

A SCALABLE AND INTEROPERABLE
CYBERINFRASTRUCTURE PLATFORM FOR

CIVIL INFRASTRUCTURE MONITORING

A DISSERTATION

SUBMITTED TO THE DEPARMENT OF

CIVIL AND ENVIRONMENTAL ENGINEERING

AND THE COMMITTEE ON GRATDUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Seongwoon Jeong

March 2019

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/kc757ch3792

© 2019 by Seongwoon Jeong. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/kc757ch3792

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Kincho Law, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Anne Kiremidjian

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jerome Lynch

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

 iv

Abstract

Civil infrastructure monitoring is an important technology that provides accurate and

objective data on the health condition of a structure by leveraging sensor technologies.

Together with routine maintenance and inspection, civil infrastructure monitoring enables

the diagnosis of potential structural problems and the prognosis for the need of structural

strengthening and repairs. As sensor technologies mature and become economically

affordable, their deployment for civil infrastructure monitoring will continue to grow to

collect more detailed data about the structures. The data collected from civil infrastructure

monitoring systems offers promising opportunities to find meaningful information,

knowledge and insight that can improve decision making processes. Furthermore, advances

in sensing and communication technologies will eventually realize the concept of cyber-

physical systems (CPS) that tightly integrate physical systems and cyber systems to

monitor, analyze, coordinate and control the operations of physical systems. Nevertheless,

the increasing use of sensors will also lead to significant data management issues. Civil

infrastructure monitoring systems instrumented with dense sensor networks will be

inundated with unprecedented volume and diverse types of data that need to be processed,

interpreted and brought forth to support system operations. The utilization of such “big

data” will be significantly limited unless a proper data management platform, which can

efficiently store, manage, retrieve, share, interface, link and integrate data, is developed.

This thesis describes a cyberinfrastructure platform for civil infrastructure monitoring with

an emphasis on system scalability and interoperability. The cyberinfrastructure platform

brings together information and communication technologies (ICT), including information

 v

modeling, NoSQL database, cloud computing and web services, for effective data

management. An information modeling framework with application to bridge monitoring

is designed to facilitate data interoperability and data integration. A NoSQL-based data

management system is developed to enable scalable, flexible and fault-tolerant

management of monitoring data. Cloud computing is adopted as a scalable, reliable and

accessible computing infrastructure. Platform-neutral web services are developed to enable

easy access to the cloud resources and data involved in engineering systems via standard

communication protocols. For demonstration, the cyberinfrastructure platform is

implemented for the monitoring of bridges along the I-275 corridor in the State of Michigan.

The results show that the cyberinfrastructure platform can effectively manage the sensor

data and domain-specific information and facilitate data sharing, integration and utilization.

 vi

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor and life

mentor, Professor Kincho H. Law, who always encourages me to move outside of my

comfort zone and provides me deep insights on this interdisciplinary research. His patient

guidance has helped me find a field of intellectual pursuit that fits my interest and ability.

I am forever indebted to him.

Special thanks are owed to Professor Hoon Sohn for allowing me the opportunity to

conduct collaborative research, as well as to providing me access to his laboratory and

research facilities. Many thanks are owed to Professor Jerome P. Lynch for sharing with

me his insights on structural health monitoring, as well as for providing valuable data from

his testbeds to validate my research. I would also like to thank Professor Hector Garcia-

Molina for chairing my defense. I am also grateful to Professor Anne Kiremidjian and

Professor Michael Lepech for serving as my defense committee. Their comments and

valuable questions have helped me improve the contents of my dissertation.

I would like to express my sincere thanks to the members of the Engineering Informatics

Group, particularly Dr. Zan Chu, Professor Jinkyoo Park and Max Ferguson, for helping

me in various aspects of my research. I would like to thank my colleagues at University of

Michigan, particularly, Dr. Yilan Zhang and Rui Hou. They are responsible for providing

access to the bridges on I-275 Corridor and helping me use various data collected from the

bridges to validate my research. I would also like to thank colleagues at KAIST,

particularly, Dr. Hyung Jin Lim, Dr. Ji-Min Kim and Suyoung Yang for helping me use

 vii

their laboratory and conduct field tests on their testbeds, including the Youngjong Bridge

and the Yeondae Bridge.

I would like to extend my thanks to many friends for their continuous encouragement and

support throughout this work. My special thanks go to Justin Smith, Wendy Smith, Grant

Wells, Christine Wells, Jared Honeycutt, Wendy Quay, Tom Curtis and Christina Curtis. I

would also like to thank Jung In Kim, Jinhyun Choo, Changhyun Noh, Hyewon Shin and

Yongchae Cho.

Finally, I am grateful for the constant support from my family. I would like to especially

acknowledge my parents and brother for their unwavering love and support. I would also

like to thank my father-in-law for his unconditional trust and encouragement. Last but not

least, I would like to express my deepest gratitude to my beloved wife, Junghwa Han, who

is my best friend and lifetime companion. My venture to study abroad at Stanford would

not have been conceivable without her selfless support and continuous encouragement.

I gratefully acknowledge the financial support provided by a Grant Number 13SCIPA01

from Smart Civil Infrastructure Research Program funded by Ministry of Land,

Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for

Infrastructure Technology Advancement (KAIA). I also acknowledge the financial support

provided by the US National Science Foundation (NSF), Grant Number ECCS-1446330.

Any opinions, findings, conclusions or recommendations expressed in this paper are solely

those of the authors and do not necessarily reflect the views of MOLIT, KAIA, NSF or any

other organizations and collaborators.

 viii

Table of Contents

Abstract .. iv

Acknowledgements ... vi

Table of Contents ... viii

List of Tables ... xiii

List of Figures ... xiv

1 Introduction .. 1

1.1 Problem Statement ... 1

1.2 Data Management Requirements for Cyberinfrastructure Platform..................... 3

1.2.1 Scalability... 4

1.2.2 Data integration and interoperability .. 4

1.2.3 Standardized interface ... 5

1.2.4 Flexibility ... 5

1.3 Current Sensor Data Management Practice ... 6

1.3.1 Internet of Things (IoT) platform ... 6

1.3.2 Civil infrastructure monitoring systems ... 7

1.4 Information and Communication Technologies for Effective Data Management

 ... 9

1.4.1 Information modeling .. 9

1.4.2 Cloud computing ... 9

1.4.3 NoSQL database ..10

1.4.4 Web service ..11

 ix

1.5 Research Objectives ..11

1.6 Thesis Outline ..13

2 Information Modeling Framework for Bridge Monitoring15

2.1 Introduction ..15

2.2 Bridge Information Modeling Schema Definition ...17

2.2.1 Base model: OpenBrIM ..17

2.2.2 Finite element modeling ..21

2.2.2.1 Data entities for representing finite element model22

2.2.2.2 Data entities for representing load and analysis conditions26

2.2.3 Sensor description ...28

2.3 Case Example ...34

2.3.1 Geometric model ...35

2.3.2 Finite element model ...36

2.3.3 Sensor description ...40

2.4 Summary ..42

3 A NoSQL-based Scalable Data Management Framework for Civil Infrastructure

Monitoring ..44

3.1 Introduction ..44

3.2 Selection of NoSQL Data Management Tools ..46

3.2.1 Data management requirements in civil infrastructure monitoring system ...46

3.2.2 Selection of NoSQL database tools ..49

3.2.2.1 Apache Cassandra: column family database for supporting persistent

data archiving ...50

3.2.2.2 MongoDB: document store for supporting efficient data retrieval52

3.3 A NoSQL-based Data Management Framework for Civil Infrastructure

Monitoring ..53

3.3.1 Onsite computer ...55

3.3.1.1 Data scheme for document database on onsite computer55

3.3.1.2 Data store and retrieval processes on onsite computer57

3.3.2 Main server ..58

 x

3.3.2.1 Data scheme for column family database on main server59

3.3.2.1.1 Sensor data schema ...59

3.3.2.1.2 Bridge information model schema ...62

3.3.2.2 Data store and retrieval processes on main server64

3.3.2.2.1 Data store and retrieval processes for sensor data64

3.3.2.2.2 Data store and retrieval processes for bridge information model65

3.3.3 Local computer ..67

3.4 Case Example ...68

3.4.1 Data store and retrieval ...69

3.4.2 Influence line analysis using sensor data and bridge engineering model72

3.4.3 Comparison of sensor data and analytically computed bridge response........75

3.4.4 Retrieval of sensor data along with traffic image data81

3.5 Summary ..83

4 A Cloud-based Cyberinfrastructure Platform for Civil Infrastructure

Monitoring ..86

4.1 Introduction ..86

4.2 Overview of Cyberinfrastructure Platform ..88

4.3 Data Store Process ...90

4.3.1 Communication layer ..90

4.3.1.1 Web server ...90

4.3.1.2 Message broker..93

4.3.2 Mapping layer ..94

4.3.3 Storage layer ..94

4.4 Data Retrieval Process ...95

4.4.1 Data retrieval using web services ...96

4.4.2 Service composition ..98

4.5 Cloud-based Implementation ... 103

4.5.1 Cloud computing environment .. 104

4.5.2 Hybrid cloud-based decentralized data management 107

4.6 Case Scenario: Civil Infrastructure Monitoring Application 108

 xi

4.6.1 Automated data store and retrieval .. 109

4.6.2 Data integration and utilization ... 112

4.6.3 Web and mobile user interfaces ... 115

4.7 Summary ... 118

5 Implementation of Data-driven Sensor Data Reconstruction Procedure utilizing

the Cyberinfrastructure Platform .. 121

5.1 Introduction ... 121

5.2 BRNN-based Sensor Data Reconstruction Method.. 124

5.2.1 Data preprocessing and normalization .. 125

5.2.2 Architecture of the BRNN model .. 126

5.2.3 Training of BRNN model .. 129

5.2.4 Sensor data reconstruction ... 131

5.3 Demonstration of Sensor Data Reconstruction Method with Numerical

Simulation .. 133

5.3.1 Effects of training parameters .. 136

5.3.2 Comparison of BRNN-based sensor data reconstruction with other methods ..

 ... 139

5.3.3 Sensor validation .. 142

5.4 Data Analysis Pipeline based on Cyberinfrastructure Platform 145

5.4.1 Training of BRNN model on high-performance computer.......................... 146

5.4.2 Storing the trained model on cyberinfrastructure platform 150

5.4.3 Sensor data reconstruction on local computer .. 151

5.5 Application on a Bridge in Service.. 154

5.5.1 Comparison of BRNN-based sensor data reconstruction with other methods ..

 ... 155

5.5.2 Effects of using different set of input sensors... 156

5.5.3 Environmental effect .. 159

5.5.4 Reconstruction of missing sensor data .. 160

5.6 Summary ... 162

6 Conclusions .. 165

 xii

6.1 Summary of Results and Contributions... 165

6.2 Future Research Recommendation .. 168

Bibliography ... 170

 xiii

List of Tables

Table 2.1 Objects added to the OpenBrIM model for representing structural elements ... 26

Table 2.2 Objects added to the base OpenBrIM model for representing load and

analysis conditions ... 29

Table 2.3 Data entities included in the Sensor subtype objects. ... 34

Table 3.1 Test truck load description (unit: pound) [112] ... 73

Table 4.1 RESTful data store web services currently implemented on the

cyberinfrastructure platform ... 91

Table 4.2 RESTful data retrieval web services currently implemented on the

cyberinfrastructure platform ... 96

Table 4.3 Specification and role of cloud virtual machines and private server

composing cyberinfrastructure platform .. 109

Table 5.1 Random variables composing randomized traffic ... 134

Table 5.2 Data-driven sensor data reconstruction models for comparison....................... 140

Table 5.3 Simulation: computing time and reconstruction error 141

Table 5.4 Bridge structure: testing error ... 155

Table 5.5 Testing error for different input combinations .. 158

 xiv

List of Figures

Figure 2.1 Definition of a fundamental Object and Parameter entities [78] 18

Figure 2.2 Data schema of the Shape object [78]... 20

Figure 2.3 Entity: Node .. 23

Figure 2.4 Entity: FELine .. 23

Figure 2.5 Entity: FESurface ... 24

Figure 2.6 Entity: Material... 25

Figure 2.7 New entity: FELoadPattern ... 27

Figure 2.8 New entity: FEAnalysisCase ... 28

Figure 2.9 Importing SensorML’s schema ... 30

Figure 2.10 New entity: Sensor ... 32

Figure 2.11 New entities: Sensor subtype object ... 33

Figure 2.12 Telegraph Road Bridge (Monroe, Michigan) ... 35

Figure 2.13 High-level structure of geometric model written in ParamML 36

Figure 2.14 Geometric model visualized using OpenBrIM Viewer 37

Figure 2.15 TRB’s FE model created using CSiBridge (1st natural frequency: 2.324

Hz) .. 37

Figure 2.16 Data mapping from Excel Spreadsheet to OpenBrIM object 38

Figure 2.17 Pseudo code for data mapping from CSiBridge’ data schema to BrIM

data schema .. 38

Figure 2.18 High-level structure of the finite element model represented in BrIM data

schema .. 39

 xv

Figure 2.19 Pseudo code for data mapping from BrIM data schema to CSiBridge’

data schema .. 40

Figure 2.20 Modal analysis with the re-generated finite element model (1st natural

frequency: 2.324 Hz) ... 40

Figure 2.21 Sensor description represented using BrIM data schema and SensorML

data schema .. 41

Figure 3.1 Overall structure of data management system for civil infrastructure

monitoring .. 47

Figure 3.2 Four categories of NoSQL database systems ... 49

Figure 3.3 Ring topology of Cassandra database ... 51

Figure 3.4 Data structure of Cassandra database.. 52

Figure 3.5 Data structure of MongoDB .. 53

Figure 3.6 Data management framework for civil infrastructure monitoring based on

NoSQL database .. 54

Figure 3.7 Data schema of sensor data in MongoDB .. 56

Figure 3.8 Data schema of sensor information in MongoDB.. 57

Figure 3.9 Time-series data stored in a distributed system.. 59

Figure 3.10 Database schema for time-series numeric sensor data..................................... 60

