation can use the retrieved document similar to using 

a JSON document. 

3.3.2 Main server 

The main server serves as a central data repository of the bridge monitoring system. Apache 

Cassandra database is implemented as the backend database for the main server to support 
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efficient long-term archiving of data. Cassandra database in the main server is designed to 

store data of different types, including sensor data, image data, sensor information, bridge 

information model (including geometry and engineering model), and analysis result. 

Cassandra database offers Cassandra Query Language (CQL) [104] which includes DDL 

and DML. Using CQL and Cassandra Driver APIs [105], client systems, such as the onsite 

computer, local computer and user devices, can access the Cassandra database to store and 

retrieve data. Since the size of sensor data is usually quite large, it is desirable to tune the 

Cassandra database to use as much as memory as possible for efficient data processing. 

3.3.2.1 Data scheme for column family database on main server  

3.3.2.1.1 Sensor data schema  

In the proposed data management framework, Cassandra database stores a large volume of 

sensor data. Since bridge monitoring often utilize continuous time-series data collected 

within a certain period, efficient range query performance for time-series data needs to be 

supported. The partitioning feature of Cassandra, however, may result in distribution of the 

time-series data to many different database nodes, resulting in excessive disk seek time. 

Figure 3.9(a) shows an example where the continuous time-series data r1, r2 and r3 are 
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(b) Time-series data stored in the same node 
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distributed over multiple database nodes. In this case, a database query not only needs to 

retrieve the data from all three nodes, but also needs to sort the data according to their 

timestamps, which ends up with poor performance for retrieving time-series data. 

To enable effective range query performance, a dynamic column strategy for handling 

time-series data in Cassandra database is employed, as shown in Figure 3.10. The basic 

idea of this strategy is to store time-series data contiguously in a sequentially sorted order 

to minimize disk seek time. The Cassandra data schema for time-series sensor data is 

defined as follows.  A column family called sensor_data is created for sensor data 

store using CREATE query statement of CQL as follows: 

CREATE TABLE IF NOT EXISTS sensor_data 

(sensor_id TEXT,  

 year TEXT,  

 event_time TIMESTAMP,  

 data LIST<DOUBLE>,  

 PRIMARY KEY ((sensor_id, year), event_time)); 

In this schema, the data entities sensor_id, year and event_time compose the 

primary key of the column family, where sensor_id and year are the row key and 

event_time is the clustering key. Based on the row key definition, sensor data collected 

from a sensor is stored in a single row. Furthermore, sensor data is stored in a sorted order 

by assigning the event_time of the data as a clustering key. Since sensor data collected 

from civil infrastructure monitoring systems usually has very high sampling rate with same 

interval period between data points, it is redundant to record timestamp for every data point. 

Instead, the proposed data schema encodes sensor data as a numeric array type 

list<double> that stores data collected during a specified time period (e.g., 1 second) 

 
Figure 3.10 Database schema for time-series numeric sensor data 
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in a sorted order. The timestamp records can be regenerated, if needed, based on the 

sampling rate. With the data schema definition, a new incoming data is stored to the 

existing row corresponding to sensor_id by dynamically adding new columns at the 

end of the row (see Figure 3.10). This data schema improves the range query performance 

comparing to RDBMSs by enforcing the consecutive time-series sensor data to be stored 

in a contiguous physical disk location in the same node, as shown in Figure 3.9(b) [60]. In 

this study, a part of the timestamp (e.g., year) is added to the row key to prevent a single 

row from becoming too lengthy. In this way, the data from a sensor can be partitioned to 

several rows based on a specific time period (e.g., year) of data acquisition. 

Similarly, a column family called image_data is created for image data store using 

CREATE query statement of CQL as follows: 

CREATE TABLE IF NOT EXISTS image_data 

(camera_id TEXT,  

 month TEXT,  

 event_time TIMESTAMP,  

 image BLOB,  

 PRIMARY KEY ((camera_id, month), event_time)); 

In this schema, the data entities camera_id, month and event_time compose the 

primary key of the column family, where camera_id and month are the row key and 

event_time is the clustering key. Figure 3.11 shows that sequential image files collected 

from a traffic video camera are stored in a row by assigning event time (e.g., 2016-08-

23T10:02:08) as a clustering key. In addition, part of the timestamp (e.g., year and 

month) is added to the row key to partition image data to several rows based on the year 

and month of its acquisition. Each image file is encoded in a binary large object (BLOB) 

 
Figure 3.11 Database schema for time-series image data 
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data (e.g., /9j/4AAQSkZj … H//Z) and stored in a single column. The BLOB data can 

be converted back to the original image file using imaging libraries, such as Python 

Imaging Library [106]. 

3.3.2.1.2 Bridge information model schema 

One salient feature for adapting a NoSQL database system is the ease of mapping a 

hierarchical object-oriented bridge information model onto the database schema. An 

extensible database schema is needed to effectively manage the complex bridge 

information. Cassandra database offers flexible data structure that can elegantly handle 

complex data [107]. Using the flexible data structure, a database schema that follows 

closely the BrIM schema (which was discussed in Section 2) is designed. Figure 3.12, for 

example, shows data mapping between the BrIM schema of the FELine object and the 

corresponding column family schema FELine created using a CQL CREATE query 

statement as follows: 

CREATE TABLE IF NOT EXISTS FELine 

(uid uuid,  

 N text,  

 T text,  

 node1 text, 

 node2 text, 

 felinesection text, 

 felinemesh text,  

 felinerelease text, 

 parent map<uuid,text>, 

 child map<uuid,text>,  

 PRIMARY KEY(uid)); 

The database schema contains the data entities of FELine object, as well as child and 

parent entities to record the hierarchical relation between the objects. As such, bridge 
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information stored in the column-oriented database can be mapped to hierarchical BrIM 

objects.  

Figure 3.13 shows examples of the rows of the column-oriented database for storing BrIM 

objects where a single object is stored in a row. Each row has a mandatory partition key 

(e.g., shp001 of the first row in Figure 3.13(a)). A row has columns for storing attributes 

and parameters, as well as the list of child and parent objects. Since the Cassandra database 

supports collection types, any number of child objects can be recorded in the child column. 

In Figure 3.13(a), for example, the child column of the shape object contains the ID and 

types of child objects (i.e., [pt001: Point, pt002: Point, …]). One issue in 

managing hierarchical object data is that each object may have different sets of attributes. 

This data irregularity can be efficiently handled by the Cassandra database with its flexible 

data structure. Specifically, the Cassandra database allows rows in the same column family 

to contain different sets of columns. For instance, Figure 3.13(b) shows that the two rows 

in the column family FELine have different column sets: the first row has the 

FELineRelease column, while the second one does not. In fact, BrIM objects with the 

same type often have different sets of attributes and child objects. As such, the flexible data 

structure of Cassandra database is suitable to handle the heterogeneous BrIM object entities 

without enforcing every row to have the same set of columns.  

 
Figure 3.12 Data mapping between BrIM schema FELine and corresponding Cassandra 

column family 

<<ColumnFamily>>	FELine
uid
N
T
FELineMesh
FELineRelease
FELineSection
Node1
Node2
Section
Parent
Child

UUID
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

MAP<UUID,TEXT>
MAP<UUID,TEXT>

Primary	Key
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3.3.2.2 Data store and retrieval processes on main server 

3.3.2.2.1 Data store and retrieval processes for sensor data 

Once the data schema is defined, bridge monitoring data can be stored and retrieved using 

CQL [104], which is similar to the structural query language (SQL) of relational database. 

Specifically, CQL uses INSERT-INTO-VALUE statement for data insertion and SELECT-

FROM-WHERE statement for data retrieval. For example, sensor data can be stored to 

Cassandra database by using an INSERT query as follows: 

INSERT INTO sensor_data (sensor_id, year, event_time, 

data)  

VALUES ("sID001", "2014", "2014-01-22T01:34:44", [1001, 

1002, 1003, 1004, 1005]) 

This query statement stores a row, which has sensor_id, year, event_time and 

data values, to the sensor_data column family. Once stored, data can be retrieved 

 

(a) Rows storing Shape object and its child Point objects 

 
(b) Rows storing heterogeneous FELine objects 

Figure 3.13 Database schema for BrIM objects 

pt001
T X Y Parent

"Point" "-10" "-10" [“shp001”, “Shape”]

shp001
T Material Child

”Shape" “Concrete” ["pt001”: “Point”, "pt002”: “Point”, … ]

pt002
T X Y Parent

"Point" "-10" "10" [“shp001”, “Shape”]

FELine001
T FELineRelease FELineSection Node1 Node2

”FELine" “FELineReleaseType1” “Steel I-Beam	type1” ”Node090” ”Node091”

FELine002
T FELineSection Node1 Node2

”FELine" “Steel I-Beam	type1” ”Node091” ”Node092”
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using a SELECT query. For example, client systems, such as local computers, can retrieve 

consecutive sensor data using a SELECT query as follows: 

SELECT data 

FROM sensor_data 

WHERE sensor_id="sID001"  

      AND year="2014"  

      AND event_time>= "2014-01-22T00:00:00"  

      AND event_time<="2014-01-23T00:00:00" 

which retrieves sensor data collected by sensor sID001 during the time period from 

2014-01-22T00:00:00 to 2014-01-23T00:00:00 from the column family 

sensor_data. Data insertion and retrieval request can be carried out by sending the 

query statements to Cassandra database system via either the CQL Shell (CQLSH) 

interface or Cassandra Driver API. However, it should be noted that CQL has limited query 

operations comparing to SQL. One limitation is that CQL does not support complex query, 

such as to combine two or more column families, through “join” operation. To implement 

complex query, an application script can be used to encode the queries and to pass the 

query result from one query onto another. 

3.3.2.2.2 Data store and retrieval processes for bridge 

information model 

The bridge information described in BrIM data model needs to be mapped to the data 

schema of the Cassandra database, and vice versa. For this purpose, we develop mapping 

scripts that maps data between the BrIM schema and the database schema. The scripts is 

written based on Cassandra driver API [105] for interacting with Cassandra database and 

an XML parser (such as xml.etree.ElementTree package [108]) for parsing and modifying 

the information written in XML. Figure 3.14 shows an example of data mapping from 

BrIM file to Cassandra database. First, the BrIM file written in XML is parsed into an 

object-tree using the XML parser. The parsed objects include information about its 
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attributes, parameters, and parent and child objects. The mapping script then accesses the 

root object in the object-tree, which is the Project object in the example, and maps the 

information of the object into the data model of Cassandra database. The mapped 

information is then used to create an INSERT query request. Finally, the query request is 

sent to the Cassandra database using Cassandra driver API. The process is performed 

recursively for the child objects in the object-tree until all the child objects have been 

processed. 

Data mapping from Cassandra database to BrIM file can be done by reversing the mapping 

process for translating the BrIM file to Cassandra database. Figure 3.15 shows an example 

that retrieves the Project object and its child objects, which are stored through the 

mapping process shown in Figure 3.14. For the retrieval of the bridge information, we first 

execute a SELECT query to obtain the root object (i.e., Project object in this example) 

using the Cassandra Driver API. The query result is then mapped into the XML object 

using the XML parser. Using the child object list in the child column, the process is 

performed recursively for all the child objects in the object-tree. Once the data retrieval 

process is complete, the object-tree is parsed as XML string and stored in an XML file. 

 
Figure 3.14 Data mapping from BrIM schema to Cassandra database schema 
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3.3.3 Local computer 

A local computer is essentially a desktop-based computing platform that retrieves data 

from the main server using CQL, performs analysis, and pushes the analysis results back 

to the main server. Since some data analysis modules require very expensive computational 

costs, the decentralized strategy helps the main server to be isolated from such operations 

and to maintain its performance as the central data repository. Nevertheless, it may not be 

efficient to retrieve sensor data from the main server every time the local computer 

performs analysis because (1) the sensor data retrieval takes a long time due to the volume 

of data, and (2) some of the data can possibly be used repeatedly. Instead, the local 

computer in the current implementation is designed to retrieve sensor data periodically 

from the main server and to store the data of certain period (e.g., data collected during the 

last one month) in a local database. This approach can reduce data transmission time as 

well as traffic between the local computer and the main server. In the current 

implementation, MongoDB is used as the local database on the local computer. Data 

schema design follows the same schema designed for the MongoDB on the onsite 

computer.  

 
Figure 3.15 Data mapping from Cassandra database schema to BrIM schema 
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Data retrieved from MongoDB on the local computer and from Cassandra database on the 

main server can be utilized by different analysis modules on the local computer. To 

interface the database systems and the analysis modules written in scripting languages (e.g., 

Python), database APIs [105, 109] are used. Furthermore, the analysis modules employ 

various tools, including MATLAB Engine (MATLAB API for Python [110]), scikit-learn 

(a package for machine learning in Python [111]) and rpy2 (R API for Python [112]), to 

connect database systems with different data analysis modules. Demonstrative examples 

of analysis modules implemented on the local computer will be discussed next in Section 

3.4.  

3.4 Case Example 

This section demonstrates the utilization of the NoSQL-based data management framework 

[70, 71]. To test the data management framework, this study uses the data sets collected 

from the Telegraph Road Bridge (TRB). In addition to static bridge information (e.g., 

geometry, finite element model and sensor description) the structural monitoring system of 

the TRB collects dynamic sensing data. More specifically,  

• Sensor data: The TRB is instrumented with 60 sensors, including 14 

accelerometers, 40 strain gauges, and 6 thermistors [93, 113]. Figure 3.16 shows 

the layout of the sensor network [113]. These sensors collect data every two hours 

for one-minute duration at sampling frequency 200 Hz (accelerometer) or 100 Hz 

(strain gauges and thermistors). The sensors acquire data for a one-minute time 

duration on every two hours interval. 

• Traffic video image: The traffic monitoring system operated by Michigan 

Department of Transportation (MDOT) collects traffic video images at the TRB 

every two seconds [114].  



CHAPTER 3.    NOSQL-BASED SCALABLE DATA MANAGEMENT  
 

 

69 

For demonstration, a laptop computer (MacBook Pro mid 2014), a server computer (Dell 

PowerEdge T620) and a desktop computer (A custom desktop computer with Windows 7) 

are used as an onsite computer, a main server and a local computer, respectively.  

3.4.1 Data store and retrieval 

To simulate the in-situ bridge monitoring scenario, a script (written in Python) that 

periodically sends the sensor data sets to the onsite computer is developed. Once the sensor 

data is delivered to the onsite computer, the interface program (namely, onsite.py) on 

the onsite computer automatically re-structures the raw data according to the defined data 

schema for MongoDB and stores the parsed data to MongoDB. Figure 3.17 shows a 

screenshot of the onsite.py in operation. Once a data set for a single data acquisition 

event is stored in MongoDB on the onsite computer, another interface program (namely, 

tomain.py) on the onsite computer parses the data set stored in MongoDB to the defined 

 
Figure 3.16 Type and location of sensors installed on the Telegraph Road Bridge [110]  
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data schema for Cassandra data and uploads the data to the Cassandra database in the main 

server. Figure 3.18 shows a screenshot of the tomain.py in operation.  

Sensor data stored in the Cassandra database can be retrieved using CQL queries. Figure 

3.19 shows an example of sensor data retrieval using a SELECT query. This query specifies 

sensor ID (TRB_u07_ch0), year (2014) and time range (from 2014-08-

02T00:00:00 to 2014-08-02T01:00:00) to retrieve sensor data. Once the query is 

 
Figure 3.17 onsite.py: Python script storing sensor data to MongoDB in onsite computer 

 
Figure 3.18 tomain.py: Python script storing sensor data to Cassandra database in main 

server 
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submitted, Cassandra database processes the query request and returns query results in a 

tabular structure, as shown in Figure 3.19. 

Bridge engineering model is also stored in the Cassandra database in the main server. For 

storing the bridge engineering model, we export the FE model into Microsoft Excel format 

using CSiBridge’s exporting function. The exported engineering model is first mapped into 

BrIM schema encoded in XML. The engineering model encoded in BrIM schema is then 

mapped into the database schema and stored in the Cassandra database in the main server 

using the data mapping scripts. Once stored, the bridge engineering model can be retrieved 

in different file formats. Figure 3.20(a) and (b) show the retrieved FE model (Excel file 

format) visualized using CSiBridge and the retrieved BrIM geometry model (XML file 

format) visualized using the OpenBrIM Viewer, respectively. 

Similarly, sensor information is also stored in the Cassandra database in the main server. 

To conduct this task, we develop a Python script to parse the sensor information stored in 

Microsoft Excel Spreadsheet into the database schema and to send parsed sensor 

 
Figure 3.19 Select query for sensor data retrieval and query result in a tabular format 
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information to the main server. Figure 3.21 shows the sensor information retrieved using 

CQLSH, a command line client interface of Cassandra database. 