Figure 3.11 Database schema for time-series image data .. 61

Figure 3.12 Data mapping between BrIM schema FELine and corresponding

Cassandra column family .. 63

Figure 3.13 Database schema for BrIM objects ... 64

Figure 3.14 Data mapping from BrIM schema to Cassandra database schema 66

Figure 3.15 Data mapping from Cassandra database schema to BrIM schema 67

Figure 3.16 Type and location of sensors installed on the Telegraph Road Bridge

[110] ... 69

Figure 3.17 onsite.py: Python script storing sensor data to MongoDB in onsite

computer ... 70

Figure 3.18 tomain.py: Python script storing sensor data to Cassandra database in

main server ... 70

 xvi

Figure 3.19 Select query for sensor data retrieval and query result in a tabular format 71

Figure 3.20 Bridge information model retrieved from Cassandra database in main

server .. 72

Figure 3.21 Sensor information retrieved from Cassandra database in main server 72

Figure 3.22 Test truck dimension .. 73

Figure 3.23 Location of strain gauges ... 73

Figure 3.24 Test truck defined in FE model ... 74

Figure 3.25 Influence line analysis result ... 75

Figure 3.26 Workflow of example scenario for comparing sensor data and

analytically computed bridge reponse .. 76

Figure 3.27 Step 1: Retrieving sensor information .. 77

Figure 3.28 Step 2: Retrieving sensor data ... 77

Figure 3.29 Step 3: Pseudo code of a recursive function for FE model retrieval 78

Figure 3.30 Step 3: Data mapping from query result to hierarchical BrIM model 78

Figure 3.31 Step 4: Pseudo code for FE model mapping from BrIM to Excel

spreadsheet ... 79

Figure 3.32 Step 4: Mapping dictionary from BrIM to Excel spreadsheet......................... 79

Figure 3.33 Step 5: Running FE analysis using CSiBridge and its APIs 80

Figure 3.34 Step 6: Plotting retrieved sensor measurement (u131ch0) along with the

maximum and minimum values of the response obtained from FE

simulation ... 81

Figure 3.35 Workflow of example scenario for retrieving sensor data along with

traffic-image data ... 81

Figure 3.36 Step 1: Query statement for retrieving sensor data .. 82

Figure 3.37 Step 2: Query statement for retrieving image data .. 82

Figure 3.38 Acceleration response of the TRB from 2016-08-23T10:02:09 to 2016-

08-23T10:03:08 collected by “u131ch0” and corresponding traffic-

monitoring images. .. 84

Figure 4.1 Overall architecture of the cyberinfrastructure platform for engineering 88

 xvii

Figure 4.2 Web server hosting web services for engineering model and sensor data

store .. 92

Figure 4.3 Message broker including a topic for sensor data exchange 93

Figure 4.4 Engineering model retrieval from the cyberinfrastructure platform 97

Figure 4.5 Sensor data retrieval from the cyberinfrastructure platform 97

Figure 4.6 A composite application DataRetrievalByLocation: data flow 99

Figure 4.7 A composite application DataRetrievalByLocation: Execution example 101

Figure 4.8 A composite application SensorInfoOnMap: Data flow 102

Figure 4.9 A composite application SensorInfoOnMap: Execution example 103

Figure 4.10 A model of cloud computing for SHM ... 105

Figure 4.11 Virtual machine created on Microsoft Azure cloud platform 106

Figure 4.12 A framework of hybrid cloud-based implementation of

cyberinfrastructure platform for decentralized data management 108

Figure 4.13 Workflow: application for data store automation .. 110

Figure 4.14 Sensor data file ... 110

Figure 4.15 Workflow: traffic video image collecting application 111

Figure 4.16 Data retrieval using web services .. 112

Figure 4.17 A workflow for relating structural behavior with temperature data 113

Figure 4.18 HTTP requests and corresponding CQL queries for sensor list and data

retrieval... 114

Figure 4.19 Patterns of modal frequency of the Telegraph Road Bridge 116

Figure 4.20 Prototype web-based user interface .. 117

Figure 4.21 Telegraph Road Bridge model downloaded from the web-based user

interface .. 117

Figure 4.22 Prototype mobile interface... 118

Figure 5.1 Overview of sensor data reconstruction.. 124

Figure 5.2 Structure of bidirectional recurrent neural network with a single hidden

layer and the computation flow of a forward pass... 127

Figure 5.3 Organization of BRNN layers at a time step ! ... 127

 xviii

Figure 5.4 Expanded view of interconnection between time steps ! and ! + 1 in the

BRNN structure ... 128

Figure 5.5 (a) Finite element model and (b) sensor layout of the Telegraph Road

Bridge ... 134

Figure 5.6 Vehicle load definition ... 134

Figure 5.7 Simulated vertical acceleration measurements of the Telegraph Road

Bridge (Monroe, MI) ... 135

Figure 5.8 Reconstruction error, training time and reconstruction time with respect to

different batch sizes ... 137

Figure 5.9 Reconstruction error, training time and reconstruction time with respect to

different training data sizes ... 138

Figure 5.10 Reconstruction error and testing time with respect to different testing data

sizes .. 139

Figure 5.11 Simulation: sensor data reconstruction with the different methods 141

Figure 5.12 Simulation: anomaly detection and identification for the anomaly due to

noise at Sensor 4 and 6 .. 144

Figure 5.13 Overview of data analysis process for sensor data reconstruction 146

Figure 5.14 Sensor data (JSON format) retrieved from the cyberinfrastructure

platform by invoking sensor data retrieval service .. 148

Figure 5.15 Trained BRNN model and metadata encoded in JSON format 149

Figure 5.16 Data schema for storing sensor data reconstruction model 151

Figure 5.17 Data mapping from the retrieved BRNN parameters to a BRNN model

object created using PyTorch [153] .. 152

Figure 5.18 Vertical acceleration measurement of the Telegraph Road Bridge (July

2014) ... 154

Figure 5.19 Bridge structure: sensor data reconstruction with the different methods 156

Figure 5.20 Covariance matrix of sensor data collected from the Telegraph Road

Bridge ... 157

Figure 5.21 Sensor data reconstruction with different inputs .. 158

 xix

Figure 5.22 Temperature change measured on the Telegraph Road Bridge from

October 2014 to May 2015 (Months selected for analysis are highlighted

with boxes) ... 159

Figure 5.23 Reconstruction errors for testing sets collected from different months: 10

BRNN models trained with monthly data and one BRNN model trained

with yearly data are used ... 160

Figure 5.24 Reconstruction of missing data using BRNN models 161

Figure 5.25 First five modal frequencies and operational mode shapes of the

Telegraph Road Bridge ... 162

Chapter 1

Introduction

1.1 Problem Statement

Advances in sensor and communication network technologies have led to an increasing

deployment of sensors for civil infrastructure monitoring [1, 2]. Data collected from sensor

networks offers promising opportunities to enhance the operation of civil infrastructure

systems. Research efforts for sensor data utilization, ranging from short-term anomaly

detection to long-term trend investigation, have been widely reported [3, 4, 5]. Furthermore,

advanced data analytics and machine learning methodologies can potentially enable

finding hidden patterns, meaningful information and insights regarding the target systems

and their operations from the sensor data. Growth in sensor deployment, however, will also

give rise to data management issues in civil infrastructure monitoring. The amount and

complexity of data involved in civil infrastructure monitoring make data management a

very difficult task, which would hinder the utilization of sensor data. Data issues are of

CHAPTER 1. INTRODUCTION

2

significant importance that need to be handled before sensing technologies can truly be

useful for civil infrastructure management [6].

Successful data management can be achieved by using appropriate computing technologies

with consideration of domain-specific characteristics. Until now, however, there is a huge

gap between the computing and engineering communities. In the computing community,

on the one hand, various technologies that can be used to cope with today’s data issues

have emerged [7]. For example, cloud computing has become a new computing paradigm

where scalable, reliable, cost-effective and easy-to-manage computing resources can be

rapidly provisioned and accessed over advanced communication networks. Another

example is NoSQL (Not-only-SQL) database systems which have been proposed as

alternatives to traditional database systems to meet today’s data management requirements,

such as scalability, flexibility and fast query performance [8, 9]. Furthermore, as sensing

and Internet of Things (IoT) technologies mature and become increasingly prevalent, many

cloud-based IoT platforms have been developed to facilitate the connection of numerous

physical devices, as well as data exchange among the devices and applications [10].

Nonetheless, there is no one-size-fit-all technology: such contemporary computing

technologies have to be tailored to meet domain-specific requirements [11]. Engineering

applications often involve diverse types of information ranging from heterogeneous sensor

data (e.g., high-frequency time-series data, video and camera images, etc.) to domain-

specific engineering information (e.g., geometric models, engineering simulation models,

etc.), imposing additional data management requirements [12, 13]. For example, sensor

data needs to be integrated with engineering information to enable effective data retrieval

and utilization. In addition, efficient information sharing and data exchange are required

because engineering projects typically involve a wide variety of software tools, as well as

ad hoc analysis modules [14]. A data management platform needs to be designed to meet

these requirements in order to support engineering applications effectively.

In the engineering community, on the other hand, information modeling has gained

enormous attention as a vehicle to support integrated project delivery processes [14].

Information modeling enables information sharing and integration, as well as seamless data

CHAPTER 1. INTRODUCTION

3

exchange among software based on interoperability standards [15]. However, the

engineering community seldom pays attention to data issues involving scalable big data

management and standardized communications with client devices. As the use of sensors

in engineering applications continues to grow, appropriate data management tools for

handling a large amount of sensor data together with engineering domain information will

become very important. For effective data management in engineering applications, it is

essential to investigate state-of-the-art information technologies and adopt them properly.

To overcome the imminent data issues in civil infrastructure monitoring, this thesis aims

to propose a cyberinfrastructure platform that can efficiently store, manage, retrieve, share,

interface, link and integrate data. This thesis brings together various information and

communication technologies (ICT), including information modeling, NoSQL database

systems, cloud computing and web services, for effective data management, particularly,

for civil infrastructure monitoring.

1.2 Data Management Requirements for
Cyberinfrastructure Platform

“Big data” is typically characterized by three “V”’s, which are volume, velocity and variety

[16]. Civil infrastructures instrumented with sensors also need to handle data with the same

characteristics. First, the volume of data collected from civil infrastructure will grow

significantly as an increasing number of sensors are deployed. The huge data volume

requires a highly scalable data management system that can handle a large and increasing

amount of data. Second, the velocity (or the rate) of data acquired means that data

collection and analysis need to be conducted in a timely manner [17]. To this end, civil

infrastructure monitoring systems need to be able to handle, manage and analyze data

effectively. Third, civil infrastructure monitoring systems involve a high variety of data,

including, but not limited to, time-series data, video, image, geometric models and physical

models. Data of heterogeneous types needs to be linked and integrated in order to facilitate

CHAPTER 1. INTRODUCTION

4

data retrieval and utilization. A data management system that satisfies such big data

requirements needs to be developed. Based on the big data characteristics and the domain

requirements, the following sections summarize the desirable characteristics of a

cyberinfrastructure platform for effective data management.

1.2.1 Scalability

As the deployment of sensors increases, the volume of data collected and processed will

continue to grow. Civil infrastructure monitoring systems typically collect hundreds of

gigabytes of data every year [18]. With the decreasing cost of sensors, the trend of civil

infrastructure monitoring involves the instrumentation of hundreds and thousands of

sensors to collect extensive information about the target systems [19]. Furthermore, the

adoption of advanced sensors with very high sampling rates, such as piezo lead zirconate

titanate (PZT) and fiber Bragg grating (FBG) sensors [3, 20, 21], and the use of image and

video data [13] lead to a significant increase in data volume. To cope with such a

voluminous amount of data, a cyberinfrastructure platform needs to be easily scaled

according to processing and storage demands.

1.2.2 Data integration and interoperability

Civil infrastructure monitoring systems involve a wide variety of information, including

geometry, engineering model, inspection report, sensor information and sensor data,

collected from different data sources. Current practice typically employs isolated systems

to manage and process different types of information wherein information managed in one

system is neither integrated nor shared among other systems. The isolated data

management makes it difficult to compare and combine heterogeneous data; instead,

different types of data are manually converted, mapped and compared, which is error-prone

and time-consuming [15, 22]. Effective sharing and integration of data would facilitate data

utilization and, thus, enhance operation and management of engineering systems [23, 24].

CHAPTER 1. INTRODUCTION

5

To this end, a cyberinfrastructure platform needs to be designed to support data integration

and interoperability.

1.2.3 Standardized interface

Data managed by cyberinfrastructure needs to be easily accessed by various applications

(e.g., visualization tools, finite element analysis tools and machine-learning modules) on

different systems (e.g., cloud computing platforms, desktop computers and mobile devices).

In current civil infrastructure monitoring systems, however, data management tools

typically lack standardized interfaces, resulting in manual data download and application

execution. To facilitate data access and utilization, standardized interfaces are essential. By

providing standardized interfaces, machine-to-machine data exchange among

cyberinfrastructure and different applications can be enabled. Furthermore, standardized

interfaces can enable easy prototyping and rapid deployment of applications in a plug and

play manner. Therefore, cyberinfrastructure needs to support standardized interface.

1.2.4 Flexibility

Over the lifecycle of an engineering system, the users’ (e.g., system operators and

engineers) requirements are constantly changing. For example, new types of sensors may

be deployed with an existing cyberinfrastructure platform to collect additional information

about the physical system. Needs for managing previously-unmanaged information can

arise as knowledge and insight about system operations grow. In addition, as new data

analysis modules are developed, new services need to be deployed to interface the

cyberinfrastructure platform with the new analysis modules. A cyberinfrastructure

platform should be able to adapt to the changing environment in a timely and cost-effective

manner. Therefore, a cyberinfrastructure platform has to be designed with consideration of

system flexibility.

CHAPTER 1. INTRODUCTION

6

1.3 Current Sensor Data Management Practice

1.3.1 Internet of Things (IoT) platform

With the increasing adoption of sensor technology, many IoT platforms have been

developed. Cloud computing service vendors offer generic IoT platforms, including AWS

IoT by Amazon AWS [25], IoT Hub by Microsoft Azure [26], Cloud IoT Core by Google

Cloud [27], Watson IoT Platform by IBM cloud [28], and AT&T IoT Platform by AT&T

[29]. These generic IoT platforms support device connectivity via standard communication

protocols with high scalability by leveraging cloud computing technology. These platforms

also provide many tools, such as device management tools, rule engines, event processing

modules, security tools and software development kits (SDKs). While these generic IoT

platforms provide basic services, they lack the supporting services for domain-specific

applications and data management tools. Instead, application services need to be developed

and added by customers or partner companies. There have been some domain-driven IoT

platforms, such as PTC ThingWorx [30] and AutoDesk Fusion Connect [31], particularly

for industrial IoT (IIoT). While IIoT platforms offer some industrial applications and

sophisticated functions, such as augmented reality (AR)-enabled user interfaces, the IIoT

platforms are not designed to manage engineering information models and do not support

data and software interoperability.

Research efforts have been spent on the development of IoT platforms for specific

application areas, such as healthcare [32, 33], smart cities [34, 35, 36] and agriculture [37].

A domain-specific platform handles not only sensor data, but also other relevant

information. For example, Lea and Blackstock [35] describe an IoT platform for smart city

applications to manage a wide array of data, from real-time (e.g. traffic data) to static data

(e.g., asset lists). However, this work does not address data integration for linking

heterogeneous sensor data and domain information. To allow software agents to easily

discover relevant information and to perform analysis, domain information and sensor data

need to be properly linked and integrated. Jayaraman et al. [37] describe a semantic-driven

CHAPTER 1. INTRODUCTION

7

IoT platform to link sensor data and domain concepts based on ontology definitions. An

IoT platform proposed in [34] enables interoperability among heterogeneous information

models, such as building information modeling (BIM) and system information models

(SIM), based on sematic web technology. However, previous and current studies do not

address the interoperability problem which is critical in engineering projects involving

various software tools, each of which may have its own interface and data model.

Engineering information needs to be exposed in platform-neutral and standardized data

formats that can be easily parsed and used by different software agents, ranging from

engineering simulation tools to data-driven analysis modules. Therefore, a data

management platform that can deal with both data integration and data interoperability

problems needs to be developed to facilitate data management and utilization in civil

infrastructure monitoring.

1.3.2 Civil infrastructure monitoring systems

Until now, research efforts on civil infrastructure monitoring have been mostly focused on

the development of new sensor technologies and data analysis techniques. Very little

efforts have been devoted to the fundamental issues associated with data management.

Early civil infrastructure monitoring systems typically collect and store measurement data

in files on local computers [38, 39, 40]. File-based systems, however, do not directly

support queries, which often makes data access a tedious and manual task. For systematic

data management, relational database management systems (RDBMSs) have been used as

centralized data storage [41, 42, 43, 44]. RDBMSs support queries with structured query

language (SQL) to facilitate data access. However, research studies have suggested that

current RDBMSs, which were architected decades ago when the characteristics of

hardware and data processing requirements were very different, are often not as effective

in meeting the data needs of today’s applications which often involve text, time-series data,

image files and video data [45, 8]. Some fundamental limitations of RDBMSs [46, 47, 48]

which can impact civil infrastructure monitoring applications include:

CHAPTER 1. INTRODUCTION

8

• Reading and writing speed for processing a large amount of time-series

monitoring data;

• Scalability for handling voluminous and ever-increasing amount of monitoring

data;

• Schema flexibility for managing engineering data that include semi- and un-

structured information (e.g., information models).

Furthermore, civil infrastructure monitoring systems are typically designed to keep data in

storage systems without considering how to effectively retrieve, utilize and integrate data.

Ineffective data management often results in poor utilization of data. Some example

problems from practical civil infrastructure monitoring systems include the following:

• Limited data store that would lead to removing old data before utilizing it and

require averaging time-series data to reduce data volume, resulting in the loss of

potentially important information;

• Limited query capability due to storing data un-systematically (which poses

restrictions on data retrieval and query) and managing data using a data

management tool that may not offer a good interface (requiring significant labor

to manually download and map the data);

• Limited data utilization due to considering sensor data only as subsidiary

information that does not directly affect decision making process.

In summary, current civil infrastructure monitoring systems are not designed to handle

today’s ever-increasing heterogeneous monitoring data, resulting in data solutions not

meeting the data management requirements demanded by the application. This thesis

describes a cyberinfrastructure platform that satisfies the data management requirements

of infrastructure applications by leveraging state-of-the-art information and

communication technologies.

CHAPTER 1. INTRODUCTION

9

1.4 Information and Communication Technologies
for Effective Data Management

1.4.1 Information modeling

Much research has been conducted in developing data exchanges and interoperability

standards in many industry domains to avoid error-prone and time-consuming manual data

conversion, as well as to facilitate the automated exchange of information and machine-to-

machine interaction [49, 50]. In the architecture, engineering and construction (AEC)

industry, for example, BIM has been widely adopted as a means to support an integrated

project delivery process and data exchange throughout the project lifecycle of buildings

[14]. One of the de facto BIM standard data models is the Industry Foundation Classes

(IFC) [51]. The IFC standard specifies a platform-neutral file format using EXPRESS

modeling language to enable digital data exchange among building design and analysis

systems. The IFC-EXPRESS schema has been translated into an XML (eXtensible Markup

Language) format, a commonly used representation of industry standards [51]. Given the

success of BIM, bridge information modeling (BrIM) has been developed for bridges [22,

52, 53, 54, 55]. These efforts have so far been focused mostly on the 3-dimensional

geometric representation of engineering systems. As such, current information modeling

practice often lacks the data entities needed for representing the information pertinent to

sensor networks and the data links to connect information models with sensor data stores.

Therefore, information modeling schemas have to be extended to include data entities that

capture information about sensor networks and engineering models.

1.4.2 Cloud computing

Advances in cyber physical systems and cloud computing services share many significant

components that can be deployed for the management of infrastructure monitoring data.

Cloud computing, as defined by the National Institute of Standards and Technology

CHAPTER 1. INTRODUCTION

10

(NIST), is a “model for enabling convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction [56].” Cloud computing can reduce the cost and lessen the

burdens on the deployment, operation, maintenance and management of computational

resources. Furthermore, cloud computing can provide a highly scalable and accessible

computing environment that is cost-effective [7, 57, 58, 59]. Many state-of-the-art data

management platforms take advantage of cloud computing to allow communication and

data sharing among the physical systems, sensors, software applications and users. Using

cloud computing, a civil infrastructure monitoring system can be easily scaled based on

demand with computing and storage resources optimized.

1.4.3 NoSQL database

For data management on cloud computing and distributed computing environments, many

alternative database management systems (DBMS) have been developed. Driven by the

need for storing, managing and retrieving large online data records with heterogeneous

formats, research has been devoted to develop non-relational database and non-traditional

file management systems. Examples of open source database systems that have been

deployed by cloud service providers include Apache Cassandra, Apache H-Base and

MongoDB [9]. These non-traditional database systems are noted as NoSQL (Not only

SQL) database systems which are designed to handle semi-structured and unstructured

data. Recent studies have shown that NoSQL database systems have significant advantages

over RDBMSs in terms of flexibility and scalability [46, 47, 48]. For example, Le et al.

[60] proposed an Internet of Things (IoT) platform and concluded that NoSQL database

systems, such as Apache Cassandra, consistently have better performance than RDBMSs

for managing sensor data because of the flexible data structure suitable to query time series

data. Furthermore, NoSQL database systems have been shown to have better scalability in

handling massive IoT data and have better query performance for sensor network data [61,

62].

CHAPTER 1. INTRODUCTION

11

1.4.4 Web service

To take advantage of cloud computing, the software framework should be designed with

consideration of the useful features provided by cloud services (e.g., dynamic provisioning,

distributed computing and on-demand commodity hardware), as well as domain-specific

application requirements (e.g., information model, application, interface, etc.). In contrast

to traditional proprietary servers, the real value of cloud computing relies upon

interoperability among systems and engineering services [63]. For service interoperability,

engineering services on cloud platforms need to be exposed via standard interfaces. There

are two main web service paradigms: namely, Service-Oriented Architecture (SOA) and

Resource-Oriented Architecture (ROA). SOA is built upon standard web service protocols,

such as Simple Object Access Protocol (SOAP), Web Service Description Language

(WSDL) and Business Process Execution Language (BPEL), etc. [64]. While SOA’s

reliability and message-level security benefit enterprise-level applications, the complexity

of the protocols makes them less attractive for basic, ad hoc integration of services [65].

ROA, on the other hand, is based on a simple set of Representational State Transfer (REST)

protocols [66]. REST has become a preferable approach because of its simple and

lightweight architecture, easy accessibility and scalability [67, 68, 69]. Through web

services, a data management platform can enable easy access to data, information

exchanges and integration of software services for civil infrastructure monitoring

applications.

1.5 Research Objectives

As the use of sensors increases, data management issues have already started to present

challenges to civil infrastructure monitoring practice. While there have been various

information technologies developed to meet today’s data management requirements,

current research efforts rarely pay attention to using such technologies to address data

issues in civil infrastructure monitoring. The goal of this thesis is thus to propose a

CHAPTER 1. INTRODUCTION

12

cyberinfrastructure platform to deal with the data issues in civil infrastructure monitoring.

The cyberinfrastructure platform is designed according to the data management

requirements of civil infrastructure monitoring applications, which are: (1) scalability, (2)

data integration and interoperability, (3) standardized interface, and (4) flexibility. The

platform brings together state-of-the-art information and communication technologies for

effective data management. Specifically, an information modeling framework is developed

to represent information involved in civil infrastructure monitoring in an integrated

manner, as well as to facilitate data interoperability based on open standards. A prototype

NoSQL database system is designed and deployed for the scalable management of massive

sensor data and flexible management of semi- and un-structured engineering information

with fast query performance on a distributed computing environment. The

cyberinfrastructure platform is built upon a cloud computing platform for scalability,

reliability and minimal maintenance effort of computing resources. Leveraging

standardized web-based interfaces, the cyberinfrastructure platform offers easy-to-use data

management services that client systems can invoke via standard communication protocols

to store, retrieve and share different types of data involved in civil infrastructure

monitoring.

By orchestrating various data management technologies, the proposed cyberinfrastructure

platform will enable scalable management of voluminous and heterogeneous data involved

in civil infrastructure monitoring. Unlike current sensor data management systems, the

cyberinfrastructure platform allows different data sources (e.g., sensors, cameras and

modeling tools) and analysis modules (e.g., structural analysis tools and machine learning

modules) to easily connect to the platform to store and retrieve various information

involved in various monitoring applications. The demonstration results presented in this

work show that the cyberinfrastructure platform can effectively and scalably manage

sensor data and domain-specific information and facilitate data sharing, integration and

utilization.

CHAPTER 1. INTRODUCTION

13

1.6 Thesis Outline

The thesis presents an information modeling schema for civil infrastructure monitoring

applications. The cyberinfrastructure platform consisting of a cloud computing platform,

NoSQL database and web server is then presented. Finally, the implementation of a data

analysis pipeline leveraging the cyberinfrastructure platform is then described. The

developed cyberinfrastructure platform is demonstrated with the different types of data

obtained from the I-275 corridor monitoring system. The thesis is organized into the six

chapters as follows:

• Chapter 2 presents an information modeling framework to facilitate data

integration and interoperability for supporting civil infrastructure monitoring

applications [70]. The framework augments and extends the prior BrIM (Bridge

Information Modeling) standards to further capture the information relevant to

engineering analysis and sensor network. For the representation of engineering

analysis information, the framework draws on the data entities of one of the

widely used commercial bridge modeling and analysis tools. For the

representation of sensor network information, the framework adopts data entities

defined by an open standard for describing sensor systems.

• Chapter 3 describes a scalable and flexible data management framework for civil

infrastructure monitoring [71, 72]. The data management framework chooses

NoSQL database systems suitable to meet the data management requirements.

Specifically, Apache Cassandra database is employed for scalable data

management, whereas MongoDB is employed for efficient data retrieval. A

database schema is defined based on the BrIM schema to enable data mapping

between the BrIM schema and the database schema.

• Chapter 4 presents a cloud-based cyberinfrastructure platform for civil

infrastructure monitoring to offer scalable and interoperable data management

services [73, 74, 75, 76]. Using the services of this cloud platform, different client

CHAPTER 1. INTRODUCTION

14

systems (e.g., data source and applications) can easily connect to store and

retrieve data via standard communication protocols. Furthermore, the platform-

neutral data management services can facilitate service composition and data

utilization. This chapter then discusses the adoption of cloud computing platform

for the development of a scalable and easy-to-manage cyberinfrastructure

platform. Data privacy and security concerns under cloud computing

environments are also addressed.

• Chapter 5 presents a sensor data reconstruction method using the

cyberinfrastructure platform [77]. Specifically, this study develops a data-driven

sensor data reconstruction method based on bidirectional recurrent neural

networks, which can improve reconstruction accuracy by considering

spatiotemporal correlation among the sensor data. An automated data analysis

pipeline is built upon the cyberinfrastructure platform to enable efficient data

reconstruction by training the neural network on a high-performing computer and

sharing the trained model to local computing platforms through the

cyberinfrastructure platform.

• Chapter 6 summarizes the development of the cyberinfrastructure platform for

civil infrastructure monitoring for facilitating scalability, flexibility and

interoperability. This chapter provides the contributions of this thesis and then

suggests potential future research directions to continue advancing the field of

informatics in infrastructure.

Chapter 2

Information Modeling Framework for
Bridge Monitoring

2.1 Introduction

Bridge management involves copious and diverse information, ranging from various semi-

structured or unstructured data (e.g., geometric model, engineering model, inspection

report, sensor metadata, etc.) to a large amount of heterogeneous sensor data (e.g.,

acceleration, displacement, photo, video image, etc.). Current practice of bridge

management typically employs isolated systems to manage and process different types of

information wherein information managed in one system is neither shared among other

systems nor integrated with information managed by other systems. However, as bridge

monitoring and management technologies advance, the demand for efficient information

sharing and data exchange will grow. Sharing and integration of such information would

CHAPTER 2. INFORMATION MODELING FRAMEWORK

16

enable integrated data retrieval and utilization, improve bridge management services and,

thus, enhance bridge operation, maintenance and public safety.