3.4.2 Influence line analysis using sensor data and bridge 

engineering model 

To take advantage of the integrated bridge monitoring infrastructure, influence line 

analysis, which compares bridge responses collected by the sensors with analytically 

computed response using the FE model, is conducted following the procedure described 

by Hou et al. [115]. In this analysis, we utilize sensor data collected from a field test for 

identification of vehicle-bridge interaction [115]. In the dynamic loading test, a single test 

truck instrumented with GPS sensor crosses the TRB without other traffics. The test truck 

passes the middle lane of the bridge at approximately 60 mph. The specification of the test 

  

(a) Finite element model (b) Bridge information model (geometry) 

Figure 3.20 Bridge information model retrieved from Cassandra database in main server 

 
Figure 3.21 Sensor information retrieved from Cassandra database in main server 
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truck can be found in Figure 3.22 and Table 3.1 [115]. When the test truck crosses the 

bridge, strain gauges (installed as described in Figure 3.23) measure the dynamic strain 

response of the bridge GPS sensor measures the location of the truck [115]. The collected 

data sets are stored in the Cassandra database in the main server. In addition to the sensor 

data, corresponding vehicle load and vehicle lane are defined in the FE model of the TRB 

(as shown in Figure 3.24) for the simulation. The FE model is mapped and transmitted to 

the Cassandra database in the main server. 

Table 3.1 Test truck load description (unit: pound) [112] 

Steer Axle Drive Axle Trailer Lead Axle Trailer Rear Axle Total 
9,460 17,620 17,820 17,600 62,500 

 

 
Figure 3.22 Test truck dimension 

 

 

(a) Plan view (b) Section view 

Figure 3.23 Location of strain gauges 
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Once all the data is stored in the main server, we plot the influence lines for sensor data by 

retrieving the collected sensor data, including strain data and truck location data, and then 

plotting the strain response along the truck location. Next, we download the FE model from 

the main server and conduct static and dynamic FE analysis to compute the influence line 

at the locations of the strain gauges. For the FE analysis, direct integration method (Hilber-

Hughes-Taylor method) without damping is employed, and 0.03 second is selected for the 

time step for the integration. Furthermore, since strain response cannot be directly obtained 

from the analysis results of CSiBridge, we calculate the strain indirectly using the stress 

response obtained from the analysis. Finally, we compare the measured response and 

analytical response of the bridge by overlaying the obtained influence lines. Figure 3.25(a), 

(b), (c), and (d) show the overlays of the influence lines at four different sensor locations, 

respectively. The results show that the measured response is very similar with the analytical 

response, although the analytical response shows slightly higher maximum response than 

the measured response. 

 

 
(a) Vehicle load configuration 

  
(b) Defined vehicle lane (c) Visualized test truck model 

Figure 3.24 Test truck defined in FE model  
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3.4.3 Comparison of sensor data and analytically 

computed bridge response  

In this example scenario, we compare the bridge response measurements collected by the 

accelerometers with the bridge responses computed at the FE nodes corresponding the 

accelerometer locations. Since the bridge information, the sensor information and the FE 

model are integrated in the database, scripts can be written to automate the process. Figure 

3.26 shows the basic steps implemented for this example scenario.  

  

(a) Strain gauge at end-span of girder 6 (b) Strain gauge at mid-span of girder 6 

  

(c) Strain gauge at mid-span of girder 2 (d) Strain gauge at mid-span of girder 2 

Figure 3.25 Influence line analysis result 
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As shown in Figure 3.26, the comparison of measurement and computed data is 

implemented in six steps. In step 1, we retrieve sensor information from the Cassandra 

database using CQL and Cassandra API. As shown in Figure 3.27, CQL query statement 

is issued to retrieve the sensor id and the FENode from the sensor column family, which 

stores the metadata and position information of all the sensors. The WHERE statement 

specifies the query for the SingleAxisAccelerometers attached on the bridge. The 

query is transmitted to the Cassandra database and the (selected) query results are shown 

in Figure 3.27. The query results include the ID of the accelerometers and their 

corresponding FENodes. This information will be used in step 2 and step 5. 

In step 2, we retrieve acceleration data from the database. Figure 3.28 shows the query 

requesting the retrieval of sensor data collected from sensors whose IDs are in the list 

retrieved from step 1. The WHERE clause of the query specifies the time range from 2014-

08-01T00:00:00 to 2014-08-01T02:00:00. As shown in Figure 3.28, the query 

results are presented in sorted order according to their timestamp. The query results are 

stored and will be used in step 6 where the sensor data and analysis results are compared.  

In step 3, the FE model of the bridge is retrieved from the Cassandra database. Using the 

hierarchical relationship between objects using child and parent columns, we can automate 

the process to rebuild the XML-based BrIM model. Figure 3.29 shows the pseudo code for 

retrieving and rebuilding BrIM model using the recursive function 

 

Figure 3.26 Workflow of example scenario for comparing sensor data and analytically 

computed bridge reponse  
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RetrieveDataByKey (lines 1 to 10), which includes the query (see lines 2 to 4) to 

(recursively) retrieve the FE model information. If retrieved object contains child column, 

the function RetrieveDataByKey calls itself with input argument specifying the uid 

and column family of child objects (line 9). As shown in line 14, the recursive function 

starts from the root object of FE model whose uid is 448f641e-8e04-11e6-8f0d-

3c15c2e54ea0 and column family is Project. The query results are received in the 

Python Dictionary data format and then converted into hierarchical XML object using 

xml.etree.ElementTree package [108], as illustrated in Figure 3.30.  

In step 4, the XML-based BrIM model created in step 3 is mapped to the Microsoft Excel 

spreadsheet file that can be processed by the CSiBridge software. Figure 3.31 shows the 

 
Figure 3.27 Step 1: Retrieving sensor information  

 
Figure 3.28 Step 2: Retrieving sensor data 
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pseudo code for the data mapping from BrIM to the Excel spreadsheet. The pseudo code 

has a recursive function to explore every object in hierarchical object-tree structure. 

Specifically, the recursive function parses attributes, parameters and child objects of a 

single object (lines 2 to 4), and then maps the parsed data entities onto an Excel spreadsheet 

 

Figure 3.29 Step 3: Pseudo code of a recursive function for FE model retrieval 

 
Figure 3.30 Step 3: Data mapping from query result to hierarchical BrIM model 
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(line 5). Specifically, we develop a mapping dictionary that matches BrIM object type with 

corresponding spreadsheet name (see Figure 3.32). The xml.etree.ElementTree package 

[108] and openpyxl package [116] are employed for parsing XML and Excel spreadsheet 

files.  

In step 5, the FE model created in step 4 is analyzed. To automate the analysis process, we 

develop two Visual Basic for Application (VBA) scripts using CSiBridge’s APIs. As 

shown in Figure 3.33, Python script calls the VBA scripts using Python extensions for 

Windows (pywin32) package [117]. The first script accepts the list of FENodes as an input 

argument called nodeList(). The script then reads the FE model file created in step 4, 

runs the analysis, and records the response at the specified FENodes to spreadsheets. Here, 

for demonstration purpose, we set a moving truck load at the middle lane of the bridge and 

perform a time-history analysis. The results are then parsed with the second VBA script to 

retrieve the analysis results for the specified FENodes.  

 

Figure 3.31 Step 4: Pseudo code for FE model mapping from BrIM to Excel spreadsheet 

 
Figure 3.32 Step 4: Mapping dictionary from BrIM to Excel spreadsheet 
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Finally, in step 6, the sensor data retrieved from step 2 and the analysis results obtained in 

step 5 are compared. In this example scenario, we calculate the minimum and maximum 

values of the computed response and plot them with the sensor measurements as shown in 

Figure 3.34. The sensor “u131ch0” is an accelerometer that measures vertical vibration at 

the leftmost girder of the bridge. The sensor measurements range from -31.28mg to 

36.66mg, while the minimum and maximum values of computed response are  

–35.92mg and 37.48mg. The results show that the bridge structure behaves within the range 

of the analytically computed responses during the specified time period. 

 

 
Figure 3.33 Step 5: Running FE analysis using CSiBridge and its APIs 

xl = win32com.client.Dispatch("Excel.Application")
xl.Workbooks.Open(filepath, ReadOnly=1)

# Run 1st VBA script
xl.Application.Run(“FEanalysis”, filename, node)

# Run 2nd VBA script
result = xl.Application.Run("GetReturn")

Python	Script

Public Sub Feanalysis (filename As String, nodeList() As Variant)
Dim myCSIObject As cOAPI ‘Create CSI Bridge Instance

… Omitted …
ret = mySapModel.File.OpenFile(filename)     ’Open FE model
ret = mySapModel.Analyze.RunAnalysis ‘Run analysis

… Omitted …
‘Get response at specific node in node list
For i = 0 To UBound(nodeList, 1)

ret = mySapModel.Results.JointAcc(CStr(nodeList(i)), … StepNum, …, U3, …)
‘Record result to active spreasheet
For j = LBound(StepNum) To UBound(StepNum)

ThisWorkbook.ActiveSheet.Cells(j + 1, i + 1) = U3(j)
Next j

Next I
End Sub

VBA	Script	1:	FEanalysis

Public Function GetReturn() As Variant
Dim nRow, nCol As Integer
nRow = Sheets("Sheet1").Cells(Rows.Count, 1).End(xlUp).Row
nCol = Sheets("Sheet1").Cells(1, Columns.Count).End(xlToLeft).Column
‘Return computed response 
GetReturn = ThisWorkbook.ActiveSheet.Range(Cells(1, 1), Cells(nRow, nCol)).Value

End Function

VBA	Script	2:	GetReturn
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3.4.4 Retrieval of sensor data along with traffic image 

data 

In this example scenario, we retrieve the sensor measurement data along with the traffic 

image data. This example illustrates the retrieval of not only bridge response data collected 

by a sensor, but also the traffic information that causes the bridge response. Figure 3.35 

shows the three basic steps for implementing the data retrieval process. 

 
Figure 3.34 Step 6: Plotting retrieved sensor measurement (u131ch0) along with the 

maximum and minimum values of the response obtained from FE simulation 

 
Figure 3.35 Workflow of example scenario for retrieving sensor data along with traffic-

image data 
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In step 1, the sensor measurements are retrieved using CQL. As shown in Figure 3.36, the 

acceleration data is selected using the WHERE clause where the sensor ID is u131ch0, the 

month of the timestamp is 201608, and the time period between 2016-08-

23T10:02:09 and 2016-08-23T10:03:08.  

In step 2, traffic-monitoring images are retrieved to observe the vehicles that affect the 

bridge response retrieved in step 1. Figure 3.37 shows the query statement for retrieving 

the image data from the camera ID telegraph2, date 20160823 and the period 

between 2016-08-23T10:01:54 and 2016-08-23T10:03:08. The time period is 

extended slightly to capture the vehicles that went over the bridge before the sensor data 

period since the traffic flow may affect the initial vibration of the bridge. The images are 

retrieved as binary data stored in binary large object (BLOB) format and converted to an 

image file format, such as JPEG, in step 3. 

In step 3, the binary data is converted to image, for example, using Python’s StringIO 

library [118]. Figure 3.38 shows the retrieved images with the corresponding sensor data. 

 
Figure 3.36 Step 1: Query statement for retrieving sensor data 

 
Figure 3.37 Step 2: Query statement for retrieving image data 
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The images shown in Figure 3.38(b) are trimmed to show only the northbound lane that we 

are interested in. In this figure, the sensor data is divided into twelve segments as labeled 

from 1 to 12 for matching with the corresponding images. The image 0 shows the vehicle 

that crosses the bridge 11 seconds before the data acquisition began. The initial acceleration 

(segments 1 and 2 in Figure 3.38) ranges from -4.48mg to 7.96mg due to the vehicles 

captured in image 0. As shown in images 2, 3, 5 and 6 and the corresponding sensor data, 

the compact cars and midsize cars increase acceleration only up to 14.82mg, even with cars 

crossing the bridge at the same time. On the other hand, as shown in images 4, 8, 10 and 

12 and the corresponding segments of sensor data, trucks and trailers increase the 

acceleration level significantly and up to 44.57mg. 

3.5 Summary 

This chapter presents a scalable data management framework for handling massive data 

collected from civil infrastructure monitoring. NoSQL database systems are leveraged for 

the implementation of the framework. Unlike the traditional civil infrastructure monitoring 

systems, the proposed framework offers high scalability on a distributed computing 

environment, which makes the framework as a desirable alternative to handle ever-

increasing monitoring data. Furthermore, the proposed framework provides data schema 

flexibility, which is useful to manage object-oriented civil infrastructure information. This 

framework also enables data interoperability and integration based on the information 

modeling standards. 

The data management framework consists of four major components. The onsite computer 

receives data from the sensors, stores it temporarily, (optionally) performs simple analysis 

and transmits the data to the main server. The main server stores the sensor data 

permanently along with the relevant information, such as sensor metadata, geometric 

model and engineering model. The local computer retrieves data from the main server, 

performs analyses and returns analysis results back to the main server. The end user device  
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(a) Retrieved acceleration data 

 
(b) Retrieved traffic-monitoring images 

Figure 3.38 Acceleration response of the TRB from 2016-08-23T10:02:09 to 2016-08-

23T10:03:08 collected by “u131ch0” and corresponding traffic-monitoring images. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
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retrieves data and visualizes the data on user interfaces. Based on the data management 

requirements of each component, a column family database (Cassandra database in current 

implementation) that is suitable for large-scale distributed database is employed for the 

main server, while a document-oriented database (MongoDB in current implementation) 

that has advantages on the schema-less data structure and fast, convenient query is 

employed for the onsite computer and local computer. Data schemas for sensor data, sensor 

information and bridge information model are designed to facilitate system automation and 

to improve data management performance. More specifically, data schemas for bridge 

information and sensor information are defined based on the BrIM schema to enable data 

mapping between BrIM schema and database schema, which can allow the data stored in 

the database to be utilized and integrated by different applications. Furthermore, data 

schema for time-series sensor data is defined using time-series data modelling scheme of 

Cassandra database for the fast query performance.  

The proposed framework is demonstrated using the sensor data collected from the 

Telegraph Road Bridge and bridge models of the bridge. In addition to basic data store and 

retrieval examples, this chapter presents three case scenarios that involve different types of 

bridge information, which are typically managed by isolated systems and hard to integrate. 

The first scenario is the influence line analysis that compares the influence line measured 

by sensors with the influence line obtained from finite element analysis. The second 

scenario compares the vibration response measured by sensors with the vibration response 

obtained from finite element analysis. The third scenario compares the vibration response 

measured by sensors with the traffic images collected by traffic monitoring system. The 

results show that the proposed data management framework not only offers scalable data 

management environment, but also allows client systems to easily query and integrate 

heterogeneous data in bridge monitoring applications. 



 

Chapter 4  

A Cloud-based Cyberinfrastructure 
Platform for Civil Infrastructure 
Monitoring 

 

 

4.1 Introduction 

With the advances in information and communication technology (ICT), as well as reduced 

cost of monitoring system, recent trends of civil infrastructure monitoring include the use 

of sensor network with higher density. The advanced ICT and increasing use of sensors 

will realize the concept of cyber-physical system (CPS) wherein physical systems (e.g., 

civil infrastructure) and computational systems (e.g., data repository and analysis modules) 

are tightly integrated [119]. Physical systems can be monitored, assessed and controlled 

with or without human intervention. Furthermore, with the rapid development of data-

driven analysis methods, massive and diverse data collected from monitoring systems offer 

promising opportunities to find new insights about the physical systems. To facilitate data 
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utilizations, data needs to be accessed and retrieved easily by different applications, such 

as data analysis modules and user interfaces. However, current monitoring systems are not 

designed to support interoperable data access; rather engineers often need to download data 

and feed the data into applications manually. This limits the rapid prototyping of 

applications and system automation. In order to facilitate the use of valuable monitoring 

data, a comprehensive data management platform that offers interoperable interfaces and 

easy-to-use data management service will be necessary. 

In the IoT domain, many IoT software platforms have been developed to support sensor 

data management [25, 26, 27, 28, 29]. Sensor can transmit data to such IoT platforms via 

interfaces adhering to standard communication protocols. Sensor data transmitted to IoT 

platforms can be retrieve by different applications also via standardized interfaces. Based 

on the machine-understandable interfaces, IoT platforms can ease the application 

development and enables automated data utilization. However, such IoT platforms are 

typically designed to handle mainly sensor measurement data. In civil infrastructure 

monitoring domain, a data management platform needs to handle not only the sensor data, 

but also the domain information, such as engineering model, geometric model, inspection 

information, etc.  

This chapter presents a cyberinfrastructure platform which offers data management as 

services similar to IoT software platforms but is tailored to civil infrastructure monitoring 

[73, 74, 75, 76]. The proposed platform brings together the information modeling 

(described in Chapter 2), NoSQL-based data management system (described in Chapter 3), 

web service technologies and cloud computing to offer interoperable data management 

services. Based on standard communication protocols, web services, as a database wrapper, 

offer interfaces to different systems and applications for accessing the database. The 

cyberinfrastructure platform is deployed on cloud computing environment to offer reliable 

data management service for handling continuously incoming sensor data, as well as 

scalability for handling ever-increasing amount of sensor data. This chapter also discusses 

a hybrid cloud-based deployment of the platform for outsourcing the management of non-
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sensitive, voluminous data to the public cloud, while managing sensitive data and 

applications within the private cloud separately.  

This chapter is organized as follows. Section 4.2 provides an overview of the proposed 

cyberinfrastructure platform for civil infrastructure monitoring. Section 4.3 and Section 4.4 

describe data store process and data retrieval process, respectively, with the details of web 

services. Section 4.5 presents cloud-based implementations of the cyberinfrastructure 

platform. Section 4.6 demonstrates a prototype implementation of the cyberinfrastructure 

platform using the monitoring data of the Telegraph Road Bridge in Monroe, Michigan. 

This chapter is concluded with a summary in Section 4.7.  

4.2 Overview of Cyberinfrastructure Platform 

Figure 4.1 shows the overall architecture of the proposed cyberinfrastructure platform for 

civil infrastructure monitoring [74]. The platform receives data from various data sources, 

including sensor networks and information models. Sensor networks (e.g., structural health 

monitoring system) collects heterogeneous sensor data, ranging from high-frequency time-

series data to video and camera images. Collected sensor data is transmitted to the 

cyberinfrastructure platform through the communication network (e.g., the Internet) and 

 
Figure 4.1 Overall architecture of the cyberinfrastructure platform for engineering 
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stored. Information contains comprehensive information (e.g., geometry, physical 

properties, functional characteristics and sensor information) of target systems. 

Information models are created on engineers’ personal computer and transmitted to the 

cyberinfrastructure platform through the communication networks.  

The cyberinfrastructure platform serves as a data hub that receives, processes, analyzes, 

stores, distributes and shares monitoring data. The cyberinfrastructure platform is 

composed of three basic layers, namely, communication layer, mapping layer and storage 

layer, to support data store and retrieval. For data store processes, the communication layer 

handles communication with the data sources. Specifically, the web server and message 

broker in the communication layer provide standardized interfaces to receive data from 

different data sources via the Internet. The mapping layer includes data mappers (which is 

described in Section 3.3.2.2.2) that map the received semi-structured information models 

onto the database schema. The mapped data is passed to the storage layer which includes 

a NoSQL-based distributed database system (which is described in Chapter 3) that 

partitions, replicates and stores data.   

The data stored in the cyberinfrastructure platform needs to be accessed and retrieved by 

different applications, such as data analysis tools, engineering analysis software, 3-D 

modeling tools and mobile user devices. To support data retrieval services that can be 

invoked by different applications, the cyberinfrastructure platform offers platform-neutral 

interfaces which are hosted on the web server in the communication layer. Once invoked, 

a data retrieval service retrieves data from the storage layers and maps the data through the 

mapping layer. The retrieved data is then delivered to the application that invokes the data 

retrieval service.  

The proposed cyberinfrastructure platform is deployed on a cloud computing environment 

for scalability, accessibility and reliability. Specifically, the cyberinfrastructure platform 

can be deployed on the Infrastructure as a Service (IaaS) layer of cloud (i.e., virtual 

machines offered by cloud) [56], which assures platform portability across different cloud 

vendors or among public cloud, private cloud and hybrid cloud.   
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4.3 Data Store Process 

This section describes the process of acquiring and storing the data with the 

cyberinfrastructure platform [73, 74]. Data store requests are processed through three 

layers: communication, mapping and storage. The communication layer employs web 

server and message broker built upon standard protocols, so that various data sources can 

access the platform. The mapping layer defines the mapper to help store the semi-structured 

information models in the database. Finally, the storage layer employs a distributed NoSQL 

database to enable scalable data management. 

4.3.1 Communication layer 

The communication layer is exposed to clients (e.g., data sources) via the Internet to enable 

remote access. The layer serves as intermediary and accepts messages with the data from 

the clients, parses the message to extract the data, and passes the data to the appropriate 

layer. To support different communication protocols often used in IoT applications, this 

layer includes two systems: (1) a web server based on the Hypertext Transfer Protocol 

(HTTP) for supporting client-server communications and (2) a message broker based on 

the Message Queuing Telemetry Transport (MQTT) for supporting publish-subscribe 

communications. In the prototype implementation, both systems are deployed using 

Node.js [120], a server-side JavaScript runtime environment. 

4.3.1.1 Web server 

The web server is implemented to provide web services, which is, as defined by W3C, is a 

“software system designed to support interoperable machine-to-machine interaction over a 

network [121].” Web services enable sharing of data and integration of applications over 

the network. Since the cyberinfrastructure platform needs to support utilization of data 

from various devices (e.g., cloud, local computer, micro-computer and mobile devices) and 

platforms (e.g., different operating systems), it is important to employ a widely-adopted 
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web service protocol. Furthermore, the cyberinfrastructure platform needs to support 

conditional queries involved in SHM applications (e.g., range query for time-series data). 

To meet these requirements, the cyberinfrastructure platform employs RESTful web 

services [66] which have fast performance and high scalability [68]. RESTful web services 

are described using five constraints [122]: 

• Resource identification. Resources are identified by uniform resource identifiers 

(URI). 

• Uniform interface. Resources can be accessed via the HTTP. 

• Self-descriptive messages. Resources are represented using standardized formats, 

such as Hypertext Markup Language (HTML), XML and JavaScript Object 

Notation (JSON). 

• Hypermedia as the engine of application state. Resources contain links by which 

clients can interact with web services. 

• Stateless interactions. Requests contain all the required information for web 

services to process the requests. 

The proposed web server hosts a set of web services to handle different types of data. Table 

4.1 summarizes the data store web services currently implemented in the 

cyberinfrastructure platform. Here, the HTTP method POST is used to submit data to the 

specified URIs [66]. For example, Figure 4.2 shows a schematics of a web server hosting 

web services for storing engineering models and sensor data. In this example, a client 

system, such as a local desktop computer, sends an HTTP request specifying the host name 

Table 4.1 RESTful data store web services currently implemented on the 

cyberinfrastructure platform 

Service HTTP method URI 
Sensor data store POST /sensordata 

Traffic image store POST /imagedata 
Sensor information store POST /sensor 
Geometric model store POST /geometricmodel 

Engineering model store POST /femodel 
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(<wsAddress>) and the Uniform Resource Identifier (URI) (/femodel) of the web 

service for engineering model store. In addition, the HTTP request includes an engineering 

model file written in standard syntax such as eXtensible Markup Language (XML) that the 

client wants to store in the cyberinfrastructure platform. Upon receiving the message, the 

web server calls the web service corresponding to the request specified. The web service 

then parses the HTTP request, extracts the engineering model file, and delivers the file to 

the next layer (i.e., mapping layer). Once the process is completed, the web service returns 

an HTTP response notifying that the request has been processed successfully. If any error 

occurs during the process, the web service returns an HTTP response with an error 

message.  

The web server processes a sensor data store request in a similar manner. In Figure 4.2, for 

example, a gateway system connected to a sensor network sends an HTTP request that 

contains sensor data written in JSON format, as well as the host address (<wsAddress>) 

and the URI (/sensordata/001) for the sensor data store service. Once the web server 

receives the request, a web service is invoked, parses the request and extracts sensor data. 

It should be noted that the sensor data is delivered directly to the storage layer without 

 
Figure 4.2 Web server hosting web services for engineering model and sensor data store 
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going through the mapping layer in the current implementation, since sensor data typically 

does not require complex data mapping. 

4.3.1.2 Message broker 

The message broker is implemented to support M2M communication for sensor data 

exchange based on the publish-subscribe paradigm. Publisher clients (e.g., data sources) 

and subscriber clients (e.g., application programs) can exchange messages in one-to-one, 

one-to-many and many-to-many communication in real time. This real time messaging can 

be used not only to store data, but also to enable tasks, such as real time analytics and event 

triggering, executed in real time. The message broker manages several “topics”, each of 

which is defined for a specific type of sensor data. Data sources can use the topic to specify 

the type of data. Figure 4.3, for example, describes a message broker for sensor data store. 

In this example, a gateway device publishes a message including a topic (sensor/data) 

and sensor data written in JSON to the message broker through the MQTT protocol. The 

message broker classifies published message based on the topic, parses message to extract 

data and passes the data to the storage layer by sending an INSERT query statement. In 

addition, the published message is broadcasted to every application subscribing the topic 

(sensor/data) in real-time. Therefore, the message broker can support real-time tasks, 

such as real-time analysis and event handling. 

 

 
Figure 4.3 Message broker including a topic for sensor data exchange 
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4.3.2 Mapping layer 

The mapping layer receives the information models from the communication layer, maps 

the model to a database schema, and loads the mapped data to the database. Information 

models are typically written in object-oriented manner to represent a system as a set of 

hierarchical objects. Each object includes information about its characteristics, such as 

physical properties, functional role and relationship with other objects. For interoperability, 

information models are often written with XML or XML-based syntax adopted by 

information modeling standards. For the mapping of such information models, the mapping 

layer includes a data mapper that has information about the relation between the 

information model schema and the database schema. In the prototype implementation, a 

Python script is written as a data mapper which can be called by a web service in the 

communication layer. The data mapper uses an XML parser (e.g., Python 

xml.etree.ElementTree package [108]) to parse an XML-based information model and a 

database driver (e.g., Cassandra driver API [105]) to transmit the mapped data to the 

storage layer.  

The data mapper works as follows. Upon receiving an information model, the data mapper 

is invoked. The data mapper first parses the model written in XML into a hierarchical object 

structure using the XML parser. Each object in the structure includes information about its 

properties as well as hierarchical relationship (e.g., parent and child objects information). 

The mapping script accesses the root object and maps the root object into the database 

schema. The data mapper then creates an INSERT query request for the mapped object 

and delivers the query request to the next layer (i.e., storage layer) using the database 

driver. This process is conducted recursively for the child objects in the hierarchical object 

structure until all the leaf node objects are processed.  

4.3.3 Storage layer 

The storage layer provides a data management service implemented using a distributed 

database. This layer receives information model data (from the mapping layer) and sensor 
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data (from the communication layer), and stores them in the database. For the effective 

data management, it is critical to choose an appropriate database management system 

(DBMS). Since the cyberinfrastructure platform aims to manage a large volume of sensor 

data and engineering information model, scalability is an important factor for choosing a 

DBMS. As discussed in Chapter 3, Apache Cassandra database [99] is suitable for large-

scale distributed data management. The prototype implementation of the platform employs 

Cassandra database for data management in the storage layer.  

Using cloud computing environments (in particular, IaaS), a Cassandra database cluster is 

composed of multiple nodes, each of which can be employed on a physical or virtual 

machine. Cassandra glues the nodes distributed over multiple machines. Furthermore, 

Cassandra handles data partitioning and replications over multiple nodes according to the 

defined network topology and replication factor. For instance, a Cassandra database 

cluster, which has replication factor of two, partitions incoming data into multiple pieces 

and stores them twice over the distributed database nodes. With partitioning and 

replication, a Cassandra database cluster can be available even when some of the nodes are 

down.  

4.4 Data Retrieval Process 

This section describes data retrieval process with the proposed cyberinfrastructure platform 

[73, 74]. Web services for data retrieval are developed to provided standardized interfaces 

that applications on various systems and devices can invoke. In a data retrieval process, a 

request is delivered from an application to the communication layer, to the mapping layer 

and to the storage layer, whereas data is delivered in reverse order. The provided web 

services can be composed together to create new services. 



CHAPTER 4.    CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM 
 

 

96 

4.4.1 Data retrieval using web services 

The communication layer handles the communication required by the applications. The 

communication layer includes a web server that provides RESTful web services for 

applications to retrieve the data, including (partial and entire) information models and 

heterogeneous sensor data. Table 4.2 summarizes the data store web services currently 

implemented in the cyberinfrastructure platform. Here, the HTTP method GET is used to 

retrieve data from the specified URIs [66].  

For example, as shown in Figure 4.4, an engineering analysis application can download an 

analysis model, which is a part of an information model, through the communication, 

mapping and storage layer, as follows:  

(1) The client sends a GET request to the web server in the communication layer with 

URI (/femodel/TRB), protocol (HTTP/1.1) and host (<ws_address>). 

(2) The corresponding web service runs a BrIM mapper (cass_to_brimfem.py) 

in the mapping layer. 

Table 4.2 RESTful data retrieval web services currently implemented on the 

cyberinfrastructure platform 

Service HTTP 
Method 

URI Parameter 

Sensor data 
retrieval 

GET /sensordata/ 
{sensorID} 

event_time_begin, 
event_time_end 

Traffic image 
retrieval 

GET /imagedata/ 
{cameraID} 

event_time_begin, 
event_time_end 

Sensor list 
retrieval 

GET /sensor sensor_type, 
install, remove 

Sensor 
information 

retrieval 

GET /sensor/{sensorID} install, remove 

Geometric 
model retrieval 

GET /geometricmodel/ 
{BridgeID} 

 

Engineering 
model retrieval 

GET /femodel/ 
{BridgeID} 

file_format (xml or 
xlsx) 
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(3) The BrIM mapper retrieves and maps relevant data entities recursively from the 

distributed database in the storage layer using the child list stored in each row.  

(4) The BrIM mapper returns XML-encoded engineering model to the web server. 

(5) The web server returns a response enclosing the XML-encoded engineering 

model and the status code 200 to the client.\ 

Similarly, as shown in Figure 4.5, an engineering analysis application can retrieve sensor 

data from the platform by sending an HTTP GET request, as follows: 

(1) The client sends a GET request to the web server with URI 

(/sensordata/TRB_u131_ch0), query parameters (e.g., 

event_time_begin and event_time_end), protocol (HTTP/1.1) and 

host (<ws_address>). 

 
Figure 4.4 Engineering model retrieval from the cyberinfrastructure platform 

 
Figure 4.5 Sensor data retrieval from the cyberinfrastructure platform 
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(2) The web server sends a SELECT query corresponding to the query parameters to 

the database. 

(3) The database returns query result to the web server.  

(4) The web server returns a response enclosing JSON-encoded query result and the 

status code 200 to the client. 

4.4.2 Service composition 

This section describes how web services offered by the cyberinfrastructure platform can 

be used for developing and integrating SHM applications. Web service composition refers 

to the process of combining different web services to provide a new service that carries out 

composite functions [123]. Standardized web services can be efficiently composed. 

Different methods have been suggested for composition of RESTful web services [67, 124, 

125, 126]. For visual demonstration purpose, this study adopts the approach in [126] that 

uses JOpera [127], a visual composition language. JOpera describes control flow and data 

flow between programs using a graphical model [128]. Each node of the graph represents 

either a program, an input of a program, or an output of a program, while each edge of the 

graph represents a control flow or data flow between nodes. Each program performs a 

function, such as web service invocation, script execution and HTML document creation. 

The following briefly describes two examples to illustrate the composition of RESTful web 

services implemented on the cyberinfrastructure platform. 

Figure 4.6 shows the JOpera data flow of the first demonstrative application named 

DataRetrievalByLocation. This application composes two web services Sensor 

list retrieval and Sensor data retrieval in order to retrieve sensor data measured at a 

specified location by a specified type of sensor. Here, the hollow arrows describe the input 

and the output flow of each program, while the solid arrows describe the data flow and 

control flow between programs. As described in Figure 4.6, the application consists of three 

programs, namely SensorListRetrieval, SearchByLocation and 

SensorDataRetrieval, and processes a request in five steps: 
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(1) The application accepts input arguments including target time period 

(start_time, end_time), sensor type (sensor_type) and local coordinate 

(loc_X and loc_Y) from a client. 

(2) The start_time, end_time and sensor_type are passed to the program 

SensorListRetrieval as input parameters. The program invokes the Sensor 

list retrieval service with the input parameters, and then returns an output 

parameter SYS.page enclosing the retrieved sensor list. 

 
Figure 4.6 A composite application DataRetrievalByLocation: data flow 
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(3) The loc_X and loc_Y and the SYS.page from the previous step are passed to 

the program SearchByLocation as input parameters. The program searches a 

sensor corresponding to the loc_X and loc_Y from the sensor list, and then 

returns sensor_id of the searched sensor.  

(4) The start_time, end_time and the sensor_id from the previous step are 

passed to the program SensorDataRetrieval as input parameters. The 

program invokes the Sensor data retrieval service with the input parameters, and 

then returns an output parameter SYS.page enclosing the retrieved sensor data.  

(5) Finally, the SYS.page from the previous step is passed to the application’s 

output sensor_data which is returned to the client. 

Figure 4.7 shows the retrieved sensor data when the application is executed with the input 

arguments 2014-08-01T00:00:00, 2014-08-10T00:00:00, 

Accelerometer, 102 and -50, which correspond to start_time, end_time, 

sensor_type, loc_X and loc_Y, respectively.  

Figure 4.8 shows the data flow of the second application named SensorInfoOnMap that 

composes an internal web service Sensor information retrieval and an external service 

Google Map API. Given a sensor’s ID, the application shows sensor information at the 

location of the sensor on the map. As shown in Figure 4.8, the application consists of three 

programs, including SensorInfoRetrieval, SensorInfoParser and 

MapHandler, and processes a request in five steps: 

(1) The application accepts an input argument sensor_id from a client. 

(2) The sensor_id is passed to the SensorInfoRetrieval as an input 

parameter. The program invokes the Sensor information retrieval service with the 

input parameter, and then returns an output parameter SYS.page enclosing the 

sensor information. 