Given the success of building information modeling (BIM), research efforts have been

initiated to develop frameworks and standards for bridge information modeling (BrIM)

[15]. The main goals of BrIM are twofold: enabling integrated bridge data repository and

developing electronic data exchange standards for bridge application [15]. For example,

there have been research efforts aimed towards developing an information modeling

framework for the integration of bridge management information and 3-dimensional bridge

models [52, 53]. To facilitate information interoperability in the bridge domain, an

extension of IFC, namely IFC-Bridge, has been proposed with emphasis on the spatial and

physical entities of bridge structures [54]. As another example of BrIM standards, the

OpenBrIM standards, which is supported by the US Federal Highway Administration

(FHWA), have been proposed as a “bridge industry consensus standard for engineering

data description, modeling, and interoperability for integrated structural design,

construction, and lifecycle management of bridges [22, 55].” Efforts to advance BrIM

standards so far have been focused on the 3-dimensional geometric representation of bridge

structures, while the standards lack the data entities needed for representing the information

pertinent to bridge monitoring applications.

This chapter presents a BrIM framework for bridge monitoring applications [70]. The

framework aims to facilitate the exchange and integration of information involved in bridge

management applications. The BrIM framework adopts and extends the data schema of the

OpenBrIM standards to support data interoperability between bridge monitoring and

management applications. New data entities are defined to capture information associated

with bridge engineering analyses, sensor descriptions and bridge monitoring systems. The

framework also provides a data link to the time-series sensor data so as to allow users to

locate the data via the information model.

This chapter is organized as follows. Section 2.2 presents the bridge information modeling

framework for bridge monitoring. Specifically, the BrIM schema of the OpenBrIM

CHAPTER 2. INFORMATION MODELING FRAMEWORK

17

standards is employed as a base model and enriched to include data entities for the

representation of finite element models and sensor information. Section 2.3 demonstrates

the bridge information modeling framework with the bridge information collected from the

Telegraph Road Bridge (TRB) located in Monroe, Michigan. This chapter is concluded

with a summary in Section 2.4.

2.2 Bridge Information Modeling Schema Definition

This section describes the design of a bridge information modeling schema for bridge

monitoring applications [70]. Engineering information modeling, such as BIM, typically

adopts an object-based approach that describes a target system (e.g., building) using objects

and their attributes [23]. Information modeling standards and tools specify a predefined set

of object families that are used to capture the data entities involved in the targeted domain.

For instance, the OpenBrIM standards include object families for describing the 3-

dimensional geometry of bridge structures [78]. The BrIM schema developed in this study

extends the data schema of the OpenBrIM standards with newly defined objects for

representing engineering analysis models and sensor information. New objects are

identified based on relevant standards and software tools to ensure that the BrIM schema

is capable of supporting typical applications in bridge engineering. Specifically, CSiBridge

(a structural modeling and analysis software tool) [79] and SensorML (an open standard

for describing sensors) [80] are examined for the definition of engineering analysis models

and sensor information, respectively.

2.2.1 Base model: OpenBrIM

The OpenBrIM standards describe a bridge structure as a collection of hierarchical objects

and their parameters [78]. Each object represents either a physical entity (e.g., beam,

CHAPTER 2. INFORMATION MODELING FRAMEWORK

18

column and deck) or a conceptual entity (e.g., project, group and unit system) of a bridge

structure, whereas each parameter either represents a property (e.g., length, width and

thickness) of an object or refers to another object. Figure 2.1(a) and (b) show the schema

definitions of a basic Object entity and a Parameter entity, respectively, in OpenBrIM

[81]. The data schema of the basic Object entity includes attributes, such as N (name), X,

Y and Z (coordinates), RX, RY and RZ (angles of rotation), and AX, AY and AZ (angles of

rotation about the origin of the 3-dimensional workspace). Similarly, the data schema of

basic Parameter entity includes attributes, such as V (value), T (type), D (description),

UC (name of unit system), UT (type of unit), Category (category of the parameter) and

Role (specifying whether a user can edit the parameter). The data schema of any other

data entities in OpenBrIM is defined by extending the basic Object and Parameter

entities.

(a) Definition of Object entity

(b) Definition of Parameter entity

Figure 2.1 Definition of a fundamental Object and Parameter entities [78]

<xs:complexType name="Object" abstract="true" mixed="false">
<xs:attribute name="N" type="xs:string" />
<xs:attribute name="X" type="xs:string" />
<xs:attribute name="Y" type="xs:string" />
<xs:attribute name="Z" type="xs:string" />
<xs:attribute name="RX" type="xs:string" />
<xs:attribute name="RY" type="xs:string" />
<xs:attribute name="RZ" type="xs:string" />
<xs:attribute name="AX" type="xs:string" />
<xs:attribute name="AY" type="xs:string" />
<xs:attribute name="AZ" type="xs:string" />
<!-- The rest is omitted-->

</xs:complexType>

<xs:complexType name="Parameter" abstract="true">
<xs:attribute name="V" type="xs:string" use="required" />
<xs:attribute name="T" type="xs:string" default="Expr" />
<xs:attribute name="D" type="xs:string" />
<xs:attribute name="UC" type="xs:string" />
<xs:attribute name="UT" type="xs:string" />
<xs:attribute name="Category" type="xs:string" />
<xs:attribute name="Role" type="xs:string" />

</xs:complexType>

CHAPTER 2. INFORMATION MODELING FRAMEWORK

19

To encode bridge information, OpenBrIM standards use ParamML [82], an XML-based

mark-up language for engineering applications. For example, Figure 2.1(a) shows the

OpenBrIM schema definition for the Shape object written in the XML schema definition

(XSD) format [81]. In the schema definition, xs refers to the XML schema namespace

[83]. The definitions of the elements from the XML schema namespace are as follows [84].

• complexType is an element that contains other elements and/or attributes.

• complexContent specifies extensions or restrictions on a complexType

element.

• extension extends an existing complexType element.

• sequence defines the child elements that can occur.

• element defines an XML element.

• alternative dynamically assigns the type of its parent element based on the

specified test condition. (available from XSD 1.1)

• attribute contains data related to its parent entity.

• assert specifies the condition used to validate XML data entity.

Given the definitions of the XML elements, the schema definition for a Shape object as

shown in Figure 2.2(a) specifies the following. The extension element indicates that

Shape is a subtype of the Object entity. The sequence element specifies the eligible

child objects and parameters using O and P tags, respectively. As shown in the alternative

element, the type of child objects is assigned based on the T (type) attribute of the objects.

Similarly, the type of child parameters is assigned based on the N (name) attribute of the

parameters. Furthermore, the data schema allows rules to be specified for the object. For

example, the use="required" option in the attribute element enforces that every

Shape object must include the T (type) attribute, which has value Shape. Another

example is the assert element that specifies the condition that the “Shape object must

contain at least 3 Point objects.”

CHAPTER 2. INFORMATION MODELING FRAMEWORK

20

The XML schema written in XSD can be displayed as an XSD diagram using visualization

tools, such as Liquid XML Studio [85] and XMLSpy [86]. For example, the schema

structure of the Shape object as shown in Figure 2.2(a) can be displayed by an XSD

(a) Data schema in XSD format

(b) XSD diagram

Figure 2.2 Data schema of the Shape object [78]

CHAPTER 2. INFORMATION MODELING FRAMEWORK

21

diagram as shown in Figure 2.2(b). It should be noted that the names of the data

components are abbreviated in the diagram. The numbers written at the left side of the

XML components represent the possible numbers of the components. For example, in

Figure 2.2(b), the numbers 0..* at the left side of the O element indicate that the parent

component (i.e., Shape object) can have zero to any number of child O elements (i.e.,

child objects). In the following sections, XML data schema will be described using the

XSD diagrams for readability purpose.

The current OpenBrIM standards include schema definitions for a collection of objects and

parameters with particular emphasis on the geometry information of a bridge, but with few

entities related to the engineering model and material for structural analysis and structural

monitoring.

2.2.2 Finite element modeling

The OpenBrIM standards currently include only a few basic objects for finite element (FE)

modeling [81]. The objects defined in the OpenBrIM standards are insufficient for FE

modeling because structural analysis software tools often involve much more complex data

entities. Using CSiBridge, one of the widely used commercial bridge modeling and

analysis tools [79], as an example, an FE model of an overpass bridge would consist of

about fifty tables, where each table contains several attributes, many of which are not

defined in the current OpenBrIM standards. For the representation of FE model, we extend

the OpenBrIM standards’ model by adding the data entities required by CSiBridge software

to OpenBrIM standards’ data schema definition.

While information models related to finite element analysis exist (such as STEP Part 104

[87] and Industry Foundation Classes [51]), the existing models usually lack the data

entities to represent complex load and analysis conditions (such as time-variant vehicle

loads) required in bridge engineering applications. This study focuses specifically on FE

model for bridge engineering applications. In this work, the data entities for FE modeling

are divided mainly into two categories: data entities for representing bridge structure and

CHAPTER 2. INFORMATION MODELING FRAMEWORK

22

data entities for representing load and analysis conditions. The OpenBrIM standards

include some of the objects that can be extended to represent the bridge structure

information; however, the OpenBrIM standards include very limited objects for

representing load and analysis conditions. Therefore, we focus on enhancing the data

entities of existing objects with new parameters and child objects for data entities that

represent a bridge structure, as well as on defining new objects for representing load and

analysis conditions. It should be noted that the data schema is extended solely based on the

CSiBridge so far and, thus, additional data entity definitions will be required to enable data

mapping between other FE software packages.

2.2.2.1 Data entities for representing finite element model

The OpenBrIM standards include Node, FELine, FESurface and Material objects

that can be used for the representation of the geometry and material properties of bridge

structures. However, the current OpenBrIM schema definitions of these objects are not

sufficient for describing an FE model for a typical software tool. For instance, a Node

object, which is the most fundamental data entity in FE modeling for specifying the nodal

coordinates and restraints, currently defined in the OpenBrIM standards, do not have the

parameters necessary for defining a reference coordinate system to conveniently create

models using multiple coordinate systems. To augment the Node object in OpenBrIM, we

create a new object FECoordniateSystem that includes information about the

coordinate type and the origin of the reference system. We add to the data schema of Node

object a reference to FECoordniateSystem as shown in the XSD diagram in Figure

2.3.

An FELine object represents an element that consists of two nodes and section

information in an FE model. The current definition of FELine object in OpenBrIM

includes data entities for describing the two Nodes and Section, but the object definition

does not include data entities to represent information about discretization and member-

end-release. In addition, the Section object, while it is suitable to represent a user-

CHAPTER 2. INFORMATION MODELING FRAMEWORK

23

defined section shape composed of many section points, it does not allow for representing

standard section shapes that are described by other parameter types. We extend the

description of FELine by creating new objects, namely FELineMesh,

FELineRelease and FELineSection to represent mesh information, member-end

release information and standard section shapes, respectively. The data schema diagram of

the FELine object that includes parameters referring to the new objects is shown in Figure

2.4.

Similarly, the current definition of FESurface object in OpenBrIM represents an element

consisting of vertices, thickness and material types, such as shell and wall, but the schema

Figure 2.3 Entity: Node

Figure 2.4 Entity: FELine

CHAPTER 2. INFORMATION MODELING FRAMEWORK

24

does not include discretization information, section information (e.g., surface type and

material angle) and surface-constraint information (e.g., edge constraint). Furthermore, the

current FESurface object can only have up to four vertices, while elements such as shell

element can compose of more than four vertices. To extend the description of the

FESurface object, we create new objects, namely FESurfaceMesh,

FESurfaceSection and FESurfaceConstraint, to represent, respectively, the

discretization information, section information, and surface constraint information. We

also increase the number of vertices (i.e., Nodes) that an FESurface object can contain

up to thirty vertices. (It should be noted that the number can easily be modified.

Furthermore, as discussed later, a NoSQL database allows variable length records to easily

handle any number of vertices in an element.) The data schema diagram of the enhanced

FESurface object is shown in Figure 2.5.

Figure 2.5 Entity: FESurface

CHAPTER 2. INFORMATION MODELING FRAMEWORK

25

A Material object defined in OpenBrIM is used to represent material property data for

concrete and steel elements. The Material object includes basic material properties, such

as modulus of elasticity, Poisson ratio, density, steel yield stress and concrete 28-day

compressive strength. To further enhance the definition of the Material object for structural

analysis purposes, new parameters, such as Symmetricity,

TemperatureDependency, ShearModulus and various damping properties, are

added. The enhanced the Material object can describe uniaxial and isotropic materials

in linear analyses. Currently, the definition of Material object does not include material

properties for describing orthotropic materials and for performing nonlinear structural

analysis. Figure 2.6 shows the data schema diagram of the enhanced Material object.

Figure 2.6 Entity: Material

CHAPTER 2. INFORMATION MODELING FRAMEWORK

26

In addition to the entities described above, new data entities and their parameters are

defined, as summarized in Table 2.1, to complete the schema definitions of the Node,

FELine, FESurface and Material objects in OpenBrIM.

2.2.2.2 Data entities for representing load and analysis conditions

OpenBrIM standards include AnalysisCase, NodeLoad and Combination objects

for the representation of load conditions and analysis conditions [81]. While these objects

are able to describe simple load conditions, they do not have sufficient detailed information

to describe complex load conditions (e.g., time-variant loading) and detailed analysis

conditions (e.g., convergence tolerance). CSiBridge, for example, describes load

conditions and analysis conditions using “load patterns” and “load cases”, respectively [79].