(3) The output parameter of the previous step (i.e., SYS.page) is passed to the 

SensorInfoParser as an input parameter. The program parses the sensor 
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information and returns extracted data entities including sensor’s ID, coordinate, 

type, position and description.  

(4) The data entities from the previous step are passed to the MapHandler. The 

program returns an HTML document that displays extracted data entities on the 

Google Map by using the Google Map JavaScript API [129]. 

(5) Finally, the HTML document from the previous step is passed to the application’s 

output that can be visualized by a web browser. 

 

 
Figure 4.7 A composite application DataRetrievalByLocation: Execution example 
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Figure 4.9 shows the result of the SensorInfoOnMap application with an input 

argument TRB_u07_ch0, where the sensor information and the location marker are 

displayed on the Google map. 

 
Figure 4.8 A composite application SensorInfoOnMap: Data flow 
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4.5 Cloud-based Implementation 

This section describes the cloud-based implementation of the proposed cyberinfrastructure 

platform [73, 74]. The cyberinfrastructure platform needs to be scalable to handle large and 

increasing amount of sensor data. The use of cloud computing enables scalability of the 

 
Figure 4.9 A composite application SensorInfoOnMap: Execution example 
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cyberinfrastructure platform. The prototype implementation leverages Infrastructure as a 

Service (IaaS) of cloud computing to enable portability. In addition, a hybrid cloud-based 

decentralized data management is discussed to facilitate information sharing. 

4.5.1 Cloud computing environment 

The past decade has seen wide adoption of cloud computing in many large-scale industrial 

applications, particularly in the Internet of Things (IoT) and big data arena. Advances in 

cloud computing provide highly scalable and accessible computing environment, lessen 

the burdens on the deployment, operation, maintenance and management of computational 

resources, and reduce the cost [7, 57, 58, 59]. Many state-of-the-art data management 

platforms take advantage of cloud computing to allow communication and data sharing 

among physical systems, sensors, software applications and users. Using cloud computing, 

an application, such as an engineering cyberinfrastructure platform, can be easily scaled 

according to demand and optimized for usages of computing and storage resources.  

Cloud computing services are typically categorized into three service models [56]: (1) 

Software as a Service (SaaS) that provides applications and web services to end users, (2) 

Platform as a Service (PaaS) that provides runtime and database supports, and (3) 

Infrastructure as a Service (IaaS) that provides the basic computing utilities including 

network, processor and storage. As depicted in Figure 4.10, the cloud-based engineering 

cyberinfrastructure platform acts as PaaS and SaaS that utilize the computing 

infrastructures and platforms (i.e., IaaS and PaaS) for hosting the data management and 

application services. 

IaaS utilities are typically offered in the form of virtual machines (VMs). A VM is a 

virtualized computing system that emulates the underlying architecture of a physical 

computer and offers the same functionalities of the physical computer [130]. A VM can be 

provisioned and configured in minutes and be managed through cloud interfaces offered 

by a cloud vendor. For example, Figure 4.11(a) shows the web portal interface of the 

Microsoft Azure cloud platform [131] that shows the information about a VM such as its 
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name, status, operating system (OS) and size. Once provisioned, a VM can be accessed via 

standard network protocols, such as Secure Shell (SSH) and Secure Copy Protocol (SCP). 

Figure 4.11(b) shows the shell interface of a VM on the Azure cloud platform accessed via 

the SSH protocol. Similar to using a remote server, a VM can be used to gain access to the 

computing resources and software tools. The proposed cyberinfrastructure platform utilizes 

VMs to access the computational services, such as distributed database, web servers and 

engineering software applications. 

The IaaS utilities can be scaled both vertically (by increasing capability of a VM) and 

horizontally (by adding new VMs) on demand. While vertical scalability is limited to the 

maximum capability of a single VM, the horizontal scalability is nearly unlimited since 

cloud vendors allow adding as many VMs as needed. Figure 4.11(c), for example, shows 

that multiple VMs are deployed as needed on the Azure cloud platform. To take advantage 

of the scalability of an IaaS utility, thereby enabling scalable SHM data management, the 

cloud-based cyberinfrastructure platform is designed to run on a distributed computing 

environment such that new VMs can be dynamically added on demand. For example, the 

cyberinfrastructure platform adopts a NoSQL database system which can be effectively 

executed on multiple VMs to support distributed data management. 

 
Figure 4.10 A model of cloud computing for SHM 

Cloud-based	cyberinfrastructure	platform

Computing	Infrastructure
(e.g.,	Public	 cloud,	private	cloud,	hybrid	cloud)

Sensors,	applications,	users

Computing	 infrastructure	and	platform	(IaaS,	PaaS)

Data	management	and	application	services	(PaaS,	SaaS)	
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(a) Web-based cloud interface 

 

(b) Shell interface 

 

(c) List of virtual machines deployed on Azure cloud platform 

Figure 4.11 Virtual machine created on Microsoft Azure cloud platform 
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4.5.2 Hybrid cloud-based decentralized data management  

Public cloud is the most common and well-known deployment model of cloud computing. 

Public cloud vendor (e.g., Amazon, Microsoft and Google) owns, manages and operates 

huge data centers and lend computing resources to customers over the Internet on a pay-

per-use basis. Based on resource pooling and virtualization, public cloud customers can 

easily create, configure and scale computing resources on public cloud without the hassle 

of managing and operating server hardware. Given the scalability, flexibility and reduced 

maintenance effort, public cloud can be a viable alternative to on-premise server. In civil 

infrastructure monitoring practice, however, there is also still a desire to maintain an on-

premise server to manage sensitive data, which civil infrastructure managers do not want 

to upload to a public cloud operated by third-party vendors due to security concern. This 

demand remains to be an issue that impedes the adoption of cloud computing for civil 

infrastructure monitoring systems. 

Hybrid cloud is another cloud deployment model where heterogeneous cloud 

infrastructures (e.g. public cloud operated by public cloud vendor and on-premise private 

cloud operated by private company) are bound together [56]. Hybrid cloud is useful to 

optimize computing resources and to protect privacy of data. More specifically, a company 

can adopt hybrid cloud for outsourcing the management of non-sensitive, voluminous data 

to the public cloud, while managing sensitive data and applications within the private cloud 

[132, 133]. Therefore, hybrid cloud can be a suitable computing infrastructure for 

cyberinfrastructure platform for civil infrastructure monitoring. 

Figure 4.12 depicts the conceptual framework of the hybrid-cloud based implementation 

of cyberinfrastructure platform. Unlike the on-premise or public cloud-based platforms, 

hybrid cloud-based platform can distribute data and applications over multiple locations 

(e.g., public cloud and private cloud) according to their characteristic, such as volume, 

sensitivity, privacy and ownership. In the proposed platform, public cloud system is 

employed for the management of voluminous sensor data which requires high scalability 
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and availability, while the private cloud plays a role to handle sensitive data, such as 

engineering models. 

These two separate systems can communicate with each other through web services. For 

example, when an application program requests sensor data retrieval from the public cloud, 

the data is directly retrieved from the database on public cloud. On the other hand, when 

an application program requests for an engineering model from the public cloud, the public 

cloud forwards the request to the private cloud. The private cloud then retrieves 

corresponding information from its database and deliver the information to the client via 

the public cloud. In this way, the hybrid cloud system can abstract the underlying complex 

structure and provides unified web services to clients. 

4.6 Case Scenario: Civil Infrastructure Monitoring 
Application 

This section describes a case scenario using a bridge monitoring system as an example [73]. 

For demonstration, data collected from the Telegraph Road Bridge (TRB) is used. As 

 
Figure 4.12 A framework of hybrid cloud-based implementation of cyberinfrastructure 

platform for decentralized data management 
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discussed in the previous chapter, the data include sensor data, traffic video image data, 

geometric model, engineering model and sensor information. A prototype 

cyberinfrastructure platform is implemented using the VMs provisioned on the Microsoft 

Azure cloud computing service, as well as a private server. Table 4.3 summarizes the list 

of computers composing the prototype cyberinfrastructure platform and their role. 

4.6.1 Automated data store and retrieval 

Two automated data store applications are developed using the cyberinfrastructure’s web 

services to archive sensor data and video image data, respectively. Figure 4.13 shows the 

workflow of the first application that runs on onsite computers and transmits sensor data 

from an onsite computer to the cloud-based cyberinfrastructure platform. When new data 

is transmitted from the sensor network to the onsite computer, the application records the 

list of the new data files and labels them as “un-transmitted”. For an “un-transmitted” file, 

the application parses the raw data file encoded in DAT file format (see Figure 4.14(a)) 

into a JSON format (see Figure 4.14(b)) that the “Sensor data store” service of the 

cyberinfrastructure can read. The application then invokes the “Sensor data store” service 

with the parsed sensor data. If the service returns a status code 200, the application changes 

the label of the data file to “transmitted”. Otherwise, the application retries invoking the 

“Sensor data store” service up to N times (i.e., a predefined maximum number of retries) 

to ensure the transmission is done properly. This parsing and storing process is repeated  

Table 4.3 Specification and role of cloud virtual machines and private server composing 

cyberinfrastructure platform 

Type Spec Quantity Role 

Public cloud VM 

Azure 
Standard_A2m_v2 (2 

cores, 16 GB memory) 
5 Distributed database for 

large data 

Azure Standard DS2 
v2 (2 cores, 7 GB 

memory) 
3 Web server 

Private server Dell PowerEdge T620 1 Local data storage for 
sensitive data 
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Figure 4.13 Workflow: application for data store automation 

  

(a) Raw data file (b) Parsed sensor data 

Figure 4.14 Sensor data file 
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until there are no “un-transmitted” data files in the list. Unless the application is forced to 

be stopped, the application repeats the whole process every W seconds (i.e., a predefined 

waiting duration between the repeats). Since the application keeps track of data 

transmission status of data files, data losses due to an unstable network connection can be 

minimized.   

Figure 4.15 shows the workflow of the second application for collecting traffic video 

images from an external data source (i.e., MDOT’s traffic monitoring system) and the 

manner by which images are archived along with the camera ID and timestamp. The 

application first accesses the data source to locate the dynamic Uniform Resource Locators 

(URLs) of video image files. Once the URLs are found, the application fetches the video 

image files and converts them to the BLOB format. The application then transmits the 

 
Figure 4.15 Workflow: traffic video image collecting application 
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BLOB data to the cyberinfrastructure by invoking the “Traffic image store” service. The 

application service repeats this process every two seconds corresponding to the time 

interval between new images in the MDOT’s traffic monitoring system. 

Data stored in the cloud-based cyberinfrastructure platform can be easily retrieved using 

data retrieval services. For example, Figure 4.16(a) shows a request for the “Sensor data 

retrieval” service with query conditions including sensor ID (TRB_u131_ch0), 

event_time_begin (2016-09-01T12:02:00.000z) and event_time_end 

(2016-09-12T12:02:10.000z).  Similarly, Figure 4.16(b) shows a request for the 

“Traffic image retrieval” service with query conditions including camera ID 

(Telegraph2), event_time_begin (2016-08-18T18:01:00.000z) and 

event_time_end (2016-08-18T18:01:20.000z). 

4.6.2 Data integration and utilization 

The advantages of the cloud-based cyberinfrastructure platform are its ability to support 

easy access, integration and utilization of SHM data. This section presents a demonstrative 

example application developed to extract patterns from heterogeneous data (e.g., structural 

 
(a) Sensor data retrieved by invoking the sensor data retrieval service 

 
(b) Traffic images retrieved by invoking the traffic image retrieval service 

Figure 4.16 Data retrieval using web services 

GET /sensordata/TRB_u131_ch0?
event_time_begin=2016-09-
01T12:02:00.000z
&event_time_end=2016-09-
01T12:02:10.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

GET /imagedata/Telegraph2?
event_time_begin=2016-08-
18T18:01:00.000z
&event_time_end=2016-08-
18T18:01:20.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com
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sensing data and environmental data) to find the relationships between the modal 

frequencies derived from sensor data with temperature measurements. The 

cyberinfrastructure platform enables machine-to-machine communication so that the 

workflow can be fully automated with applications written using programming scripts, for 

example, Python. As shown in the conceptual workflow described in Figure 4.17, the 

application accesses the cyberinfrastructure platform via web services, retrieve 

acceleration data and temperature data, and performs analyses. The application service 

comprises of the following steps: 

(1) The application reads the input arguments StartTime and EndTime 

specifying the target time period which typically includes multiple data 

acquisition events.  

(2) The application service retrieves the accelerometer list for a data acquisition event 

by submitting request as a web service to the “Sensor list retrieval service” as 

shown in Figure 4.18(a). 

(3) The application service retrieves the acceleration data collected from the data 

acquisition event for each accelerometer in the list by submitting a request (as 

 
Figure 4.17 A workflow for relating structural behavior with temperature data 
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another web service) to the “Sensor data retrieval” service, as shown in Figure 

4.18(b). 

(4) The application executes the subspace identification module service [134] to 

compute the modal frequency from the retrieved acceleration data.  

(5) The application service retrieves the thermistor list for the data acquisition event 

by submitting a request (as a web service) to the “Sensor list retrieval service” as 

shown in Figure 4.18(c). 

(6) The application service retrieves temperature data collected from the data 

acquisition event by submitting a request to the “Sensor data retrieval” service, as 

shown in Figure 4.18(d). 

 
(a) HTTP request for accelerometer list retrieval 

 
(b) HTTP request for acceleration data retrieval 

 
(c) HTTP request for thermistor list retrieval 

 
(d) HTTP request for temperature data retrieval 

Figure 4.18 HTTP requests and corresponding CQL queries for sensor list and data 

retrieval 

 

GET /sensor?sensorType=Accelerometer&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u07_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensor?sensorType=Thermistor&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u45_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->
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(7) Executing Gaussian Process Regression (GPR) service to find the general pattern 

on the variation between the fundamental modal frequency and temperature 

measurements.  

The application service repeats step 2 to step 6 by moving on to the next data acquisition 

event until reaching the EndTime of the targeted period. Once modal frequencies and 

temperature measurements that share the same timestamps are collected, the application 

service proceeds to step 7 to perform regression analysis. 

Figure 4.19(a) shows the history of the first modal frequency over the duration from June 

2013 to August 2015. The modal frequencies vary with a seasonal trend and tend to 

increase during the winter and decrease during the summer. As shown in Figure 4.19(b), 

the GPR analysis result shows a nearly bilinear relation between the modal frequency and 

temperature. This example application shows that the cyberinfrastructure platform can be 

used to automate repetitive tasks involving multiple SHM data sets. 

4.6.3 Web and mobile user interfaces 

To facilitate ubiquitous access to the bridge monitoring information, preliminary web and 

mobile user interfaces are developed based on the cloud-based cyberinfrastructure 

platform. A web interface is an interactive program that reads user inputs via a web browser 

(e.g., Google Chrome), invokes the requested web services and returns a web page 

displayed on a web browser. The preliminary web interface supports the retrieval of sensor 

list, sensor data, traffic video images and bridge models. The sensor information retrieval 

interface (Figure 4.20(a)) allows users to retrieve the sensor list with query parameters 

(e.g., “Sensor ID”, “Sensor type”, “Install before” or “Removed after”) by invoking the 

“Sensor list retrieval” service. The sensor data retrieval interface (Figure 4.20(b)) accepts 

query parameters (e.g., “Sensor ID, “Begin timestamp” and “End timestamp”) and returns 

corresponding sensor data by invoking the “Sensor data retrieval” service. Similarly, the 

traffic video image retrieval interface (Figure 4.20(c)) accepts query parameters (e.g., 

“Camera ID”, “Begin timestamp” and “End timestamp”) and returns corresponding traffic  
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video images by invoking the “Traffic image retrieval” service. The bridge model retrieval 

interface (Figure 4.20(d)) allows users to download bridge models by invoking either the 

“Geometric model retrieval” or “Engineering model retrieval” service. Through this 

interface, users can specify the “Bridge name” and model type (e.g., “GeometricModel”, 

 
(a) History of first modal frequency (from August 2013 to August 2015) 

 
(b) Gaussian process regression showing the confidence interval of modal frequency 

according to temperature changes 

Figure 4.19 Patterns of modal frequency of the Telegraph Road Bridge 
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“FEModel (xml)” and “FEModel (xlsx)”). The bridge models downloaded can be 

regenerated by proper software tools, such as the OpenBrIM Viewer [81] for geometric 

models (Figure 4.21(a)) and CSiBridge for engineering models (Figure 4.21(b)). 

  
(a) Sensor information retrieval (b) Sensor data retrieval 

  
(c) Traffic image retrieval (d) Bridge model retrieval 

Figure 4.20 Prototype web-based user interface 

  
(a) Geometric model visualized by 

OpenBrIM Viewer 

(b) Engineering model visualized by 

CSiBridge 

Figure 4.21 Telegraph Road Bridge model downloaded from the web-based user 

interface 
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A mobile user interface is also developed based on the cyberinfrastructure platform. The 

mobile user interface reads user inputs via the mobile devices, invokes the web services, 

and displays the retrieved information on the mobile devices. The preliminary mobile user 

interface is built upon iOS operating system and supports the retrieval of sensor list, sensor 

information and sensor data. For example, Figure 4.22(a) shows the sensor list view that 

reads user’s search keyword (e.g., “Accelerometer”) and retrieves sensor list by invoking 

the “Sensor list retrieval” service. Figure 4.22(b) shows the sensor map view that displays 

the retrieved sensor list on a map view. Figure 4.22(c) shows the sensor detail view that 

displays brief information about a sensor along with its sensor data by invoking the “Sensor 

data retrieval” service. Figure 4.22(d) shows the sensor information view that displays a 

sensor’s detailed information by invoking the “Sensor information retrieval” service. 

4.7 Summary 

This chapter describes a cyberinfrastructure platform tailored to civil infrastructure 

monitoring. The platform offers easy-to-use data management services with interoperable 

    
(a) Sensor list view (b) Sensor map 

view 

(c) Sensor detail 

view 

(d) Sensor 

information view 

Figure 4.22 Prototype mobile interface 
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interfaces, through which client systems can easily store and retrieve data, in order facilitate 

the utilization of monitoring data. The platform consists of three layers: communication 

layer, mapping layer and storage layer. The communication layer leverages web services 

based on standard communication protocols to offer interoperable interfaces for data 

management services. The mapping layer enables data mapping between the standardized 

information modeling schema and database schema. The storage layer adopts the NoSQL-

based data management system (which was described in Chapter 3) to enable scalable data 

management. The data management services offered by the cyberinfrastructure platform 

can not only be invoked by different client systems, but also be composed with internal 

and external web services to develop new services. 

This chapter also presents the implementation of the cyberinfrastructure platform on cloud 

computing environment. For the implementation, virtual machines deployed on public 

cloud are employed. The use of cloud computing services has advantages on the scalability, 

reliability, availability and easy maintenance of the underlying computing infrastructure. 

In addition to public cloud-based implementation, this chapter also describes the hybrid 

cloud-based implementation of the platform for the secure data management. Specifically, 

the hybrid cloud-based platform is designed to handle voluminous sensor data on the 

scalable public cloud, while the sensitive bridge information is stored on the private cloud.   

The cyberinfrastructure platform is demonstrated with a case scenario of civil infrastructure 

monitoring. Specifically, the prototype cyberinfrastructure platform has been implemented 

for the bridge monitoring systems on the Telegraph Road Bridge. Several demonstrative 

applications have been shown to illustrate the ease of use of the cyberinfrastructure 

platform for civil infrastructure monitoring. For example, automated data store applications 

are developed to transmit sensor data and traffic video image to the cyberinfrastructure 

platform in real time. Furthermore, a demonstrative application that calculates the modal 

frequency history is developed to show that applications, which involves multiple analysis 

tasks, multiple queries and iterative jobs, can be developed by leveraging the 

cyberinfrastructure platform. Finally, preliminary web and mobile user interfaces are 

developed based on the cyberinfrastructure platform to support ubiquitous access to the 
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bridge monitoring. The demonstration results show that the cyberinfrastructure platform 

enables easy prototyping and development of applications, and thus, facilitates the 

utilization of monitoring data. 



 

Chapter 5  

Implementation of Data-driven Sensor 
Data Reconstruction Procedure 
utilizing the Cyberinfrastructure 
Platform 

 

 

5.1 Introduction 

The cyberinfrastructure platform described in the previous chapter is designed to facilitate 

sharing and utilization of data involved in civil infrastructure monitoring. Various 

applications deployed on different computing systems (e.g., desktop computers, mobile 

devices and cloud computing environments) can easily retrieve data in machine-readable 

formats from the cyberinfrastructure platform via standardized communication protocols. 

Through the cyberinfrastructure platform, applications can also share analysis results 

among each other. This distributed computing environment can be very useful, particularly, 
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in performing computationally demanding data-driven analyses. For example, training of 

artificial neural network (ANN) models is often computationally demanding and not 

efficient to be performed on ordinary desktop computers. The cyberinfrastructure platform 

can enable an automated data analysis pipeline that trains ANN models remotely on a high-

performance computing platform, stores the trained ANN models in a model repository 

and shares the trained ANN models for use on ordinary desktop computers. The desktop 

computers can perform less computational prediction procedure using the shared trained 

model. To showcase the use of the cyberinfrastructure platform, this chapter presents a 

data-driven sensor data reconstruction method implemented using the cyberinfrastructure 

platform. 

Sensor data reconstruction is an important task for the recovery of missing or faulty sensor 

data, as well as for the detection of anomalies [135, 136]. Accurate reconstruction of sensor 

data is critical for ensuring and maintaining a healthy sensor network of a monitored system. 

Many sensor data reconstruction methods use the spatial correlation among the data in a 

sensor network in order to estimate the data of the target sensors based on the data collected 

by other sensors. For example, Kerschen et al. [137] present a principal component analysis 

(PCA)-based method that extracts the PCA modes from the training data to perform 

detection, identification and reconstruction of a faulty sensor. Kullaa [138] presents a 

minimum mean square error (MMSE)-based method to reconstruct sensor data using the 

covariance among the data from different sensors. Many data-driven machine learning 

techniques have also been applied for the fault detection and diagnosis (FDD) problem 

[139]. Artificial neural networks (ANNs), for instance, is one widely used technique for 

sensor validation and reconstruction. For example, feedforward neural networks (FNN) 

have been employed for sensor data reconstruction by structuring a neural network to have 

the data of a target sensor as output and the data of other sensors as input [140, 141, 142, 

143]. These studies show that FNN can effectively learn the nonlinear spatial relations 

among the data collected from multiple spatially distributed sensors. Support vector 

regression (SVR) has also been employed for sensor data reconstruction [144]. Methods 

that consider only the correlations among the spatially distributed sensors, however, are 
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not effective when spatial correlation among sensors is weak (e.g., sensors separated by a 

long distance). The spatial correlation-based methods can be improved for obtaining better 

accuracy by taking into consideration other relevant information, such as the temporal 

correlations of the sensor data.  

Engineering systems, which are typically dynamic systems, often involve temporal 

correlation (e.g., natural frequencies of the system) in addition to spatial correlation (e.g., 

mode shapes of the system) within the sensor data [145]. Effective use of spatiotemporal 

correlation can potentially improve the accuracy of data reconstruction. However, 

relatively little attention has been paid on spatiotemporal correlation-based sensor data 

reconstruction, probably due to the increase of complexity. For example, by extending the 

MMSE-based method to utilize the linear spatiotemporal correlation among the sensors, 

Kullaa [138] has shown that more accurate data reconstruction can be achieved when 

compared to using only the spatial correlation. ANN-based methods can be employed to 

effectively learn the nonlinear spatiotemporal correlation among the sensor data. 

Moustapha and Selmic [146], for example, employ recurrent neural network (RNN) to 

learn about the spatial and the temporal correlation among the sensor data. One 

shortcoming of RNN is that it considers only the information from the past in its input. 

Future context, if available, can further improve the accuracy of sensor data reconstruction.  

This chapter introduces an ANN-based sensor data reconstruction method that considers 

both spatial and bidirectional temporal correlation among sensor channels from the same 

system [77]. Specifically, bidirectional recurrent neural network (BRNN) [147], which is 

an ANN architecture designed to learn about the temporal behavior in both the positive 

time direction (i.e., past to present) and the negative time direction (i.e., future to present), 

is employed.  While this method can potentially improve reconstruction accuracy 

compared to other existing methods, the training of a BRNN model is computationally 

demanding. For efficient BRNN model training and sensor data reconstruction, a data 

analysis pipeline is designed to enable seamless data flow between high-performance 

computing platform and ordinary user devices (e.g., desktop computers) by leveraging the 

previously described cyberinfrastructure platform.  
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This chapter is organized as follows. Section 5.2 presents a BRNN-based sensor data 

reconstruction method. Section 5.3 validates the sensor data reconstruction method with 

datasets obtained from numerical simulations. Section 5.4 presents a data analysis pipeline 

for deploying a sensor data reconstruction procedure based on the cyberinfrastructure 

platform. Section 5.5 demonstrates the use of the data analysis pipeline for the BRNN-

based sensor data reconstruction method with sensor data collected from the Telegraph 

Road Bridge (Monroe, MI). Finally, this chapter conclude with a summary in Section 5.6. 

5.2 BRNN-based Sensor Data Reconstruction 
Method 

This section describes a data-driven BRNN-based method for sensor data reconstruction. 

The basic assumption is that the target system contains redundant information inherent in 

the sensor network and that there exist spatial and temporal correlations among the sensor 

data.  The time series data of the (output) sensor of interest can be estimated using the time 

series data collected from the other (input) sensors.  Figure 5.1 describes the overall 

framework of the sensor data reconstruction process which consists of two main phases: 

   
Figure 5.1 Overview of sensor data reconstruction  
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(1) the training phase, and (2) the reconstruction phase. In the training phase, the time series 

sensor data collected from the normal state of the target system is employed as the training 

dataset. The training data is preprocessed (i.e., normalized and scaled) and the 

normalization and scaling factors are stored for later use in the sensor data reconstruction 

phase. BRNN models are then constructed and trained using the pre-processed data. In the 

reconstruction phase, the trained BRNN models utilize the preprocessed testing data and 

reconstructs the time-series data for the sensor of interest. 

5.2.1 Data preprocessing and normalization 

Consider the time series input data $ collected from N sensors denoted as: 

$ =
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		 (5.1) 

where )0, denote the measurements at time ! for an input sensor 6. The !07  row of $ is 

denoted as 80 = ()0
*, … , )0

,,… , )0
-) which contains the measurements from all =  input 

sensors at time !. The 607 column of $ is denoted as 8, = ()*
,,… , )0

,,… , )1
,)1 which is 

the time series measurements of length > for the 607 input sensor. Similarly, the output 

data ? from a single output sensor is denoted as: 
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⎥
⎥
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 (5.2) 

where @0 denote the measurements at time ! for the output sensor. Given the paired time 

series data A = ($; ?) , the sensor data reconstruction problem is considered as a 

supervised regression problem for finding the nonlinear relationships between the input 
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sensors and output sensor utilizing the spatial and temporal correlations among the sensor 

data.  

To ensure the covariance of the input data in approximately of the same order between 

different instances of the data (which ensures good convergence during the training 

process), the input time series data is normalized to have zero mean and scaled within the 

range of 〈−1,1〉 as [148]: 

)0
, ←

)0
, − G,

H,
		 (5.3) 

where G, and H, are, respectively, the mean and the absolute maximum value of the input 

data vector 8I for sensor 6. Similarly, to make the output values within the typical range 

of the neural network, the output time series data is normalized and scaled as [149]: 

@0 ←
@0 − G̅
H̅

 (5.4) 

where G̅ and H̅ are, respectively, the mean and the absolute maximum value for the output 

data vector ?. The mean and the absolute maximum values for both the input and output 

data vectors are recorded for later use during the sensor data reconstruction phase.   

5.2.2 Architecture of the BRNN model 

The bidirectional recurrent neural network (BRNN) model with a single hidden layer is 

depicted as shown in Figure 5.2, Figure 5.3 and Figure 5.4. Figure 5.2 shows the basic 

computational flow of the BRNN. Note that the computations involve values from both 

positive and negative time directions across all time steps ! = 1, … , >. As shown in Figure 

5.3, for every time step !, the BRNN model consists of three basic layers: 

• An input layer with = input units containing the input data vector 80 

• An output layer with a single output unit containing the predicted output @K0 
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• A hidden layer that consists of L forward hidden units with values denoted by 

Mℎ0
O(1),… , ℎ0

O(L)P and L backward hidden units with values denoted by Q0R =

{ℎ0
R(1),… , ℎ0

R(L)} 

One distinguishing feature of BRNN is the cyclic computational flows among the 

computational units (called neurons) that enable the outputs of neurons at a time step to 

become a part of the inputs of the neurons at different time steps. To consider both the past 

data and the future data when reconstructing the present data, the BRNN model has 

connections in the positive time direction for the forward hidden units, as well as 

 
Figure 5.2 Structure of bidirectional recurrent neural network with a single hidden layer 

and the computation flow of a forward pass 

 
Figure 5.3 Organization of BRNN layers at a time step ! 

! − 1

$%$&

'(')

*+,-

.+,-(

.+,-)

/0+,-

! + 1

$%$&

'(')

*+2-

.+2-(

.+2-)

/0+2-

!

$%$&

'(')

*+

.+(

.+)

/0+

3

$%$&

'(')

*4

.4(

.4)

/04

5% 5%

5& 5&

1

$%$&

'(')

*-

.-(

.-)

/0-

Input 
layer

Hidden
layer

Output 
layer

… …

Positive time direction
Negative time direction

…"#$ "#% "#&'#

…ℎ#)(1) ℎ#)(2) ℎ#)(.)/#)

…ℎ#0(1) ℎ#0(2) ℎ#0(.)/#0

12#

Input 
layer

Hidden
layer

Output 
layer

Positive time direction
Negative time direction

34 35

6) 60



CHAPTER 5.    DATA-DRIVEN SENSOR DATA RECONSTRUCTION 
 

 

128 

connections in the negative time direction for the backward hidden units, as shown in 

Figure 5.2. For each time step !, the neurons are interconnected as follows: 

• Each of the L forward hidden units containing Q0
O	is connected to each of the 

input units of 80 as well as the L forward hidden units containing Q0U*
O  of the 

previous time step ! − 1. 

• Each of the L backward hidden units containing Q0R is connected to each of the 

input units of 80 as well as the L backward hidden units containing Q0V*R  of the 

next time step ! + 1. 

• An output unit for  @K0 is connected to all the L forward and the L backward 

hidden units containing Q0
O and Q0R, respectively.  

In summary, as illustrated in Figure 5.4, the BRNN is designed as a fully connected 

network within each time step and between the hidden layers of the adjacent time steps. 

 
Figure 5.4 Expanded view of interconnection between time steps ! and ! + 1 in the 

BRNN structure 



CHAPTER 5.    DATA-DRIVEN SENSOR DATA RECONSTRUCTION 
 

 

129 

In Figure 5.2, the variables, WX, WY,ZX,ZY, [O	and	[R, denote the weights for the neural 

network. The values Q0
O of the forward hidden units are computed using the input data 80 

and the values Q0U*
O  from the previous time step via an activation function _(∙) as: 

Q0
O = _aWX80 +ZXQ0U*

O + bOc (5.5) 

where bOis termed the bias for the forward hidden units. Similarly, the values Q0R of the 

backward hidden units are computed using the input 80 and the values Q0V*R   from the next 

time step using the same activation function _(∙) as: 

Q0
R = _aWY80 +ZYQ0V*

R + bRc (5.6) 

where bRis the bias for the backward hidden units. Because of its ability to model nonlinear 

relationships among the data, the hyperbolic tangent function is employed as the activation 

function:  

_(d) = tanh(d) =
(gh − gUh)
(gh + gUh)

 (5.7) 

Finally, the predicted output is computed using a linear function as: 

@K0 = [O ⋅ Q0
O + [R ⋅ Q0

R + j (5.8) 

where j is the bias for the output unit. The weights and the bias represent the parameters 

of the BRNN model to be “trained” using the input and output data sets.   

5.2.3 Training of BRNN model 

The BRNN model is trained by adjusting iteratively its parameters to minimize the loss 

function k that measures the difference between the output data ? = (@*, … , @0 ,… , @1)1  

and the reconstructed output data ?l = (@K*,… , @K0, … , @K1)1 . For initialization, the biases 

bO, bR and j are set to zero and the elements for the weights WX, WY,ZX,ZY, [O	and	[R of 
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the BRNN are assigned randomly using a uniform distribution between − *

√n
 and *

√n
, where  

o  is the size of a prior layer (where, in this case, o = = for WX  and WY , and o = L  for 

ZX,ZY, [O	and	[R) [150]. 

Once the parameters are initialized, the backpropagation through time (BPTT) algorithm 

is employed for training the BRNN model [147, 151]. For each iteration, BPTT consists of 

three steps: forward pass, backward pass and parameter updating. In each iteration, the 

values Qp
O of the forward hidden units and the values Q1V*R  for the backward hidden units 

are initialized to be zero. In the forward pass, the predicted output  @K0 , ! = 1,… , >, is 

calculated using the input data $ through Eqs. (5.5), (5.6) and (5.8). In the backward pass, 

the gradients of the loss function k (i.e., difference between the measured output ? and the 

predicted output ?l) with respect to the parameters are computed. In this study, the loss 

function, k, is computed using the mean-squared-error (MSE) function as:  

k =
1
>
q(@0 − @K0)r
1

0s*

 (5.9) 

For each time step !, the gradient of the loss function k with respect to the predicted output 

@K0 is computed and is then propagated forward and backward through time via the network 

to calculate the gradients of the loss function k  with respect to the parameters. The 

gradients for each parameter are summed over all > time steps for parameter updating. The 

gradients of k computed with respect to the parameters are used to adjust the corresponding 

parameters using an optimization procedure, such as Adaptive Moment Estimation (Adam) 

[152]. Additionally, learning rate which limits the amount of adjustment per each iteration 

is defined. The learning rate can affect the number of iterations in the training process and 

the accuracy of the BRNN model. A higher learning rate can speed up the training, while 

a lower learning rate likely improves the accuracy of the BRNN model. The three steps of 

forward pass, backward pass and parameter updating iterate until either k converges or the 

number of epochs (i.e., the number of times that the entire datasets are being processed) 

reaches a prescribed limit. It should be noted that in the BRNN model, the weights 
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WX, WY, [O	and	[R and the biases bO, bR and j are the same for every time step, and the 

weights ZX and ZY are the same for each forward and backward time step. Details on the 

forward pass, backward pass and parameter update for BRNN can be found in [151, 153]. 