The load patterns are the spatial distribution and magnitude of forces and other effects

acting on a structure, while the load cases are the analysis options that include applied load

Table 2.1 Objects added to the OpenBrIM model for representing structural elements

Object Parameters
FECoordinateSystem FECoordinateType, OriginX, OriginY,

OriginZ, OriginRX, OriginRY, OriginRZ
FELineMesh AutoMesh, MeshAtJoints, MeshAtFrames,

NumberOfSegments, MaxMeshLength,
MaxMeshDegree

FELineSection Material, Shape, Width, Height,
WebThickness, FlangeThickness

FELineRelease NodeV1, Node1V2, Node1V3, Node1M1,
Node1M2, Node1M3, NodeV1, Node2V2,
Node2V3, Node2M1, Node2M2, Node2M3

FESurfaceMesh Meshtype, MeshGroup, NumberOfObject1,
NumberOfObject2,
MaxSize1, MaxSize2,
MeshFromSelectedLine,
MeshFromSelectedPoint, ConstraintEdge,
ConstraintFace

FESurfaceSection Material, MaterialAngle, SurfaceType,
Thickness, BendThickness

FESurfaceConstraint EdgeConstraint

CHAPTER 2. INFORMATION MODELING FRAMEWORK

27

pattern, type of response, and type of analysis. The load patterns and load cases are further

divided into many different types of loads (e.g., dead load, wind load and moving load)

and different cases of analyses (e.g., static analysis, modal analysis, multi-step static

analysis and time history analysis). Instead of extending the existing objects, we define a

set of new objects based on the data entities defined in CSiBridge software to describe

practical load and analysis conditions.

We create a new object FELoadPattern to represent data corresponding to load patterns.

The data schema of the FELoadPattern object is shown in Figure 2.7. The new object

FELoadPattern has parameters representing the types of a load (LoadType) and the

self-weight factor (SelfWeightFactor). The FELoadPattern may have child

objects that contain the details of specific load patterns. For example, a new child object

FEMultiStep is created to contain information about the vehicle crossing the bridge, its

traveling lane and speed. Furthermore, a new object FELane is created to describe the

vehicle lane information, including referencing objects, stations (i.e., longitudinal distance

from the referencing objects) and width of the lane. We also create FEVehicle object

and its child object FEVehicleLoad to capture vehicle axle load data. FEVehicle

object includes parameters for the name of the vehicle, a scale factor and the number of

axle loads, and FEVehicleLoad object includes parameters such as the type of load (e.g.,

uniform load, axle load), width of an axle, and distance between axles.

Figure 2.7 New entity: FELoadPattern

CHAPTER 2. INFORMATION MODELING FRAMEWORK

28

For the representation of analysis conditions, we create a new object FEAnalysisCase.

Figure 2.8 shows the schema diagram of FEAnalysisCase. The FEAnalysisCase

object contains descriptions for different types of analysis. The parameters are LoadType

(e.g., dead load and live load), AnalysisCaseType (e.g., static, modal, multistep-static

and direct integration time history analysis) and InitialCondition. Furthermore,

FEAnalysisCase consists of child objects for specific analysis cases. For instance,

FEStatic contains data entities for representing a static analysis case and the FEModal

contains data entities for representing a modal analysis case. The object

FEMultiStepStatic includes data entities for representing the applied vehicle and the

object FEDirectIntegrationHistory includes data entities about the time-step

information. Table 2.2 summarizes the new data entities created under the

FELoadPattern and FEAnalysisCase objects to represent load and analysis

conditions.

2.2.3 Sensor description

There have been several standards developed to describe sensor information and

measurement data [88, 89]. The Sensor Web Enablement (SWE) standards by the Open

Figure 2.8 New entity: FEAnalysisCase

CHAPTER 2. INFORMATION MODELING FRAMEWORK

29

Table 2.2 Objects added to the base OpenBrIM model for representing load and analysis
conditions

Object Parameters Child object
FEMultiStep LoadDuration,

LoadDiscretization,
Vehicle, Lane, Station,
StartTime, Direction,
Speed

-

FEVehicle VehicleName, NumLoad FEVehicleLoad
FEVehicleLoad LoadType, UniformLoad,

UniformType, AxleLoad,
AxleType, AxleWidth,
MinDistance, MaxDistance

-

FEVehicleClass VehicleName, ScaleFactor -
FELane LaneFrom, ReferenceLayout,

ReferenceFrame, Station,
Width, Offset, Radius,
DiscretizationAlongLane,
DiscretizationAcrossLane,
LeftEdgeType,
RightEdgeType

-

FEStatic LoadType, LoadName,
ScaleFactor

-

FEModal ModeType, MaxNumModes,
MinNumModes,
FrequencyShift,
CutoffFrequency,
ConvergenceTolerance

-

FEMultiStepStatic LoadType, LoadName,
ScaleFactor

-

FEDirect-
Integration-
History

NumStep, LoadType,
LoadName, Function,
ScaleFactor,
TimeFactor, ArrivalTime,
IntegrationMethod,
Alpha/Beta/Gamma (Integration
parameters)

-

CHAPTER 2. INFORMATION MODELING FRAMEWORK

30

Geospatial Consortium (OGC) are among the most common suites adopted by the sensor

web community. The SWE includes suites of standards such as Sensor Model Language

(SensorML), Observation & Measurement (O&M) and Sensor Observation Service (SOS).

Among these standards, SensorML standards provide an XML-based data format for the

description of sensor metadata as well as processes and processing components associated

with the sensors [80]. In this work, we draw on the data entities defined by the SensorML

standards to enable the BrIM schema to include the sensor information. Specifically, we

import SensorML’s schema and namespace to the BrIM schema by adding XSD codes as

shown in Figure 2.9, where the xmlns:sml prefix in the figure refers to the namespace

of SensorML standards.

For the description of sensors, we mainly use two SensorML elements: namely

DescribedObjectType and PositionUnionPropertyType. The

DescribedObjectType contains a rich set of data entities to encode common sensor

information as follows [80]:

• keywords are short strings that can be understood by the general users or certain

community of users.

• identification includes the terms (e.g., long name, short name, serial

number and manufacturer) that are used to identify sensors.

Figure 2.9 Importing SensorML’s schema

CHAPTER 2. INFORMATION MODELING FRAMEWORK

31

• classification includes terms (e.g., sensor type and intended application)

that can be used to classify sensors.

• validTime denotes the time period during which the sensor information is

valid.

• securityConstraints describe security tags for the sensor description

document.

• legalConstraints define the legal terms (e.g., privacy acts, intellectual

property rights and copyrights) for the sensor information.

• characteristics represent the physical properties (e.g., dimension and

weight) and the electrical requirements (e.g., voltage and current) of the sensor.

• capabilities are the properties (e.g., sensing range, sensitivity and threshold)

that describe the sensor measurement outputs.

• contacts refer to the information about the person or group (e.g.,

manufacturers, experts and equipment owner) with knowledge of the sensor.

• documentation refers to the additional information (e.g., manual, datasheets

and images) from external sources

• history records the list of events (e.g., calibration event and maintenance

event) related to the sensor.

Additionally, the PositionUnionPropertyType includes data entities to describe

the sensor location in a number of formats (e.g., textual form, coordinate and vector), so

that users can choose the most appropriate way to describe the sensor location.

Based on the DescribedObjectType and PositionUnionPropertyType

defined in SensorML, we define SensorMetadata and SensorLocation objects to

describe sensor metadata and sensor location, respectively. While we define the

SensorMetadata object by simply referring to the DescribedObjectType, we

add optional data entities to the PositionUnionPropertyType to enable

SensorLocation object to describe the sensor location in a structural monitoring

CHAPTER 2. INFORMATION MODELING FRAMEWORK

32

system. One of the added entities is the TargetObject, whose value type is a string to

refer to the ID of a geometric element that the sensor is attached to. Another entity added

is the FENode, whose value type is also a string, to include the ID of the finite element

model’s node in the case that the sensor position coincides with the node.

To describe a complete sensor that includes both the metadata and location information,

we create an object called Sensor. A Sensor object includes parameters referring to the

SensorMetadata and SensorLocation objects. The data schema diagram of the

Sensor object is shown in Figure 2.10.

As shown in Figure 2.11, the sensors, such as SingleAxisAccelerometer,

TriAxisAccelerometer, StrainGauge, Thermistor and VideoCamera that

are commonly employed in bridge monitoring, are defined as subtypes for the Sensor

object. Furthermore, each of the subtype objects contains data entities describing the input,

output, parameters and data link for the particular sensors. Table 2.3 summarizes the new

data entities for the different sensor types. The data entities (as denoted as grandchild

elements in Table 2.3) of the subtype objects are designed to reflect the features of each

object. For example, the SingleAxisAccelerometer object has a single input

element and a single output element, while the TriAxisAccelerometer object has

three inputs and three outputs to represent 3-dimensional acceleration measurements. Last

but not least, the DataLink entity is defined to allow linking to the data storages of the

sensor measurements.

Figure 2.10 New entity: Sensor

CHAPTER 2. INFORMATION MODELING FRAMEWORK

33

Figure 2.11 New entities: Sensor subtype object

CHAPTER 2. INFORMATION MODELING FRAMEWORK

34

2.3 Case Example

This section demonstrates the use of the proposed BrIM schema for the representation of

bridge information. For demonstration, the bridge information of the Telegraph Road

Bridge (TRB) is employed. The TRB is a 68-meter long highway overpass located at

Monroe, Michigan, as shown in Figure 2.12. The TRB has been monitored with a structural

Table 2.3 Data entities included in the Sensor subtype objects.

Sensor subtype
object

Child
element

Grandchild elements

SingleAxis-
Accelerometer

Input RawAccelerationData
Output Acceleration
Parameter Gain, ConversionFactor,

SamplingRate
Datalink -

TriAxis-
Accelerometer

Input RawAccelerationDataX,
RawAccelerationDataY,
RawAccelerationDataZ

Output AccelerationX, AccelerationY,
AccelerationZ

Parameter Gain, ConversionFactor,
SamplingRate

Datalink -
StrainGauge Input RawStrainData

Output Strain
Parameter Gain, ConversionFactor,

SamplingRate
Datalink -

Thermistor Input RawTemperatureData
Output Temperature
Parameter C1/C2/C3 (J-Curve Coefficient),

SamplingRate
Datalink -

VideoCamera Output Image
Parameter FramePerSecond, Resolution
Datalink -

CHAPTER 2. INFORMATION MODELING FRAMEWORK

35

monitoring system installed and operated by a research team at University of Michigan

since 2011 [90, 91]. The information considered in this case example includes the geometry

and finite element model of the bridge, as well as sensor description. The geometry of the

bridge is currently described using 2-dimensional drawings. The finite element model of

the bridge is created using CSiBridge [79] to perform numerical simulation of structural

behavior of the bridge. The sensor information, including sensor ID, sampling rate,

physical characteristic, electrical characteristics, etc., is currently recorded in a Microsoft

Excel Spreadsheet.

The following sections describe the representation of geometric model, engineering model

and sensor information of the TRB using the proposed BrIM schema. While the TRB also

involves sensor data, it is not efficient to represent sensor data using the object-oriented

BrIM schema; instead, sensor data is stored in a database system (which will be discussed

in Chapter 3) and linked via uniform resource identifiers (which will be discussed in

Chapter 4).

2.3.1 Geometric model

The 3-dimensional geometry of the TRB can be represented using the OpenBrIM’s original

data entities. In this study, the geometric model of the TRB is created by writing a

ParamML script based on the 2-dimensional drawings of the bridge. The script has a

Figure 2.12 Telegraph Road Bridge (Monroe, Michigan)

CHAPTER 2. INFORMATION MODELING FRAMEWORK

36

hierarchical object-oriented structure which can describe the hierarchical relationship

among the bridge elements. For example, Figure 2.13 shows a high-level structure of the

ParamML script. In this figure, the geometric model (i.e., geometry object) is composed

of its child objects, such as Deck, Superstructure and Substructure. This figure

also shows that the Superstructure object consists of child objects SteelGirder

and bracing, where the SteelGirder object has child objects from girder1 to

girder7. In addition, the Substructure object has child objects RCPierCap and

RCColumn. The created geometric model can be visualized using applications that support

OpenBrIM standards. For example, Figure 2.14 shows the geometric model of TRB

visualized using OpenBrIM Viewer [81].

2.3.2 Finite element model

The BrIM data schema proposed in this study can be used for the representation of finite

element models. To validate the BrIM data schema, data mapping between the CSiBridge’s

data schema and the BrIM data schema is performed using the TRB’s finite element model.

Figure 2.15 shows the TRB’s finite element model which is created using the CSiBridge.

Figure 2.13 High-level structure of geometric model written in ParamML

CHAPTER 2. INFORMATION MODELING FRAMEWORK

37

For data mapping from CSiBridge’s data schema to the BrIM data schema, the finite

element model is first exported to an Excel Spreadsheet file using CSiBridge’s “export”

function to parse the data. The exported file consists of over 40 tables, each of which

contains a number of tuples in a tabular format. Here, each table is related to an object type

in the BrIM data schema, whereas each tuple contains data that can be represented with an

instance of the object type. Figure 2.16, for example, shows the data mapping from a tuple

to a BrIM object. In this example, the type of the object is FECoordinateSystem,

which is determined based on the name of the table “Coordinate Systems”. The name of

Figure 2.14 Geometric model visualized using OpenBrIM Viewer

Figure 2.15 TRB’s FE model created using CSiBridge (1st natural frequency: 2.324 Hz)

CHAPTER 2. INFORMATION MODELING FRAMEWORK

38

the object is GLOBAL which corresponds to the “Name” attribute of the tuple. In addition,

the figure shows that the parameters of the BrIM object correspond to the attribute of the

tuple.

For convenient data mapping from the CSiBridge’s data schema to the BrIM data schema,

an automation script (written in Python) is developed. The script performs data mapping

as described in the pseudo code shown in Figure 2.17. This script reads each tuple in each

table, determines the corresponding BrIM object type based on the table name, creates (or

Figure 2.16 Data mapping from Excel Spreadsheet to OpenBrIM object

Figure 2.17 Pseudo code for data mapping from CSiBridge’ data schema to BrIM data

schema

CSI Bridge Data Table: Coordinate Systems

BrIM data entity

Create an object tree
For each table:
Determine object type based on the name of the table
For each tuple:

Read the name of the tuple and assign it as a name of object
If there is an object with the same type and name in the object tree:
Load the object

Else:
create a new object with the object type in the object tree

For each attribute:
Determine the parameter name based on the attribute name
Determine the parameter value based on the value of the attribute
Attach the parameter to the object

CHAPTER 2. INFORMATION MODELING FRAMEWORK

39

load) BrIM object and records the attribute data to the parameter of the BrIM object. The

high-level structure of the resulting file is shown in Figure 2.18. In this file, the objects

with the same types are grouped together for the convenient data retrieval.