One issue of training BRNN is their significant computational and memory requirements 

due to the chains of connections linking the neurons. For unidirectional RNN, truncated 

BPTT (TBPTT) methods are often used to reduce the computational cost and memory 

usage by limiting the number of time steps for which the loss is propagated [154, 155]. 

However, implementing the TBPTT strategy for BRNN is not practical because the hidden 

units along either the positive or negative time directions need to be processed over all time 

steps in order to compute the estimated outputs. Instead, this work adopts a batch learning 

approach [155]. As summarized in Algorithm 5.1, the approach defines a batch size t 

which is the maximum number of consecutive data points to be used in an iteration 

(corresponding to one cycle of forward pass, backward pass and parameter updating for 

that batch). That is, the training dataset A = ($; ?)  with >  consecutive data points is 

divided into ⌊>/t⌋  batches so that the batches A*, … ,A⌊1/x⌋U*  each contains t 

consecutive data points whereas A⌊1/x⌋  contains the remaining > − (⌊>/t⌋ − 1) × t 

consecutive data points (see step 3 of Algorithm 5.1). As shown from steps 6 to 11 in 

Algorithm 5.1, each batch of the dataset is trained independently. Step 4 of the Algorithm 

5.1 shows the stopping criteria for the training when either the maximum number of 

epochs	z is reached or the loss change, ∆k, is within a defined threshold, ∆k|}~�Ä. With this 

approach, BRNN can be trained with a large amount of training data without causing 

excessive memory usage by limiting the number of times the loss is propagated.  

5.2.4 Sensor data reconstruction 

Consider a test dataset A′ = ($Ç; ?Ç)  collected from the same =  input sensors and an 

output sensor with >Ç consecutive data points per sensor. The length of the data points (i.e., 

the sensor data) should span over a certain time period sufficient to establish the temporal 

correlation among the sensor data. The sufficient period may preclude true real-time data 
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reconstruction, but the actual time duration is relatively short. As shown in the examples 

described later in Section 5.3, collecting 1,000 consecutive data points takes only five 

seconds at a sampling rate of 200 Hz.  

The sensor data reconstruction is performed as follows. Using the normalization and 

scaling factors recorded in the training phase, the data A′ is first normalized and scaled 

using Eqs. (5.3) and (5.4). The trained BRNN model then takes the input data $′ to compute 

the prediction ?lÇ for the output sensor’s data according to Eqs. (5.5), (5.6) and (5.8). Here, 

the initial forward hidden units Qp
O and the backward hidden units  Q1ÉV*

R are assumed to be 

vectors of zeros. It should be noted that the reconstructed data for the first and the last few 

Algorithm 5.1. Training of BRNN model  
Input: 

 A = ($; 	?): preprocessed training dataset  
>: number of training data points  
t: batch size 
z: number of maximum epochs 
∆k|}~�Ä: minimum value of loss change 
Ñ: learning rate 

1: Initialize the BRNN model’s weights and biases 
2: Initialize: number of epochs Ö ← 0, loss in the previous step ká~�à ← ∞, and 

change of loss ∆k ← ∞ 
3: Divide A into ⌊>/t⌋ batches: A = MA,… ,A⌊1/x⌋P 
4: while (Ö < z) or (∆k > ∆k|}~�Ä) do 
5:       Set kåç~~ ← 0 
6:       for each Aé = ($é; ?é), è = 1, …, ⌊>/t⌋ do 
7:            Forward pass: compute ?lé using input $é according to Eqs. (5.5), (5.6) and  

                (5.8) 
8:            Backward pass: (a) compute the loss function k between output ?é and ?lé  

                using the MSE function in Eq. (5.9), and (b) compute the gradients of  
                the loss with respect to the BRNN parameters 

9:            Parameter updating: update the weights and biases based on the gradients  
                of the loss with respect to the parameters and the learning rate Ñ using  
                Adam [146] 

10:            kåç~~ ← kåç~~ + k 
11:       end for 
12:       Update Ö ← (Ö + 1); kåç~~ ←

êëíìì
⌊1/x⌋

; ∆k ← îká~�à − kåç~~î; ká~�à ← kåç~~ 
13: end while 
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(e.g., 10) time steps can be erroneous due to the effect of the initial hidden units. The 

accuracy of the reconstructed data can be evaluated by measuring the discrepancy between 

the measured output ?Çand the predicted output ?l′, for example, using the root-mean-

square-error (RMSE) as: 

ï = ñ∑
(@K0

Ç − @0
Ç)r1É

0s*

>′
 (5.10) 

The trained BRNN model can have at least two different usages. First, if the output sensor 

is known to be faulty, the faulty measurement data can be replaced by the reconstructed 

data (as will be discussed in Section 5.5.4). The reconstructed data can be further utilized 

to estimate the health condition (e.g., operational frequency and mode shapes) of the 

monitored system even when some of the sensors are faulty. Second, if the output data 

possesses the possibility of anomalies, the testing error ï computed by Eq. (5.10) can be 

used as to validate the output sensor (as will be illustrated in Section 5.3.1.3). Since the 

BRNN model’s testing errors computed using the intact datasets tend to lie within a narrow 

range, some statistical information (such as, maximum value or 95% confidence interval) 

about the testing errors can be used as the thresholds for distinguishing the potential 

anomaly. The utilization of the BRNN-based sensor data reconstruction method will be 

further discussed in Section 5.3 and Section 5.5.  

5.3 Demonstration of Sensor Data Reconstruction 
Method with Numerical Simulation 

In this section, the BRNN-based sensor data reconstruction method is demonstrated with 

vibration data obtained from numerical simulations. The FE model, as shown in Figure 

5.5(a), is constructed for the Telegraph Road Bridge [156, 157]. Vertical vibration 

responses due to randomly traveling vehicles are simulated and recorded at 18 (sensor) 

locations on the two exterior girders, as shown in Figure 5.5(b).  
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To emulate the load conditions on a bridge, the moving vehicles are randomly defined 

using the variables summarized in Table 5.1. The vehicle types (labelled as auto, H-20, 

HS-20 and HS-25) and their loads are defined based on the AASHTO (American 

Association of State Highway and Transportation Officials) standard [158], as shown in 

Figure 5.6. Dynamic time history analyses using CSiBridge are performed with 

randomized traffic on the bridge to generate the vertical vibration response (sensor) data. 

It should be noted that the vehicle-bridge interaction is ignored in the analyses. Each 

analysis assumes a 10-second duration with incremental time step size of 0.005 (i.e., a 

  

(a) 3-D FE model (b) Sensor layout 

Figure 5.5 (a) Finite element model and (b) sensor layout of the Telegraph Road Bridge 

 
Figure 5.6 Vehicle load definition 

Table 5.1 Random variables composing randomized traffic  

Factor Values 
Number of vehicles 1, 2, …, 9 
Vehicle type Auto, H-20, HS-20, HS-25 
Vehicle speed 70 – 120 km/h (45 – 75 mph) 
Vehicle lane Three lanes (lane 1, lane 2 and lane 3) 
Vehicle interval in a lane 1.5, 3.0, 4.5, 6.0 seconds 
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sampling rate of 200 Hz). To generate sufficient amount of data for the data-driven method, 

a total of 300 analyses are conducted for each FE bridge model with randomized moving 

vehicle loads. Through 300 analyses, 600,000 data points per sensor location are collected, 

normalized, and scaled as shown in Figure 5.7. 

BRNN models are constructed using PyTorch [159]. The hyperparameters for the BRNN 

model training are selected heuristically to ensure sufficient data reconstruction accuracy, 

as well as reasonable computing time. The selected hyperparameters are as follows:  

• Number of forward hidden units: 50 

• Number of backward hidden units: 50 

• Maximum number of epochs: 200 

• Learning rate 10Uò 

The appropriate training dataset size and the batch size will be examined and discussed 

first based on the reconstruction accuracy of the BRNN. 

 
Figure 5.7 Simulated vertical acceleration measurements of the Telegraph Road Bridge 

(Monroe, MI) 
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5.3.1 Effects of training parameters 

This section describes the training of BRNN models for sensor data reconstruction and 

discusses the effect of batch size, training dataset size and testing dataset size on the data 

reconstruction accuracy and computing speed. Two BRNN models for two different output 

sensors are considered for testing purpose. The first model has Sensor 4 (located at the 

middle of the topmost girder of Figure 5.5(b)) as the output sensor, while all other sensors 

are the input sensors. The second model has Sensor 9 (located near the support of the 

bottommost girder) as the output sensor, while all the other sensors are the input sensors. 

For the implementation of sensor data reconstruction procedure as described in Algorithm 

5.1, it is important to choose the appropriate batch size. On the one hand, if the batch size 

is too small, sensor data reconstruction would be inaccurate because of the initial hidden 

units of zero values, as well as insufficient temporal correlation. On the other hand, if the 

batch size is too large, model training would require very large memory usage (which does 

not necessarily lead to better accuracy). To investigate the effect of batch size, the two 

BRNN models are trained with different batch sizes using the training dataset of fixed size. 

Here, 100,000 data points (from the data points 1 to 100,000) are selected as a training 

dataset. Five testing datasets, each of which has 40,000 consecutive data points per sensor, 

are selected from the data points 200,001 to 400,000. Figure 5.8 shows the RMSE error 

between the actual and reconstructed values, the training time per epoch and the 

reconstruction time with respect to the different batch sizes for Sensors 4 and 9. For both 

sensors, the errors are relatively low when the batch size is higher than 100. In addition, 

the training times are relatively low when the batch size ranges from 100 to 2,000. It can 

also be seen that the time for testing is almost the same for all batch sizes. Based on the 

results, the batch size ranging from 200 to 2,000 data points is able to achieve a good 

balance of training time and reconstruction error from the testing datasets. 



CHAPTER 5.    DATA-DRIVEN SENSOR DATA RECONSTRUCTION 
 

 

137 

The next example examines the effect of the training dataset size on data reconstruction. 

The two BRNN models are trained using training datasets of different size ranging from 

5,000 to 150,000, while the batch size is kept at 200 data points. For every training dataset, 

the normalization and scaling factors are obtained from the largest dataset with 150,000 

data points so that the testing errors can be compared. Similar to the previous example, five 

testing cases each of which has 40,000 consecutive data points per sensors (selected from 

the data points 200,001 to 400,000) are used. Figure 5.9 shows the testing error, the training 

time per epoch and the testing time with respect to the different training data size for 

Sensors 4 and 9. As can be seen in the figure, the training time increases nearly linear as 

the training data size increases, while the testing times are the same regardless of the 

training data size. For both sensors, the error decreases rapidly until the training data size 

reaches 80,000; beyond that, little improvements (sometimes worsen) are observed. Based 

 

(a) Sensor 4 

 

(b) Sensor 9 

Figure 5.8 Reconstruction error, training time and reconstruction time with respect to 

different batch sizes 
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on the results, the training dataset size equal to or higher than 80,000 data points would 

achieve a good accuracy for sensor data reconstruction. 

The last example examines the effect of the size of the testing dataset on data 

reconstruction. Since the initial hidden units (i.e., Qp
O and Q1ÉV*

O ) of BRNN models are set 

to zero vectors, the testing error could be high when the testing dataset is very short. Sensor 

data reconstructions are performed using the two BRNN models for different testing data 

sizes ranging from 10 to 40,000. To see the effects due to the zero vectors of the initial 

hidden units, the testing dataset is selected from the data with relatively high amplitudes 

(from the data points 200,401 to 240,400). In addition, the two BRNN models are trained 

with 80,000 data points (from the data points 1 to 80,000) per sensor and a batch size of 

200 data points. Figure 5.10 shows the error and the computational time for the testing 

dataset with respect to the data size. The results show that the errors are relatively consistent 

 

(a) Sensor 4 

 

(b) Sensor 9 

Figure 5.9 Reconstruction error, training time and reconstruction time with respect to 

different training data sizes 
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when the testing data size reaches 1,000 or higher for both sensors. It can also be seen that 

the data reconstruction time increases linearly as the size of testing dataset increases. Based 

on the results, the testing dataset size equal to or higher than 1,000 data points would be 

sufficient to mitigate the effect of initial hidden units with zero vectors. 

5.3.2 Comparison of BRNN-based sensor data 

reconstruction with other methods 

As discussed in the introduction section of this chapter, other data-driven sensor data 

reconstruction methods, such as principal component analysis (PCA) [137], minimum 

mean square error (MMSE) estimation [138], feedforward neural network (FNN) [142] and 

recurrent neural network (RNN) [146], have been proposed. In this section, the BRNN-

 

(a) Sensor 4 

 

(b) Sensor 9 

Figure 5.10 Reconstruction error and testing time with respect to different testing data 
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based sensor data reconstruction method is evaluated by comparing it with the existing 

methods. Again, two BRNN models for reconstructing the data of Sensor 4 and Sensor 9 

are created for testing purpose. For comparison, PCA, MMSE, FNN and RNN models 

corresponding to the two BRNN models are also created. As listed in Table 5.2, the FNN- 

and RNN-based models are created with the same hyperparameters of the BRNN model.   

All the models are trained with 80,000 data points (from the data points 1 to 80,000) per 

sensor. For evaluation, the testing dataset has 40,000 data points per sensor and is selected 

from the data points 80,001 to 120,000. Figure 5.11 shows the samples of sensor data 

reconstruction results using the different methods. It should be noted that Figure 5.11 

shows only 100 data points out of 40,000 data points of entire reconstructed data so that 

the plots can clearly shows the comparison between the original data and the reconstructed 

data. 

As can be seen in Figure 5.11(a), all methods work well for Sensor 4 which is located at 

the center of the bridge. For Sensor 9, which is located near the span support, the RNN and 

BRNN methods work better than the other methods as shown in Figure 5.11(b). Table 5.3 

provides detailed information on the reconstruction results, including the computation time 

and the testing errors. A notable aspect shown in the results is that the testing error for the 

sensor at the center of the bridge (i.e., Sensor 4) is generally lower than the sensor located 

near the support of the bridge (i.e., Sensor 9). This is because the sensor located near the  

Table 5.2 Data-driven sensor data reconstruction models for comparison 

 FNN RNN 
Number of hidden layers 1 1 
Number of hidden units 100 100 
Transfer function (hidden layer) Hyperbolic tangent 

function 
Hyperbolic tangent 

function 
Transfer function for output layer Linear function Linear function 
Optimization algorithm Adam Adam 
Loss function MSE MSE 
Learning rate 10Uò 10Uò 
Maximum number of epochs 200 200 
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(a) Sensor 4 

 
(b) Sensor 9 

Figure 5.11 Simulation: sensor data reconstruction with the different methods  

Table 5.3 Simulation: computing time and reconstruction error 

 PCA MMSE FNN RNN BRNN 
Training time per epoch (sec/epoch) - - » 0.51 » 34.19 » 86.21 
Total training time (sec) » 0.053 » 0.026 » 102 » 6,838 » 17,242 
Testing time (sec) » 2.155 » 0.006 » 0.049 » 7.445 » 8.3971 
Testing RMSE for Sensor 4 0.0154 0.0151 0.0125 0.0034 0.0035 
Testing RMSE for Sensor 9 0.0658 0.0432 0.0308 0.0105 0.0070 
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support has only one adjacent sensor, which means that there exists less spatial information 

for estimating the sensor data. Nevertheless, BRNN models yield much smaller testing 

error for Sensor 9 than all other methods, because BRNN takes both spatial and 

bidirectional temporal correlation into account. One tradeoff of the BRNN models’ 

accuracy is the amount of training time required. But once the BRNN model is trained, the 

reconstruction process can be executed very efficiently even though the computing time 

remains higher than the other methods. 

5.3.3 Sensor validation 

This section demonstrates the utilization of the sensor data reconstruction method for 

sensor validation, including fault detection and isolation. Among the widely used fault 

detection and isolation (FDI) methods is the analytical redundancy approach that 

determines anomalies by comparing system measurements with analytically estimated 

information [139, 160, 161]. The basic idea of sensor validation is that the existence of a 

faulty sensor will lead to some “measurable” difference between the measured data and the 

reconstructed data.  

For the demonstration, three types of datasets are defined: a training dataset, a set of 

baseline datasets and a faulty dataset. The training dataset is a good quality (fault-free) 

dataset for training the BRNN models. 80,000 data points (from the data points 1 to 80,000) 

per sensor are used as the training dataset. The baseline datasets are also fault-free datasets 

for obtaining statistical information of the testing error when no anomaly exists. Ten 

baseline datasets, each with 40,000 data points selected from the data points 80,001 to 

480,000, are defined. The faulty dataset is the dataset that contains some anomalies (i.e., 

faults). For testing purposes, the faulty dataset contains 40,000 data points (selected from 

the data points from 480,001 to 520,000) per sensor. In the faulty dataset, the data of 

Sensors 4 and 6 are manipulated to emulate faulty sensor data. Specifically, for the faulty 

dataset, random noises H are introduced to the data, denoted by )0,, of Sensor 4 and 6 as: 
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)0
, ← )0

, × H, H ∈ =(1, ör) (5.11) 

where ö is the level of noise which is set by varying ö = 0, 0.05, 0.1. 