An FE model represented in BrIM data schema can potentially be used by FE analysis tools

by mapping BrIM data entities into the FE analysis tools’ data entities. As an example, this

work develops an automation script (also written in Python) for data mapping from BrIM

to CSiBridge. Figure 2.19 shows the pseudo code of the automation script. This script reads

each of the objects from the data represented in BrIM data schema and select related tables

based on the object type. For each of selected tables, the script determines the parameters

relevant to the table and then creates a new tuple containing the name of the object and the

selected parameters’ data. The created Excel Spreadsheet can be imported by CSiBridge

and then be used to perform structural analysis. For example, Figure 2.20 shows the result

of the modal analysis using the re-generated finite element model. The result shows that

the first natural frequency computed using the re-generated model match with the first

natural frequency computed using the original finite element model (see Figure 2.15),

Figure 2.18 High-level structure of the finite element model represented in BrIM data

schema

CHAPTER 2. INFORMATION MODELING FRAMEWORK

40

which indicates that the data mapping process is performed without missing data or

unintended modification of data.

2.3.3 Sensor description

The proposed BrIM data schema includes object definitions for the representation of

sensors. To validate the sensor data schema, the sensor description for the structural

monitoring system of the TRB is represented using the BrIM schema. Sensor objects are

created based on the sensor information which is recorded in an Excel Spreadsheet file. For

example, Figure 2.21 shows a SingleAxisAccelerometer object written in

ParamML. This object includes information, such as sensor ID (u131ch0), output type

(Acceleration) and parameters (Gain, ConversionFactor, Sampling rate).

Figure 2.19 Pseudo code for data mapping from BrIM data schema to CSiBridge’ data

schema

Figure 2.20 Modal analysis with the re-generated finite element model (1st natural

frequency: 2.324 Hz)

Create a spreadsheet file
For each object:
Find related tables based on the object type
For each table:
Select the parameters relevant to the table
Write a tuple containing the object name and the selected parameters’ data

CHAPTER 2. INFORMATION MODELING FRAMEWORK

41

In addition, the object includes SensorMetadata object, as well as

SensorLocation object.

The BrIM data schema can describe the relation between sensor objects and other objects

(e.g., geometric element and finite element nodes). For example, a sensor object can be

Figure 2.21 Sensor description represented using BrIM data schema and SensorML data

schema

<O N="u131ch0" T="SingleAxisAccelerometer">
<P N="SensorMetadata" V="Metadata" />
<P N="SensorLocation" V="Location" />
<Output>

<Acceleration>
<swe:label>Acceleration</swe:label>
<swe:uom code="mg" />

</Acceleration>
</Output>

<Parameter>
<Gain>

<swe:uom code="V/V" />
<swe:value>1</swe:value>

</Gain>
<ConversionFactor>

<swe:uom code="None" />
<swe:value>0.015258789</swe:value>

</ConversionFactor>
<SamplingRate>

<swe:uom code=”Hz" />
<swe:value>200</swe:value>

</SamplingRate>
</Parameter>

<Datalink>http://uri_to_sensordata</Datalink>
</O>

<O N="Metadata" T="SensorMetadata">
<Metadata gml:id=”acc">

<sml:identification>
<sml:IdentifierList>

<sml:identifier>
<sml:Term>

<sml:label>Model Number</sml:label>
<sml:value>CXL02LF1</sml:value>

</sml:Term>
</sml:identifier>

</sml:IdentifierList>
</sml:identification>

</Metadata>
</O>

<O N="Location" T="SensorLocation">
<Location>

<TargetObject>Girder1</TargetObject>
<FENode>718</FENode>

</Location>
</O>

<gml:identifier codeSpace="UID">u131ch0
</gml:identifier>
<sml:outputs>

<sml:OutputList>
<sml:output name="Acceleration">

<swe:DataRecord>
<swe:field>

 <swe:Quantity>
<swe:label>Uni-Acceleration</swe:label>

 <swe:uom code="mg" />
 </swe:Quantity>
 </swe:field>

</swe:DataRecord>
 </sml:output>

</sml:OutputList>
</sml:outputs>

<sml:parameters>
<sml:ParameterList>

<sml:parameter>
<swe:DataRecord>

 <swe:field>
 <swe:Quantity>
 <swe:label>Gain</swe:label>

<swe:value>1</swe:value>
 </swe:Quantity>
 </swe:field>

...
 <swe:label>ConversionFactor</swe:label>

<swe:value>0.015258789</swe:value>
...
<swe:label>SamplingRate</swe:label>
<swe:value>200</swe:value>
<swe:uom code=”Hz" />

...
</swe:DataRecord>

</sml:parameter>
</sml:ParameterList>

</sml:parameters>

<sml:identification>
<sml:IdentifierList>

<sml:identifier>
 <sml:Term>

<sml:label>Model Number</sml:label>
<sml:value>CXL02LF1</sml:value>

 </sml:Term>
</sml:identifier>

</sml:IdentifierList>
</sml:identification>

BrIM SensorML

CHAPTER 2. INFORMATION MODELING FRAMEWORK

42

assigned as a child object of a geometric object, which indicates that the sensor object is

instrumented on that geometric object. This relation can also be described using the

TargetObject data in the SensorLocation object of the sensor object. Furthermore,

the SensorLocation object can include the ID of an FENode object to indicate that

the sensor’s location corresponds to the FENode in the finite element model.

Since the BrIM data schema is defined based on SensorML, the sensor description in BrIM

data schema can be mapped to SensorML data schema. Figure 2.21 shows that the

SingleAxisAccelerometer object represented in BrIM data schema can be mapped

to a SensorML instance. Therefore, the sensor description represented in the BrIM data

schema can be parsed, mapped, read and utilized by applications that support SensorML

standard.

2.4 Summary

This chapter presents an information modeling framework to facilitate data interoperability

and integration for bridge monitoring applications. Bridge monitoring involves a wide

variety of information collected from different data sources, including geometric modeling

and engineering analysis tools, bridge management systems (BMS) and structural health

monitoring (SHM) systems. While the different types of information are related to each

other, current practice of bridge management typically handles them using isolated systems,

followed by inefficient and error-prone manual data conversion. Using the OpenBrIM data

schema [81] as the base model, the proposed BrIM data schema is designed to capture the

engineering model and sensor description by examining relevant software tools and data

modeling standards. Specifically, data entities for the representation of finite element

models are defined based on the data entities of CSiBridge [79] a structural analysis

software tool. In addition, data entities for sensor description are defined based on the data

entities of SensorML [80], an open standard for sensor description.

CHAPTER 2. INFORMATION MODELING FRAMEWORK

43

The proposed BrIM data schema is demonstrated using bridge information, including

geometry, finite element model and sensor information, of the Telegraph Road Bridge

(Monroe, MI). The 3-dimensional geometric model of the TRB is created using the

OpenBrIM’s original object definitions. Data mapping between the CSiBridge native data

schema and the proposed BrIM data schema is demonstrated by developing automated

mapping scripts. The demonstration also describes the representation of sensors using the

proposed BrIM data schema. The results show that the proposed BrIM data schema can

effectively represent various types of information involved in bridge monitoring and their

relationship.

As a research prototype, the BrIM data schema considers a limited number of standards

and applications. For practical use of the BrIM, its data schema needs to be extended to

support different standards and applications. Furthermore, the proposed BrIM schema does

not consider inspection information which is critical in decision making process for bridge

management. The future work will need to investigate additional data sources, such as

bridge inspection data, bridge management system (BMS) data, etc., involved in bridge

monitoring and management and extend the BrIM data schema accordingly.

Chapter 3

A NoSQL-based Scalable Data
Management Framework for Civil
Infrastructure Monitoring

3.1 Introduction

As sensor technologies mature, there have been increasing interests in the deployment of

sensors for the structural health monitoring (SHM) of large-scale civil infrastructures. The

advent of wireless sensor technologies has led to significant reduction in the installation

cost of sensor network on civil infrastructures [1]. Many civil infrastructures are now

instrumented with dense sensor network to collect valuable information for management

purposes [12, 92]. With the permanent installation of sensors, recent research efforts have

been attempted to extract statistically meaningful information and to apply data-driven

predictive analysis with the collected long-term sensor data [4, 93]. Furthermore, the

developments of advanced nondestructive evaluation technologies have facilitated the

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

45

assessment of the integrity and health of a structure by enabling the detection of the onset

of damages [94]. Advances in sensor technologies and increasing deployment of sensors

result in the tremendous amount of data that needs to be handled in civil infrastructure

monitoring systems. While current SHM research continues to develop and explore new

sensor technologies, very little efforts have been spent to investigate proper data

management tools. The data issues are of fundamental importance that need to be dealt

with before sensing technologies can truly find useful for civil infrastructure lifecycle

assessment and management.

Selecting an appropriate database tool for specific application is key to successful

deployment of a data management system. Different database tools have different strength

and properties. Given the potentially enormous quantity and diversity of sensing data and

complexity of civil infrastructure model, it would be desirable that the database tools

employed for civil infrastructure monitoring and management system are highly scalable

and flexible. Traditional relational database management systems (RDBMS) have the strict

table-type data structure and explicit relationships defined among the data. Recent studies

have shown that RDBMS do not perform well when dealing with large volume of

unstructured data [46, 95]. NoSQL database systems, which are highly scalable and support

flexible data schema, have been proposed as an alternative to RDBMS [47, 96]. It has been

reported that NoSQL database system can achieve better performance than RDBMS in

terms of scalability, flexibility, and low latency by relaxing the rigid data consistency and

strict data schema definition of RDBMS [46, 47]. This chapter thus focus on the use of

NoSQL database system for data management in civil infrastructure monitoring [71, 72].

The described NoSQL-based data management framework is designed to support not only

the scalability to manage a large amount of sensor data, but also the flexibility to manage

semi- and un-structured civil infrastructure information.

This chapter is organized as follows. Section 3.2 investigates the data management

requirements in civil infrastructure monitoring and describes the selection of NoSQL

database tools based on the requirements. Section 3.3 presents a NoSQL-based data

management framework and describes BrIM-based database schema that supports the

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

46

management of various data, including sensor data, image data, sensor information,

geometry and engineering model, involved in civil infrastructure monitoring. Section 3.4

demonstrates the NoSQL-based data management through simple data store and retrieval

examples, as well as complex data integration examples based on the information model

and the monitoring data of the Telegraph Road Bridge (TRB) in Monroe, Michigan. This

chapter is concluded with a summary in Section 3.5.

3.2 Selection of NoSQL Data Management Tools

This section discusses the data management requirement of civil infrastructure monitoring

systems and the selection of the data management tools [71, 72]. There exist many NoSQL

database systems, each has its own pros and cons. The successful development of a data

management system depends on the understanding of target systems’ requirements, as well

as choosing appropriate NoSQL database systems satisfying the requirements. This section

describes the overall organization of a typical civil infrastructure monitoring system and

discusses the data management requirement of each component in a civil infrastructure

monitoring system. NoSQL database tools are then selected based on the defined

requirements.

3.2.1 Data management requirements in civil

infrastructure monitoring system

Figure 3.1 depicts an overview of a typical data management system structure for SHM

systems [6, 72, 97]. In this figure, the shaded boxes refer to the components of the data

management system, whereas the arrows describe the data flow. The data management

system consists of four main components: (1) onsite computers, (2) main (data repository)

server, (3) local (desktop) computer and (4) end-user devices. The roles and data

management requirements of the four components are as follows:

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

47

• An onsite computer, which is an autonomous in situ computing system, serves the

role of an intermediary between the sensor network and the main server for data

acquisition (DAQ). An onsite computer interacts with DAQ as follows. First, the

onsite computer sends messages to the sensor nodes via local communication

network to begin a sampling process. Next, once the sampling process has

finished by the sensor nodes, the onsite computer receives the collected data from

the sensor nodes and temporarily stores the data in its storage (e.g., a file system

or a database system). If necessary, the onsite computer pre-processes and

converts the sampled signals into physical values or performs analysis for

extracting meaningful information from the collected data. Finally, the onsite

computer then transmits the collected data to the main server through a

communication network, such as the Internet. Since onsite computers only need to

store a limited amount of data temporarily, onsite computers can use a file system

(particularly, when the computing capacity of an onsite computer is limited) or a

lightweight database system to support query for analysis and pre-processing of

the data.

• The main server, which can be implemented on private servers or cloud

computing environments, plays a pivotal role for the data management in civil

infrastructure monitoring system. Specifically, the main server stores and

manages heterogeneous data, including sensor data, sensor information, geometric

models, engineering models and analysis results. Furthermore, the main server

allows other components (e.g., onsite computer, local computers and end-user

Figure 3.1 Overall structure of data management system for civil infrastructure

monitoring

SHM Sensor Network

On-Site Computer

Temporary data store

Main Server

Local Computer

sensor data sensor
data

sensor data,
bridge

information
data analysis

evaluation
result

End Usersensor data,
evaluation

result

permanent
data repository

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

48

devices) to access the database via communication network (e.g., the Internet and

local area network) and to store and retrieve data using database query languages.

Given the voluminous and increasing amount of sensor data and semi- and un-

structured information, the main server will potentially handle significant amount

of data records, which are not necessarily homogeneous or of the same data types.

Therefore, the backend database for the main server needs to be highly flexible

and scalable to allow long term data archival and extendibility.

• A local (desktop) computer serves as a computing platform that engineers employ

to conduct computational tasks (e.g., structural analysis and data-driven analysis)

involved in civil infrastructure monitoring and management. For example, the

local computer may periodically retrieve sensor data and relevant engineering

model from the main server and performs analysis to determine the integrity of

the target structure. The local computer can also store some of the data (e.g.,

recently collected sensor data) in a local database system to prevent unnecessarily

repetitive data retrieval from the main server and to enable efficient local data

query. Upon finishing data analysis, the local computer sends the analysis results

back to the main server to share the results with other components and project

participants. Since a local computer needs to store a limited amount of data

temporarily, the focuses of the database system for a local desktop computer are

not necessarily related to the long-term archiving of large amount of data but

should be on efficient data retrieval to support data parsing and analysis.