The goal of fault detection is to determine the existence of a faulty sensor in a system. The 

experimental test for fault detection is conducted as follows: 

(1) For each sensor, a BRNN model that has that sensor as the output and all other 

sensors as input is created.  

(2) All created BRNN models are trained using the training dataset. 

(3) Sensor data reconstruction is performed for the 10 baseline datasets using the 

trained BRNN models. 

(4) For each sensor, the 95% confidence interval of the testing error is computed 

based on the testing errors from the 10 baseline datasets. The 95% confidence 

interval serves as the threshold for sensor validation. 

(5) Sensor data reconstruction is performed for the faulty dataset using the trained 

BRNN models.  

(6) For each sensor, the testing error from the faulty dataset is computed and 

compared with the threshold for sensor validation. 

Figure 5.12(a) shows the difference between the testing error ï from the faulty dataset that 

exceeds the threshold of the 95% confidence interval. As shown in Figure 5.12(a), the 

testing errors exceed the thresholds when the noise level ö ≥ 0.05. As the noise level 

increases, the discrepancy between the testing error from the faulty data and the thresholds 

of the baseline model increases. It can also be seen that the discrepancies appear on all 

sensors (1-8) along the same girder with Sensors 4 and 6. This result is probably due to 

higher correlations among the sensor channels on the same girder. While the anomaly is 

detected by comparing the testing errors and thresholds, further analysis is needed to 

identify the location of the faulty sensor.  

While anomaly detection focuses on determining if any faulty sensors exist in the sensor 

network, the goal of anomaly identification is to localize the faulty sensor in a system. A 
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simple approach for anomaly identification would be to infer the sensors with testing errors 

exceeding their thresholds as faulty sensors. However, this approach is prone to false 

positives because a faulty sensor can affect the testing error not only for the faulty sensor 

itself, but also on the other (input) sensors. Another approach is to consider the sensor with 

the largest testing error in comparison to the threshold used for the anomaly detection as 

the faulty sensor. However, this approach is prone to false negatives, in particular, when 

there exist multiple faulty sensors. To avoid the likelihood for false positive and false 

negative errors, this work employs an elimination approach. The basic idea is that the faulty 

sensors do not affect the measurement of other sensors and, thus, the anomaly disappears 

if all faulty sensors are removed from the sensor network.  

To identify the faulty sensor, the dataset for Sensor 6, which has the highest discrepancy 

between the testing errors from the faulty dataset and the threshold, is assumed to be faulty 

and removed. For the remaining 17 sensors, the procedures of model construction, model 

training, computing the thresholds and calculating the testing errors with the faulty dataset 

are repeated. Figure 5.12(b) shows the results after removing the data of Sensor 6. The 

   
(a) Anomaly detection with 

all sensors 

(b) Anomaly detection after 

excluding Sensor 6 

(c) Anomaly detection after 

excluding Sensor 4 and 6 

Figure 5.12 Simulation: anomaly detection and identification for the anomaly due to 

noise at Sensor 4 and 6 
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results, however, still show detected anomalies, where Sensor 4 has the highest discrepancy 

between the testing errors and its threshold. Therefore, the anomaly identification 

procedure is continued by removing the datasets for Sensors 4 and 6. For the remaining 16 

sensors, the procedures for model training, computing the threshold and calculating the 

testing error is repeated. Figure 5.12(c) shows the results without the datasets from Sensors 

4 and 6. As no anomaly is detected after removing the datasets for Sensors 4 and 6, this 

implies that Sensors 4 and 6 are faulty. This example shows that the BRNN-based method 

can potentially help detect and identify faulty sensors.  

5.4 Data Analysis Pipeline based on 
Cyberinfrastructure Platform 

This section describes the pipeline for implementing the BRNN-based sensor data 

reconstruction procedure with the cyberinfrastructure platform developed in the previous 

chapter. Typically, it is time-consuming to train an artificial neural network. High-

performance computers can be used to speed up the training process. However, in general, 

high performance computers are relatively expensive and may not be cost-effective for less 

computationally demanding task. In this work, we train the BRNN model for sensor data 

reconstruction on a high-performance computer and store and share the trained sensor data 

reconstruction model on the cyberinfrastructure platform. During the sensor data 

reconstruction phase, the BRNN model is imported to a local computer for execution. This 

section describes in detail the overall data and computational flow for the data-driven 

machine learning process.  

Figure 5.13 describes the overall organization for utilization of the cyberinfrastructure 

platform for long-term data analysis process. There are three main components involved in 

the process: a high-performance computer (on the premise or on the cloud), the 

cyberinfrastructure platform and a local computer. The high-performance computer, 

typically equipped with one or more GPUs, is employed for the computationally 
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demanding task for training the sensor data reconstruction model. The cyberinfrastructure 

platform serves as a data hub which manages the sensor data, as well as the trained models. 

The local computer platform (such as a desktop or laptop computer, or a tablet) is employed 

to perform sensor data reconstruction using the trained models. This section describes the 

computational processes on each of components and their interactions.  

5.4.1 Training of BRNN model on high-performance 

computer 

For the computationally intensive training of the BRNN-based sensor data reconstruction 

model, high-performance computer, which can be an on-premise machine or a virtual 

machine deployed on cloud platform, is desirable. For training the BRNN model, the 

following assumptions are made: 

• The time period during which the sensor data with good quality is collected is 

known.  

• The list of input and output sensors pairing for the BRNN predictive model are 

selected. 

• The hyperparameters (e.g., number of hidden units) of the BRNN-based sensor 

data reconstruction model, as described in Section 5.2, are pre-defined. 

 
Figure 5.13 Overview of data analysis process for sensor data reconstruction 

Cyberinfrastructure platform

High-performance computer (HPC)

GET /sensordata

Preprocessing Prediction 
model training

Retrieving 
Training data

Local computer platform (LPC)

Preprocessing Performing 
prediction

Retrieving 
Testing data & 
Trained model

POST /trainedmodel GET /sensordata; GET /trainedmodel

Data & trained model repository
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Training a sensor data reconstruction model consists of three basic steps: retrieval of the 

training data set, training of the model, and uploading and storing the trained model.  

First, the training dataset is retrieved and loaded on the high-performance computer from 

the cyberinfrastructure platform over the Internet as a web service. To retrieve the sensor 

data of a specific sensor, the application service implemented on the high-performance 

computer invokes the sensor data retrieval service on the cyberinfrastructure platform by 

sending an HTTP request: 

GET /sensordata/TRB_u07_ch0? 

event_time_begin=2014-07-14T00:00:00.000z& 

event_time_end=2014-07-14T23:59:59.000z HTTP/1.1 

HOST: <cyberinfrastructure platform address> 

The query includes parameters, such as sensor ID (TRB_u07_ch0) and the time period 

(from 2014-07-14T00:00:00.000z to 2014-07-14T23:59:59.000z) when 

the sensor data is collected. The cyberinfrastructure platform then returns corresponding 

sensor data encoded in JSON format, as shown in Figure 5.14. The data retrieval request 

is repeated for each of the input and output sensors. The retrieved sensor data is then 

mapped to a matrix object (e.g., Numpy matrix object) that can be read by a machine 

learning tool.  

With the retrieved data, a high-performance computer is employed to train the sensor data 

reconstruction model, following the forward and backward passes and the parameter 

update procedure, as described in Section 5.2.3. 

Once trained, the BRNN model and its metadata are uploaded and stored to the 

cyberinfrastructure platform. The parameters (i.e., the weights and biases) and the metadata 

of the trained model is mapped into a JSON format. For example, Figure 5.15 shows a 

JSON object containing a BRNN model, which has an output sensor TRB_u191_ch0 and 

11 input sensors (TRB_u07_ch0, TRB_u131_ch0, …), and its metadata. In the current 
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implementation, the metadata stored along with the BRNN model includes the following 

information: 

• Input and output: the ID of the target output sensor (output_sensor) and IDs 

of the input sensors (input_sensor). 

• Training dataset information: the time period when the training dataset is 

collected (training_data_begin and training_data_end), the 

number of data points per sensor (training_data_length) and scaling and 

normalization factors (scaling_factor and normalization_factor). 

• Hyper-parameters relevant to training procedure: the number of hidden units 

(hidden_layer_size), size of the batch (batch_size), stopping criteria 

(number_of_epoch and min_loss_change_threshold), learning rate 

(learning_rate), loss function (loss_function) and optimization 

procedure (optimization_algorithm). 

 
Figure 5.14 Sensor data (JSON format) retrieved from the cyberinfrastructure platform 

by invoking sensor data retrieval service 
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The parameters of the BRNN model are mapped into JSON format using double-precision 

array data type. For example, the weights WX, WY,ZX,ZY, [O	and	[R of the BRNN model 

are mapped into the arrays param_uf, param_ub, param_wf, param_wb, 

param_vf and param_vb, respectively. The biases bO, bR  and j of the BRNN model 

are mapped into the arrays param_bf, param_bb and param_c, respectively.  

 

 
Figure 5.15 Trained BRNN model and metadata encoded in JSON format 
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The JSON-encoded data is transmitted to the cyberinfrastructure platform by invoking a 

model storing service via an HTTP request structured as:  

POST /trainedmodel HTTP/1.1 

HOST: <cyberinfrastructure platform address> 

<A blank line separating header and body> 

<Attachment: JSON data> 

This request includes query the JSON-encoded data as an attachment. Once the data is 

transmitted, the cyberinfrastructure platform parses the BRNN model and its metadata and 

stores them in a model database, as discussed next in Section 5.4.2.  

5.4.2 Storing the trained model on cyberinfrastructure 

platform  

The trained models and their metadata are managed on the cyberinfrastructure platform so 

that the model can be shared and used by different machines and devices. Web services are 

implemented on the cyberinfrastructure platform to facilitate storing and retrieving the 

trained models. Receiving the HTTP request for storing trained model, the corresponding 

web service is invoked and parses the JSON data attached in the request. Furthermore, a 

database schema is defined for managing the trained models. The web service generates a 

query statement to store the parsed data in the database (Cassandra database in current 

implementation) on the cyberinfrastructure platform.  

Figure 5.16 shows the database schema defined for storing trained model (i.e., trained 

weights and biases) along with metadata needed for querying and utilization of the model. 

In this schema, the list of input sensors and the output sensor are recorded to identify the 

input-output sensors of the model. The normalization and scaling factors are stored for the 

processing of sensor data in the sensor reconstruction phase. In addition, the BRNN 

model’s hyper-parameters (e.g., hidden layer size, batch size, number of epochs, minimum 

loss change threshold, learning rate, loss function and optimization algorithm) and 



CHAPTER 5.    DATA-DRIVEN SENSOR DATA RECONSTRUCTION 
 

 

151 

information on the training dataset (e.g., the period when the training dataset is collected 

and the length of the training dataset) are stored to provide the information about the trained 

model. For different versions of the models (for example using different time periods for 

the same input and output sensors), the created time attribute is defined as a primary key 

for the model version. Each of the parameters of BRNN model is stored in a column, as 

shown in Figure 5.16. Two-dimensional double-precision array data type is employed to 

store the weights, while one-dimensional double-precision array data type is used to store 

the biases.  

Once the trained model is stored in the database, the model stored can be retrieved and 

used by different client devices by invoking the model retrieval service, which is discussed 

in the next section.  

5.4.3 Sensor data reconstruction on local computer 

With the trained sensor data reconstruction model archived on the cyberinfrastructure 

platform, the model can be retrieved as needed by any devices for reconstruction of the 

data for the output sensors. Here, a desktop computer is employed to illustrate the sensor 

data reconstruction process. For retrieving the trained model, the desktop computer first 

invokes the model retrieval service by sending an HTTP request to the cyberinfrastructure 

platform as follows: 

 
Figure 5.16 Data schema for storing sensor data reconstruction model 
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GET /trained_model?output_sensor=TRB_u131_ch0? 

input_sensor=TRB_u07_ch0& 

input_sensor=TRB_u57_ch1& 

input_sensor= ... <repeat for all input sensors> 

HTTP/1.1 

HOST: <cyberinfrastructure platform address> 

This request includes query parameters, such as the list of the input sensors and the target 

output sensor. The model retrieval service retrieves the trained model corresponding to the 

query parameters from the database and returns the trained model with the metadata 

encoded in the same JSON format used when the model is uploaded (see Figure 5.15). The 

BRNN model parameters (i.e., weight and bias) stored in a double-precision array data type 

are mapped into a BRNN model object that can be read by the scoring engine to be created 

on the desktop for reconstructing the data of the output sensor. Figure 5.17, for example, 

shows a snippet of Python script that maps the weight WX of the retrieved BRNN model 

into the weight WX of a BRNN model object created on desktop computer using PyTorch 

[159]. The first line of the script retrieves the trained model and the metadata from the 

cyberinfrastructure platform by invoking the model retrieval service. The second line of 

the script creates a BRNN model object based on the number of input sensors and the 

number of hidden units. The third line of the script converts WX  (i.e., 

 
Figure 5.17 Data mapping from the retrieved BRNN parameters to a BRNN model object 

created using PyTorch [153]  
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data['trained_model']['param_uf']) of the retrieved BRNN model to a 

PyTorch Parameter object and copies it to WX (i.e., new_model.i2hf.weight) of the 

BRNN model object created on desktop computer. In this way, a BRNN model created on 

a desktop computer can duplicate the weights and biases of the trained model retrieved 

from the cyberinfrastructure platform.  

To perform sensor data reconstruction using the retrieved model, the testing dataset 

collected for the desired period needs to be downloaded from the cyberinfrastructure 

platform. For each sensor, sensor data can be retrieved by invoking the sensor data retrieval 

service of the cyberinfrastructure platform as follows:  

GET /sensordata/TRB_u07_ch0? 

event_time_begin=2014-07-15T00:00:00.000z& 

event_time_end=2014-07-15T23:59:59.000z HTTP/1.1 

HOST: <cyberinfrastructure platform address> 

This web service request specifies the sensor ID and the desired time period. Once retrieved, 

the testing dataset is scaled and normalized using the scaling and normalization factors 

retrieved with the BRNN model. The testing dataset is then fed into the retrieved sensor 

data reconstruction model, which returns the reconstructed sensor data of the output sensor. 

In summary, with the cyberinfrastructure platform developed in this study, the BRNN-

based sensor data reconstruction can be flexibly conducted in a decentralized manner. 

Computationally intensive training process is conducted on a high-performance (but more 

expensive) computer, while less computationally demanding sensor data reconstruction 

task is performed on any device by retrieving the trained model from the 

cyberinfrastructure platform. Machine learning model management services are built to 

store and to share the trained model via the cyberinfrastructure platform.   
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5.5 Application on a Bridge in Service 

This section demonstrates the BRNN-based sensor data reconstruction method using the 

sensor data collected on the Telegraph Road Bridge (Monroe, Michigan) [156, 157]. For 

this study, the vibration response datasets collected during the month of July 2014, which 

includes 700,000 data points per sensor, is downloaded from the cyberinfrastructure 

platform and used (as shown in Figure 5.18). It should be noted that Sensors A4 and A12 

are down most of the time on that month.  

The BRNN models are created with the same hyperparameters (i.e., number of forward 

hidden units and backward hidden units, the activation functions, loss function, learning 

rate and the maximum number of epochs) and optimization schema as described in Section 

5.3. In addition to the evaluation of BRNN-based sensor data reconstruction, this section 

describes the faulty data recovery process for the missing data of Sensors A4 and A12. 

Furthermore, this section investigates environmental effects (e.g., temperature change) to 

the BRNN-based sensor data reconstruction. For the training of BRNN models, a computer 

 
Figure 5.18 Vertical acceleration measurement of the Telegraph Road Bridge (July 2014) 
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with high-performance CPU (Intel Core i7-7820X 3.60GHz) and a high-performance GPU 

(GTX 1080 Ti) is used. For reconstructing sensor data, a laptop computer with Intel Core 

i7-4870HQ 2.5 GHz is employed.  

5.5.1 Comparison of BRNN-based sensor data 

reconstruction with other methods 

For testing purpose, two BRNN models are created to reconstruct data of Sensor A1 

(located near the support of the leftmost girder) and Sensor A11 (located at the middle of 

the rightmost girder), respectively, using all other sensors as input sensors. In addition, 

other data-driven models (including PCA, MMSE, FNN and RNN) corresponding to the 

BRNN models are created for comparison. All the models are trained with a training dataset 

containing 100,000 data points (from the data points 1 to 100,000) per sensor. The trained 

models are evaluated with a testing dataset, which contains 40,000 data points (from the 

data points 100,001 to 140,000) per sensor. 