• An end-user device, such as a laptop computer or a personal device, allow users

direct, real-time and ubiquitous access to the data residing in the main server via

web and mobile applications. Furthermore, with the development of appropriate

interfaces, the end-user devices can access computational tools (e.g., local

computer) to remotely conduct engineering analysis. Since an end-user device

focuses mainly on information retrieval, no database system is necessary.

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

49

3.2.2 Selection of NoSQL database tools

There have been a number of NoSQL database systems with different features and

properties. Selecting an appropriate database tool for specific application is very important

for successful deployment of data management system [46]. Based on the data model,

current NoSQL database tools can be categorized into column family stores, document-

oriented stores, key-value stores, and graph databases [46, 47, 48], as shown in Figure 3.2.

The features and properties of the four categories of NoSQL database systems can be

summarized as follows:

• Column family stores (or wide column stores), which are originated from Google

Bigtable [98], aim to handle a large amount of data in a distributed manner. The

column family data model has ability to handle a large number of dynamic

columns (e.g., billions of columns), which enables flexible data schema.

• Document-oriented stores (or document stores) offer schema-free data model in

which different documents (i.e., unit data entities) may have different set of key-

value pairs without having a pre-defined data schema. Furthermore, document-

oriented database systems typically support convenient queries for heterogeneous

data and hierarchical data.

Figure 3.2 Four categories of NoSQL database systems

Graph database
☞ managing graph data structure

Column family stores
☞ Handling high volume of data

Key-value stores
☞ In-memory operation

Document-oriented stores
☞ Powerful query capability

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

50

• Key-value stores offer simple data model that consists of key and value, where the

value is opaque to system and cannot be used for data query (i.e., only the key-

based query is supported). Based on a simple data model, as well as in-memory

operation, key-value stores guarantees fast read and write performance.

• Graph databases use graph structure consisting of nodes and edges to represent

the data. Based on the graph structure, graph databases are optimized to manage

data records with complex relationships. Furthermore, graph databases enable

efficient query performance, in particular, for recursive join operations involving

complex relationship among data entities.

In this study, we employ Apache Cassandra [99], one of the most widely used column

family stores, to satisfy the scalability and flexibility requirements of the main server, and

MongoDB [100], one of the most widely used document-oriented stores, for convenient

and efficient queries on the onsite computer and the local computer. Key-value stores,

while suitable for fast data store and retrieval, are ruled out in this study, because of their

limitation in terms of the data capacity. Lastly, the data schemas, to be described in the

latter section, do not lend themselves suitable for the graph database.

3.2.2.1 Apache Cassandra: column family database for supporting

persistent data archiving

Given the scalability requirements of the main server, Apache Cassandra database [99],

which was originally developed to meet the reliability and scalability needs of Facebook

[101], is selected. Cassandra database is designed to handle a very large volume of data

based on a peer-to-peer (P2P) architecture which is a preferable approach for a highly

available and scalable distributed database [45]. Specifically, in the P2P architecture, each

node (i.e., a database instance) is self-sufficient and all nodes have an identical role, which

ensures that, in the worst-case scenario, the failure of some nodes results in degradation of

the database operation but remains able to guarantee a high possibility of availability.

Furthermore, the P2P architecture ensures high scalability in that the number of nodes can

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

51

be easily modified without causing operational downtime and the database performance is

linearly scaled as new nodes are added to an existing Cassandra database cluster.

To maintain the consistency of the database and to process requests in a decentralized

manner, nodes in a Cassandra database cluster communicate among one another according

to a “ring” topology as shown in Figure 3.3. Data is replicated and distributed over multiple

nodes to ensure high availability and fault-tolerance, as well as to maintain efficient reading

and writing performances. Figure 3.3, for instance, illustrates how sensor measurement

data is stored in a Cassandra database cluster. In this example, the incoming data R has two

records r1 and r2 which could be sensor measurement data collected by different sensors.

The replication factor (i.e., the number of replicas in a cluster) is two. Any node (say, node

N5 in the example) can accept the write request. The incoming sensor data is partitioned

into two pieces and then copied twice over the nodes. Since the sensor data is replicated

over the cluster, writing and reading the data can still be performed even when a node is

down, as long as other nodes remain available for processing the requests.

Another advantage of using the Cassandra database is the flexible data schema. Figure 3.4

depicts the Cassandra database’s data structure consisting of “keyspace,” “column family,”

Figure 3.3 Ring topology of Cassandra database

N5

N1

N4

N2

N3

r1 r2R

Client
INSERT R<r1, r2>

r1

r1 r2

r2 Cassandra Cluster
Replication Factor: 2

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

52

“row” and “column,” which are analogous to “database,” “table,” “tuple” and “attribute”

of relational database, respectively. The top-level keyspace is defined for a specific project.

The column family consists an array of rows where each row consists of a set of columns.

Each column represents a basic element in the Cassandra database and is assigned a name

and value pair. One of the most significant differences from relational databases is that the

column family stores allow different rows to store different combinations of columns. The

flexible data structure has advantages on storing semi-structured data (e.g., bridge

information models) by allowing different attribute sets for different records. Furthermore,

Cassandra’s dynamic column feature, which allows new records to be attached at the end

of an existing row, and supports effective query performance for time-series data by storing

contiguous time-series data in contiguous disk locations [60]. Last but not least, Cassandra

database supports a variety of data types (e.g., number, array, dictionary, binary data, etc.),

which can be an advantage for SHM data management which often involves time-series

sensor data and video image data.

3.2.2.2 MongoDB: document store for supporting efficient data

retrieval

MongoDB features schema-free data structure and powerful query capability. The data

structure of MongoDB consists of the database, collection, and binary JSON (BSON)

Figure 3.4 Data structure of Cassandra database

cassandra
keyspace

keyspace
2

column family

...

column family 2 column family 3

keyspace
3

Key_1 Column1 Column2 Column3 ...
Value1 value2 Value3

Key_2 Column4 Column5 Column6 ...
value4 Value5 Value6

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

53

schema-less document, as shown in Figure 3.5 [102]. The JSON document enables easy

change or extension of the data model and human-understandable data structure such as

object-oriented data format. MongoDB also has the advantage of representing complex

data structure by enabling relationships between documents and supporting hierarchical

data structure. Moreover, MongoDB offers fast read and write performance [102].

Although MongoDB does not support the “join” query, it still supports a rich set of query

operations including indexing, range query, and aggregation operations. With the flexible

schema and high performance, MongoDB is particularly suitable when complex SQL-like

queries and transactions are not required.

Based on its flexibility and speed, MongoDB has been widely used in many fields including

Internet of Things (IoT) applications and real-time analysis [102, 103]. In the proposed

framework, MongoDB is employed for onsite computers and local (desktop) computers to

support temporary data store with convenient and efficient queries.

3.3 A NoSQL-based Data Management Framework
for Civil Infrastructure Monitoring

This section describes the data management framework for civil infrastructure monitoring

based on NoSQL database tools [71]. Specifically, data schema definition for NoSQL

Figure 3.5 Data structure of MongoDB

mongoDB
database

database2

database3

collection
collection2

collection3

....
document
{ k1: v1

k2: v2
k3: v3

}

document
{ k4: v4

k5: v5
k6: v6

}

document
{ k7: v7

k8: v8
k9: v9

}

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

54

database systems and data store and retrieval processes are discussed. The design and

implementation of the framework is described with a bridge monitoring system as an

example. Figure 3.6 depicts the overall data management framework employing NoSQL

database systems. The onsite computer and the local computer employ MongoDB for

convenient and efficient querying, while the main server employs Cassandra database for

the long-term archiving of a large amount of data. To facilitate system automation and

improve data management efficiency, data schemas are defined considering the data

requirements in civil infrastructure monitoring. Data involved in civil infrastructure

monitoring applications can be divided into sensor data (typically time-series data) and

civil infrastructure information (typically object-oriented data). Sensor data schema is

defined in a way that can facilitate range query, whereas civil infrastructure information

Figure 3.6 Data management framework for civil infrastructure monitoring based on

NoSQL database

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

55

(including geometry, finite element model and sensor information) schema is defined based

on the BrIM schema, as discussed in Chapter 2, to facilitate data interoperability.

3.3.1 Onsite computer

An onsite computer receives sensor measurement data from sensor networks, stores the

data temporarily, and sends the data to the main server for permanent archiving. In case

when the onsite computer has enough computational power to run a local database and is

required to support data queries for data analyses, a document database can be employed

to support efficient querying. For this study, a version of MongoDB (version 2.0.6) is

employed because some onsite computers in practice use older versions of the Microsoft

operating systems (OSs) which is not compatible with recent versions (i.e., version 2.2 or

higher) of the MongoDB.

3.3.1.1 Data scheme for document database on onsite computer

In the current design of the data management framework, an onsite computer stores sensor

data and sensor information but not bridge information, because an onsite computer

performs typically simple data analyses which do not involve bridge information. In

MongoDB, a database, which is equivalent to the database of RDBMS, can be created (if

not already exists) and selected using MongoDB’s use command as follows:

use mybridgedb

which creates a new database named mybridgedb (if not already exists) and accesses to

the database. A collection, which is equivalent to the database and table of RDBMS, in

MongoDB can be created without defining data schema using MongoDB’s

createCollection command as follows:

db.createCollection("sensor_data")

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

56

which creates a new collection named sensor_data in the current database. Data

schema is created dynamically as a new document, which is equivalent to a tuple of

RDBMS, is inserted to a collection. It should be noted that documents in a collection do

not need to have the same data schema; they can have different set of key-value pairs.

Figure 3.7 shows the data schema of sensor data collection, named sensor_data, in

MongoDB. Each document stores sensor data in a list along with the sensor_id and

event_time of data acquisition. In the current implementation, each document collects

a list of measured data over a period of a second. For example, as shown in Figure 3.7, if

the sampling rate is 5Hz, the sampled data is divided into buckets; each bucket has five

consecutive data and is stored in a single document. Since a document in MongoDB can

have up to 16MB of storage [100], the strategy to partition the data according to sampling

rate and the data storage is necessary to prevent data overflow which can be caused by

sensors that have high sampling rate.

In addition to sensor data collection, data schema for sensor information collections are

defined as shown in Figure 3.8. The schema takes advantage of MongoDB’s hierarchical

data structure to categorize sensors for ease of sensor information retrieval. For example,

Figure 3.7 Data schema of sensor data in MongoDB

...

2014-01-22 01:34:43 1000
2014-01-22 01:34:44 1001
2014-01-22 01:34:44 1002
2014-01-22 01:34:44 1003
2014-01-22 01:34:44 1004
2014-01-22 01:34:44 1005
2014-01-22 01:34:45 1006
2014-01-22 01:34:45 1007
2014-01-22 01:34:45 1008
2014-01-22 01:34:45 1009
2014-01-22 01:34:45 1010
2014-01-22 01:34:46 1011

...

input file: sID001

document
{

sensor_id: “sID001”
event_time: “2014-01-22 01:34:44”
data: {1001, 1002, 1003, 1004, 1005}

}

document
{

sensor_id : “sID001”
event_time : “2014-01-22 01:34:45”
data: {1006, 1007, 1008, 1009, 1010}

}

collection: sensor_data
...

...

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

57

the sensor_group collection is defined to store documents containing the list of

sensor_ids of certain types of sensors (e.g., accelerometer, strain gauge and

thermistor). In addition, the sensor_info collection is defined to store documents

containing sensor metadata (e.g., sensor_id, sensor_type,

conversion_factor, sampling_rate, etc.). With the schema definition, data store

to and data retrieval from the onsite computer can be performed with MongoDB’s query

language.

3.3.1.2 Data store and retrieval processes on onsite computer

An onsite computer needs to not only store incoming sensor data stream, but also allow

data retrieval for data analyses and for uploading data to the main server. MongoDB offers

data manipulation language (DML) to support data store and retrieval operations.

Furthermore, MongoDB supports application programming interfaces (API) in different

scripting languages. After selecting a database using the use statement, data store process

can be performed using MongoDB’s save command. For example, a sensor data store

process can be performed using the save command as follows:

Figure 3.8 Data schema of sensor information in MongoDB

document

{
group_id: “gID001”
sensor_type: “accelerometer”
sensors: {sID001, sID002, sID003, …}

}

collection: sensor_group
...

...

document
{

sensor_id: “sID001”
sensor_type: “accelerometer”
conversion_factor: 0.0158
sampling_rate: 200

}

collection: sensor_info
...

...

document
{

sensor_id: “sID001”
sensor_type: “accelerometer”
conversion_factor: 0.0158
sampling_rate: 200

}

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

58

db.sensor_data.save({sensor_id: "sID001", event_time:

ISODate("2014-01-22T01:34:44"), data: [1001, 1002, 1003,

1004, 1005]})

where the document (i.e., the contents inside the curly brackets) containing the

sensor_id (i.e., sID001), event_time (i.e., 2014-01-22T01:34:44) and the

data (i.e., [1001, 1002, 1003, 1004, 1005]) is stored to the collection

sensor_data.

Similarly, the data retrieval process can be performed using another MongoDB command

find. For example, application programs, such as data analysis module and data

transmission module, can retrieve sensor data collected from certain time period by a

certain sensor as follows:

db.sensor_data.find({sensor_id: "sID001", event_time:

{$gte: ISODate("2014-01-22"), $lte: ISODate("2014-01-

23")}})

which retrieves sensor data collected by sensor sID001 during the time period from

2014-01-22 to 2014-01-23 from the collection sensor_data. MongoDB returns

all corresponding documents according to the specified data schema as follows:

{sensor_id: "sID001", event_time: ISODate("2014-01-

22T01:34:44"), data: [1001, 1002, 1003, 1004, 1005]}

The module that runs the find operation can use the retrieved document similar to using

a JSON document.