Figure 5.19 shows the results of data reconstruction using the different methods. As shown 

in Figure 5.19(a), the BRNN model reconstructs the data for Sensor A1 most accurately 

among the tested methods. For Sensor A11, all methods work well, but the BRNN- and 

RNN-based method show slightly better fit comparing to the other methods. Table 5.4 

shows the testing errors of different sensor data reconstruction methods. Similar to the 

numerical simulation results presented earlier, the testing error for the sensor (i.e., Sensor 

A1) located near the support of the bridge is generally higher than the sensor (i.e., Sensor 

A11) located at the center of the bridge because the spatial correlation is weak for the 

sensor at the end of the bridge span. Generally, the results show that the BRNN-based 

method outperforms other methods in terms of data reconstruction accuracy. 

Table 5.4 Bridge structure: testing error 

 PCA MMSE FNN RNN BRNN 
Testing RMSE for Sensor A1 0.085 0.052 0.053 0.035 0.029 
Testing RMSE for Sensor A11 0.030 0.028 0.030 0.018 0.014 
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5.5.2 Effects of using different set of input sensors 

So far, the sensor data reconstruction is demonstrated using all available sensors as input 

sensors, which assumes that all sensors can contribute to the reconstruction of output 

sensor’s data. However, in reality, only some subset of sensors would contribute on the 

 

(a) Sensor A1 

 

(b) Sensor A11 

Figure 5.19 Bridge structure: sensor data reconstruction with the different methods 
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reconstruction. Therefore, it would be more practical to use the subset of sensors with high 

contribution because this can reduce the size of the BRNN model, particularly, when there 

are many sensors in the sensor network. Furthermore, by using a subset of sensors as input 

sensors, sensor data reconstruction model can still be used even when some of non-input 

sensors in the network are faulty. To use a subset of sensors as input sensors, it is very 

important to choose an appropriate subset that can reconstruct sensor data as accurate as 

when using all sensors as input sensors. Since the BRNN-based sensor data reconstruction 

is based on the spatiotemporal correlation, one plausible approach is to choose sensors that 

have high correlation with the output sensors as the input sensors.  

Figure 5.20 shows the covariance matrix among sensor data collected from twelve sensors 

at the Telegraph Road Bridge. Here, the covariance matrix is computed using 100,000 data 

points (from the data points 1 to 100,000) per sensor. From the covariance matrix, it can 

be seen that the data from sensors along the same girder are highly correlated, while the 

data from the sensors on different girder are not correlated well. The matrix also shows that 

 
Figure 5.20 Covariance matrix of sensor data collected from the Telegraph Road Bridge  
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the data from adjacent sensors (e.g., Sensors A1 and A2) on the same girder have higher 

correlations than the data from distant sensors (e.g., between Sensors A1 and A7) even on 

the same girder. 

To study the effect of using only the highly correlated sensors, sensor data reconstruction 

for sensor A1 is performed with two BRNN models. The first model has all available 

sensors (i.e., Sensors A2, …, A14) as inputs, while the second model has only the highly 

correlated sensors (i.e., Sensors A2, …, A7) as inputs. Both models are trained using 

100,000 data points (from the data points 1 to 100,000) per sensor. The testing data is 

selected from the data points 100,001 to 140,000. Figure 5.21 shows data reconstructed for 

sensor A1 by each model.  

Table 5.5 shows the reconstruction error of the two models. The results show that the model 

constructed using the data from the highly correlated subset of sensors reconstructs the data 

as accurate as the model constructed using all the sensors. This result shows that it is 

appropriate to select the input sensors by examining their correlation with the output 

sensors. 

 

 
Figure 5.21 Sensor data reconstruction with different inputs 

Table 5.5 Testing error for different input combinations 

 Model 1 Model 2 

Input Sensors All sensors  
(A2, …, A14) 

Highly correlated sensors 
(A2, …, A7) 

Testing RMSE for Sensor A1 0.0288 0.0292 
 

Model 1

Model 2
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5.5.3 Environmental effect 

For bridges which are in service, environmental condition (e.g., temperature) varies 

throughout the year [162]. A sensor data reconstruction method needs to be robust against 

the environmental effects. In this section, a study is conducted to see whether the BRNN 

models trained with data of a certain month can be used to reconstruct the data for other 

months. For the study, a BRNN model with Sensors A7, A9 and A10 as input sensors and 

Sensor A8 as the output sensor is constructed using the hyperparameters defined in Section 

5.3. 

Figure 5.22 shows the temperature change measured by a thermistor on the Telegraph Road 

Bridge from October 2014 to May 2015. Ten BRNN models are created for each selected 

month as highlighted in Figure 5.22. Each BRNN model is trained with 100,000 data points 

per sensor collected from the corresponding month. In addition, a yearly model is created 

and trained using the training data containing 100,000 data points per sensor by 

concatenating the five datasets collected from five different months, including April, July, 

October and December of 2014 and February of 2015. Using the 11 BRNN models (i.e., 

 
Figure 5.22 Temperature change measured on the Telegraph Road Bridge from October 

2014 to May 2015 (Months selected for analysis are highlighted with boxes) 
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10 monthly models and one yearly model), sensor data reconstructions are performed for 

the 10 testing datasets, each of which has 40,000 data points per sensor collected from one 

of the 10 selected months. Figure 5.23 shows the testing errors of the 11 BRNN models for 

the 10 testing datasets. It can be seen that the testing errors of all 11 BRNN models are 

similar for each month. This result shows that, for the data considered at this bridge site, 

the BRNN-based method is robust against the change of environmental conditions.  

5.5.4 Reconstruction of missing sensor data 

Sensor data reconstruction can be used for recovering missing data when some sensors are 

faulty. As shown in Figure 5.18, Sensors A4 and A12 were not working properly in the 

month of July 2014 and the data is severely erroneous. The missing data can be recovered 

using BRNN-based sensor data reconstruction method. The basic idea is to train a BRNN 

model using good quality datasets collected from other dates.  

Figure 5.24 depicts the sensor data reconstruction process for recovering the missing data 

of July 2014 by creating and training two BRNN models corresponding to the two target 

sensors A4 and A12, respectively. The first BRNN model is constructed with input sensors 

A2, A3, A5, A6 and A7, which are located on the same girder as the output sensor, and an 

output Sensor A4. The trained model is constructed using 60,000 data points per sensor, 

collected in October 2014 when all of input and output sensors are operating properly. 

 
Figure 5.23 Reconstruction errors for testing sets collected from different months: 10 

BRNN models trained with monthly data and one BRNN model trained with yearly data 

are used 
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Once the first BRNN model is trained, the data (700,000 data points per sensor) collected 

by Sensors A2, A3, A5, A6 and A7 collected in July 2014 is inputted to the first model to 

reconstruct the data of Sensor A4 in July 2014. The recovered dataset of Sensor A4 is 

shown in Figure 5.24. Similarly, the second BRNN model is constructed with input sensors 

A8, A9, A10, A11, A13 and A14 and an output Sensor A12. The second BRNN model is 

trained using 60,000 data points per sensor, collected in July 2012 when the input and 

output sensors are operating properly. The data (700,000 data points per sensor) collected 

by Sensors A8, A9, A10, A11, A13 and A14 collected in July 2014 is then inputted to the 

second model to recover the data of Sensor A12 in July 2014. The recovered dataset of 

Sensor A12 is also shown in Figure 5.24. 

The recovered data, which now includes the data for all 14 sensors, can be further analyzed 

to check the integrity of the target system. For example, the bridge’s operational mode 

shapes can now be computed using the recovered dataset from July 2014 by system 

identification, for example, using the frequency domain decomposition (FDD) method 

 
Figure 5.24 Reconstruction of missing data using BRNN models  
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[163]. Figure 5.25 shows the first five modal frequencies and operational mode shapes 

computed with the recovered sensor data along with the corresponding modal frequencies 

and operational mode shapes experimentally measured and reported in [164]. As shown in 

Figure 5.25, the modal frequencies and operational mode shapes computed using the 

recovered datasets match very well with the bridge’s original mode shape and frequencies 

obtained experimentally. 

5.6 Summary 

This chapter describes a data-driven sensor data reconstruction method and its 

implementation using the cyberinfrastructure platform. Sensor data reconstruction is an 

important task for the operation of sensor network to recover missing or faulty sensor data 

and detect anomalies. For the precise sensor data reconstruction, this study presents a data-

driven sensor data reconstruction approach based on bidirectional recurrent neural network 

(BRNN). The BRNN-based sensor data reconstruction method is a supervised regression 

 
(a) Modal frequency and operational mode shapes computed from the reconstructed 

dataset 

 
(b) Modal frequency and operational mode shapes obtained from experiments [161] 

Figure 5.25 First five modal frequencies and operational mode shapes of the Telegraph 

Road Bridge 
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problem that reads input sensors’ data and reconstructs the target output sensor’s data. 

Specifically, the BRNN-based method reconstructs sensor data based on the 

spatiotemporal correlation among the sensor data collected by a distributed network of 

sensors. The BRNN-based sensor data reconstruction procedure consists of two phases: 

training phase and reconstruction phase. In the training phase, a BRNN model is trained 

using a training dataset by adjusting the weights and biases of the model to minimize the 

difference between the reconstructed data and the measured data of the target output sensor. 

In the reconstruction phase, the target output sensor’s data is reconstructed by feeding the 

input sensors data to the trained BRNN model. To validate the BRNN-based sensor data 

reconstruction approach, demonstrations are conducted using the bridge vibration response 

data collected from numerical simulations. The demonstration results show that the BRNN-

based sensor data reconstruction yields more accurate estimation than other existing data 

reconstruction methods (e.g., PCA, MMSE, FNN and RNN). Furthermore, the BRNN-

based sensor validation can capture and localize anomalies due to faulty sensors. 

While the use of an artificial neural network is likely to improve the data reconstruction 

accuracy, the training of the artificial neural network is typically computationally 

demanding. For the effective data-driven sensor data reconstruction, this study presents a 

data analysis pipeline that automates data and computational flow over high-performance 

computer and client devices via the cyberinfrastructure platform. In the training phase, the 

high-performance computer retrieves a training dataset from the cyberinfrastructure 

platform and trains the sensor data reconstruction models. The trained models are uploaded 

and stored using the cyberinfrastructure platform. In the reconstruction phase, client 

devices (e.g., desktop computer) downloads a testing dataset, as well as the trained data 

reconstruction model from the cyberinfrastructure platform, and performs data 

reconstruction. In this way, a computationally demanding model training task can be 

performed on a high-performance computer for fast learning process, whereas client 

devices can perform only a less computationally demanding reconstruction task. The data 

analysis pipeline is demonstrated with the sensor data collected from the Telegraph Road 

Bridge.  
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While the validation results are promising, there is still much room for research for the 

sensor data reconstruction problem. The demonstrations in this work are conducted using 

only vibration data. The use of BRNN-based method for reconstructing different types of 

data (e.g., wind data collected from anemometer) should be investigated. In addition, the 

demonstrations in this work mainly focus on bridge monitoring application. The proposed 

method can be potentially useful to different sensing applications wherein sensors have 

spatial and temporal correlations. 

  



 

Chapter 6   

Conclusions 

 

 

6.1 Summary of Results and Contributions 

As microelectromechanical systems (MEMS), semiconductor and network communication 

technologies have greatly enhanced the developments of sensors and sensor networks that 

are now being deployed widely in engineering systems, advanced data management and 

software technologies can further extend the functionalities of engineering systems. 

Engineering applications are typically data-intensive and computationally demanding 

services that require not only continuing advances in engineering modeling and sensor 

development but also data and software frameworks to facilitate workflow and resource 

management. This thesis presents a cyberinfrastructure platform tailored to civil 

infrastructure monitoring applications. The cyberinfrastructure platform is designed to 

meet the data management requirements, which are scalability, data integration, 

interoperability, standardized interfaces and flexibility.  
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In Chapter 2, an information modeling framework for bridge monitoring application is 

described. Bridge monitoring involves a wide variety of information from different data 

sources, including geometric modeling and engineering analysis tools, bridge management 

system (BMS) and structural health monitoring (SHM) system. In current practice, the 

different types of information are typically managed by isolated systems, which ends up 

with inefficient data utilization and integration. In order to address the data sharing issue 

and guarantees data interoperability, this chapter presents a bridge information modeling 

framework for supporting bridge monitoring applications. The framework employs the 

OpenBrIM data model [81] as the base model, and enrich the base model by defining data 

entities for the representation of engineering model and sensor description. Specifically, 

the framework draws on the data entities of CSiBridge [79] for the representation of 

engineering model and SensorML [80] for the representation of sensor information. The 

demonstration shows that the proposed BrIM data schema can capture bridge information, 

including geometry, engineering model and sensor description, about a bridge structure 

instrumented with structural monitoring system.  

In Chapter 3, a NoSQL-based data management system for the scalable management of 

sensor data and relevant information is presented. Since engineering applications will 

potentially involve a large volume of data with various data types, an appropriate database 

system that can guarantee scalability and flexibility is important. Based on the data 

management requirements defined for civil infrastructure monitoring, Apache Cassandra 

database and MongoDB are selected as the backend database systems of the cyber bridge 

monitoring framework. Apache Cassandra is a column family database that is suitable for 

large-scale distributed database, while MongoDB is a document-oriented database that has 

advantages on the schema-less data structure and fast performance. Data schemas for 

Cassandra database and MongoDB are defined following the bridge and sensor information 

models. The demonstration results show that the NoSQL-based data management platform 

enables effective data management for a large amount of bridge monitoring data and 

supports query capability for retrieving various types of data residing in the data 

management system.  
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In Chapter 4, a prototype cyberinfrastructure platform is designed and implemented on a 

cloud computing environment. The cyberinfrastructure platform handles data store and 

retrieval through three layers: communication layer, mapping layer and storage layer. The 

communication layer offers standardized, interoperable web-based interfaces to allow 

various devices can access the platform to store and retrieve different types of data. 

Specifically, RESTful web services are implemented to support store and retrieval of 

sensor data and bridge information. The mapping layer handles data mapping processes 

involved in the management of information models. The storage layer offers scalable data 

storage by employing a highly scalable distributed database system. The prototype 

platform leverages the Infrastructure as a Service (IaaS) cloud service model for scalability, 

reliability and portability. In addition, the platform is implemented on hybrid cloud 

computing environment to enable decentralized data management where sensitive data is 

managed by private data center. The demonstration results show that the proposed platform 

facilitates the data utilization and integration by providing platform-neutral interfaces 

which can be accessed by various applications on different types of devices. 

In Chapter 5, a data-driven sensor data reconstruction method and its implementation using 

the cyberinfrastructure platform are described. For the accurate sensor data reconstruction, 

a data-driven method based on the bidirectional recurrent neural network (BRNN) is 

proposed to reconstruct sensor data based on the spatiotemporal correlation among sensors. 

The BRNN-based sensor data reconstruction method is tested with vibration response data 

collected from numerical simulations. The results show that the BRNN-based method 

reconstructs sensor data more accurately than other existing data-driven sensor data 

reconstruction methods. For effective learning process, the BRNN-based sensor data 

reconstruction method is implemented based on a data analysis pipeline that can automate 

data and computational flow over high-performance computer and client devices through 

the cyberinfrastructure platform. In this data analysis pipeline, a high-performance 

computer retrieves training dataset from the cyberinfrastructure platform, trains the 

BRNN-based model and uploads the trained model to the cyberinfrastructure platform. 

Client devices (e.g., desktop computers) can download the trained model and the testing 
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dataset from the cyberinfrastructure platform to perform sensor data reconstruction. In this 

way, computationally demanding training tasks can be handled by high-performance 

computer, whereas less computationally demanding data reconstruction task can be 

performed by affordable client devices.  

6.2 Future Research Recommendation 

The importance of effective data management is growing for facilitating data integration, 

sharing and utilization. While the proposed cyberinfrastructure platform is designed to 

handle a large amount of heterogeneous data involved in engineering applications, the 

platform can be further enhanced. The following discusses several future research 

directions:  

• While the cyberinfrastructure platform is design for the applications of civil 

infrastructure monitoring, the platform can be easily modified and extended to 

support data management of other engineering domains. For example, the data 

management services offered by the platform can be used for the management of 

factory monitoring data by enriching data schema to represent domain-specific 

information (e.g., machine information). Therefore, future research may extend 

the proposed cyberinfrastructure platform for efficient data management for a 

broad range of different engineering domains.  

• As a research prototype, the bridge information model, in its current state, 

considers only a few standards and applications. Many data entities, which are 

necessary to fully support other bridge monitoring and management applications, 

are lacking. Therefore, the information model schema needs to be enhanced to 

meet the data requirement of other applications and domains.  

• Data security is another important topic that was not discussed in this thesis. For 

secure data management, the proper use of security schemes is indispensable. 
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Therefore, the proposed cyberinfrastructure platform needs to be enhanced by 

adopting authentication, authorization and cryptography methodologies.  

• While the validation results are promising, there is still much room for research 

for the sensor data reconstruction problem. The demonstrations in this work are 

conducted using only vibration data. The use of BRNN-based method for 

reconstructing different types of data (e.g., wind data collected from anemometer) 

should be investigated. In addition, the demonstrations in this work mainly focus 

on bridge monitoring application. The proposed method can be potentially applied 

to different sensing applications wherein sensors have spatial and temporal 

correlations. 
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