3.3.2 Main server

The main server serves as a central data repository of the bridge monitoring system. Apache

Cassandra database is implemented as the backend database for the main server to support

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

59

efficient long-term archiving of data. Cassandra database in the main server is designed to

store data of different types, including sensor data, image data, sensor information, bridge

information model (including geometry and engineering model), and analysis result.

Cassandra database offers Cassandra Query Language (CQL) [104] which includes DDL

and DML. Using CQL and Cassandra Driver APIs [105], client systems, such as the onsite

computer, local computer and user devices, can access the Cassandra database to store and

retrieve data. Since the size of sensor data is usually quite large, it is desirable to tune the

Cassandra database to use as much as memory as possible for efficient data processing.

3.3.2.1 Data scheme for column family database on main server

3.3.2.1.1 Sensor data schema

In the proposed data management framework, Cassandra database stores a large volume of

sensor data. Since bridge monitoring often utilize continuous time-series data collected

within a certain period, efficient range query performance for time-series data needs to be

supported. The partitioning feature of Cassandra, however, may result in distribution of the

time-series data to many different database nodes, resulting in excessive disk seek time.

Figure 3.9(a) shows an example where the continuous time-series data r1, r2 and r3 are

(a) Time-series data distributed over

multiple nodes

(b) Time-series data stored in the same node

in sorted order

Figure 3.9 Time-series data stored in a distributed system

N5

N1

N4

N2

N3

r1 r2

Client

r1

r2

r3

r3

Sorting

N5

N1

N4

N2

N3

r1 r2

Client

r3

No sorting

r1 r2 r3

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

60

distributed over multiple database nodes. In this case, a database query not only needs to

retrieve the data from all three nodes, but also needs to sort the data according to their

timestamps, which ends up with poor performance for retrieving time-series data.

To enable effective range query performance, a dynamic column strategy for handling

time-series data in Cassandra database is employed, as shown in Figure 3.10. The basic

idea of this strategy is to store time-series data contiguously in a sequentially sorted order

to minimize disk seek time. The Cassandra data schema for time-series sensor data is

defined as follows. A column family called sensor_data is created for sensor data

store using CREATE query statement of CQL as follows:

CREATE TABLE IF NOT EXISTS sensor_data

(sensor_id TEXT,

 year TEXT,

 event_time TIMESTAMP,

 data LIST<DOUBLE>,

 PRIMARY KEY ((sensor_id, year), event_time));

In this schema, the data entities sensor_id, year and event_time compose the

primary key of the column family, where sensor_id and year are the row key and

event_time is the clustering key. Based on the row key definition, sensor data collected

from a sensor is stored in a single row. Furthermore, sensor data is stored in a sorted order

by assigning the event_time of the data as a clustering key. Since sensor data collected

from civil infrastructure monitoring systems usually has very high sampling rate with same

interval period between data points, it is redundant to record timestamp for every data point.

Instead, the proposed data schema encodes sensor data as a numeric array type

list<double> that stores data collected during a specified time period (e.g., 1 second)

Figure 3.10 Database schema for time-series numeric sensor data

u07ch0
|2014

2014-08-02T00:00:08 2014-08-01T00:00:09
Array[32792.0,	32776.0,	32803.0,	...] Array[32849.0,	32849.0,	32867.0,	...]	

2014-08-01T00:00:10
Array[32851.0,	32863.0,	32842.0 ...]	

Incoming	measurement	data

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

61

in a sorted order. The timestamp records can be regenerated, if needed, based on the

sampling rate. With the data schema definition, a new incoming data is stored to the

existing row corresponding to sensor_id by dynamically adding new columns at the

end of the row (see Figure 3.10). This data schema improves the range query performance

comparing to RDBMSs by enforcing the consecutive time-series sensor data to be stored

in a contiguous physical disk location in the same node, as shown in Figure 3.9(b) [60]. In

this study, a part of the timestamp (e.g., year) is added to the row key to prevent a single

row from becoming too lengthy. In this way, the data from a sensor can be partitioned to

several rows based on a specific time period (e.g., year) of data acquisition.

Similarly, a column family called image_data is created for image data store using

CREATE query statement of CQL as follows:

CREATE TABLE IF NOT EXISTS image_data

(camera_id TEXT,

 month TEXT,

 event_time TIMESTAMP,

 image BLOB,

 PRIMARY KEY ((camera_id, month), event_time));

In this schema, the data entities camera_id, month and event_time compose the

primary key of the column family, where camera_id and month are the row key and

event_time is the clustering key. Figure 3.11 shows that sequential image files collected

from a traffic video camera are stored in a row by assigning event time (e.g., 2016-08-

23T10:02:08) as a clustering key. In addition, part of the timestamp (e.g., year and

month) is added to the row key to partition image data to several rows based on the year

and month of its acquisition. Each image file is encoded in a binary large object (BLOB)

Figure 3.11 Database schema for time-series image data

TRB_01
|201608

2016-08-23T10:02:08 2016-08-23T10:02:13
BLOB(/9j/4AAQSkZJ	… H//Z) BLOB(/9j/4AAQSkZJ	… /9k=)

2016-08-23T10:02:19
BLOB(/9j/4AAQSkZJ	… Af/Z)

Incoming	image	data

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

62

data (e.g., /9j/4AAQSkZj … H//Z) and stored in a single column. The BLOB data can

be converted back to the original image file using imaging libraries, such as Python

Imaging Library [106].

3.3.2.1.2 Bridge information model schema

One salient feature for adapting a NoSQL database system is the ease of mapping a

hierarchical object-oriented bridge information model onto the database schema. An

extensible database schema is needed to effectively manage the complex bridge

information. Cassandra database offers flexible data structure that can elegantly handle

complex data [107]. Using the flexible data structure, a database schema that follows

closely the BrIM schema (which was discussed in Section 2) is designed. Figure 3.12, for

example, shows data mapping between the BrIM schema of the FELine object and the

corresponding column family schema FELine created using a CQL CREATE query

statement as follows:

CREATE TABLE IF NOT EXISTS FELine

(uid uuid,

 N text,

 T text,

 node1 text,

 node2 text,

 felinesection text,

 felinemesh text,

 felinerelease text,

 parent map<uuid,text>,

 child map<uuid,text>,

 PRIMARY KEY(uid));

The database schema contains the data entities of FELine object, as well as child and

parent entities to record the hierarchical relation between the objects. As such, bridge

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

63

information stored in the column-oriented database can be mapped to hierarchical BrIM

objects.

Figure 3.13 shows examples of the rows of the column-oriented database for storing BrIM

objects where a single object is stored in a row. Each row has a mandatory partition key

(e.g., shp001 of the first row in Figure 3.13(a)). A row has columns for storing attributes

and parameters, as well as the list of child and parent objects. Since the Cassandra database

supports collection types, any number of child objects can be recorded in the child column.

In Figure 3.13(a), for example, the child column of the shape object contains the ID and

types of child objects (i.e., [pt001: Point, pt002: Point, …]). One issue in

managing hierarchical object data is that each object may have different sets of attributes.

This data irregularity can be efficiently handled by the Cassandra database with its flexible

data structure. Specifically, the Cassandra database allows rows in the same column family

to contain different sets of columns. For instance, Figure 3.13(b) shows that the two rows

in the column family FELine have different column sets: the first row has the

FELineRelease column, while the second one does not. In fact, BrIM objects with the

same type often have different sets of attributes and child objects. As such, the flexible data

structure of Cassandra database is suitable to handle the heterogeneous BrIM object entities

without enforcing every row to have the same set of columns.

Figure 3.12 Data mapping between BrIM schema FELine and corresponding Cassandra

column family

<<ColumnFamily>>	FELine
uid
N
T
FELineMesh
FELineRelease
FELineSection
Node1
Node2
Section
Parent
Child

UUID
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

MAP<UUID,TEXT>
MAP<UUID,TEXT>

Primary	Key

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

64

3.3.2.2 Data store and retrieval processes on main server

3.3.2.2.1 Data store and retrieval processes for sensor data

Once the data schema is defined, bridge monitoring data can be stored and retrieved using

CQL [104], which is similar to the structural query language (SQL) of relational database.

Specifically, CQL uses INSERT-INTO-VALUE statement for data insertion and SELECT-

FROM-WHERE statement for data retrieval. For example, sensor data can be stored to

Cassandra database by using an INSERT query as follows:

INSERT INTO sensor_data (sensor_id, year, event_time,

data)

VALUES ("sID001", "2014", "2014-01-22T01:34:44", [1001,

1002, 1003, 1004, 1005])

This query statement stores a row, which has sensor_id, year, event_time and

data values, to the sensor_data column family. Once stored, data can be retrieved

(a) Rows storing Shape object and its child Point objects

(b) Rows storing heterogeneous FELine objects

Figure 3.13 Database schema for BrIM objects

pt001
T X Y Parent

"Point" "-10" "-10" [“shp001”, “Shape”]

shp001
T Material Child

”Shape" “Concrete” ["pt001”: “Point”, "pt002”: “Point”, …]

pt002
T X Y Parent

"Point" "-10" "10" [“shp001”, “Shape”]

FELine001
T FELineRelease FELineSection Node1 Node2

”FELine" “FELineReleaseType1” “Steel I-Beam	type1” ”Node090” ”Node091”

FELine002
T FELineSection Node1 Node2

”FELine" “Steel I-Beam	type1” ”Node091” ”Node092”

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

65

using a SELECT query. For example, client systems, such as local computers, can retrieve

consecutive sensor data using a SELECT query as follows:

SELECT data

FROM sensor_data

WHERE sensor_id="sID001"

 AND year="2014"

 AND event_time>= "2014-01-22T00:00:00"

 AND event_time<="2014-01-23T00:00:00"

which retrieves sensor data collected by sensor sID001 during the time period from

2014-01-22T00:00:00 to 2014-01-23T00:00:00 from the column family

sensor_data. Data insertion and retrieval request can be carried out by sending the

query statements to Cassandra database system via either the CQL Shell (CQLSH)

interface or Cassandra Driver API. However, it should be noted that CQL has limited query

operations comparing to SQL. One limitation is that CQL does not support complex query,

such as to combine two or more column families, through “join” operation. To implement

complex query, an application script can be used to encode the queries and to pass the

query result from one query onto another.

3.3.2.2.2 Data store and retrieval processes for bridge

information model

The bridge information described in BrIM data model needs to be mapped to the data

schema of the Cassandra database, and vice versa. For this purpose, we develop mapping

scripts that maps data between the BrIM schema and the database schema. The scripts is

written based on Cassandra driver API [105] for interacting with Cassandra database and

an XML parser (such as xml.etree.ElementTree package [108]) for parsing and modifying

the information written in XML. Figure 3.14 shows an example of data mapping from

BrIM file to Cassandra database. First, the BrIM file written in XML is parsed into an

object-tree using the XML parser. The parsed objects include information about its

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

66

attributes, parameters, and parent and child objects. The mapping script then accesses the

root object in the object-tree, which is the Project object in the example, and maps the

information of the object into the data model of Cassandra database. The mapped

information is then used to create an INSERT query request. Finally, the query request is

sent to the Cassandra database using Cassandra driver API. The process is performed

recursively for the child objects in the object-tree until all the child objects have been

processed.

Data mapping from Cassandra database to BrIM file can be done by reversing the mapping

process for translating the BrIM file to Cassandra database. Figure 3.15 shows an example

that retrieves the Project object and its child objects, which are stored through the

mapping process shown in Figure 3.14. For the retrieval of the bridge information, we first

execute a SELECT query to obtain the root object (i.e., Project object in this example)

using the Cassandra Driver API. The query result is then mapped into the XML object

using the XML parser. Using the child object list in the child column, the process is

performed recursively for all the child objects in the object-tree. Once the data retrieval

process is complete, the object-tree is parsed as XML string and stored in an XML file.

Figure 3.14 Data mapping from BrIM schema to Cassandra database schema

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

67

3.3.3 Local computer

A local computer is essentially a desktop-based computing platform that retrieves data

from the main server using CQL, performs analysis, and pushes the analysis results back

to the main server. Since some data analysis modules require very expensive computational

costs, the decentralized strategy helps the main server to be isolated from such operations

and to maintain its performance as the central data repository. Nevertheless, it may not be

efficient to retrieve sensor data from the main server every time the local computer

performs analysis because (1) the sensor data retrieval takes a long time due to the volume

of data, and (2) some of the data can possibly be used repeatedly. Instead, the local

computer in the current implementation is designed to retrieve sensor data periodically

from the main server and to store the data of certain period (e.g., data collected during the

last one month) in a local database. This approach can reduce data transmission time as

well as traffic between the local computer and the main server. In the current

implementation, MongoDB is used as the local database on the local computer. Data

schema design follows the same schema designed for the MongoDB on the onsite

computer.

Figure 3.15 Data mapping from Cassandra database schema to BrIM schema

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

68

Data retrieved from MongoDB on the local computer and from Cassandra database on the

main server can be utilized by different analysis modules on the local computer. To

interface the database systems and the analysis modules written in scripting languages (e.g.,

Python), database APIs [105, 109] are used. Furthermore, the analysis modules employ

various tools, including MATLAB Engine (MATLAB API for Python [110]), scikit-learn

(a package for machine learning in Python [111]) and rpy2 (R API for Python [112]), to

connect database systems with different data analysis modules. Demonstrative examples

of analysis modules implemented on the local computer will be discussed next in Section

3.4.

3.4 Case Example

This section demonstrates the utilization of the NoSQL-based data management framework

[70, 71]. To test the data management framework, this study uses the data sets collected

from the Telegraph Road Bridge (TRB). In addition to static bridge information (e.g.,

geometry, finite element model and sensor description) the structural monitoring system of

the TRB collects dynamic sensing data. More specifically,

• Sensor data: The TRB is instrumented with 60 sensors, including 14

accelerometers, 40 strain gauges, and 6 thermistors [93, 113]. Figure 3.16 shows

the layout of the sensor network [113]. These sensors collect data every two hours

for one-minute duration at sampling frequency 200 Hz (accelerometer) or 100 Hz

(strain gauges and thermistors). The sensors acquire data for a one-minute time

duration on every two hours interval.

• Traffic video image: The traffic monitoring system operated by Michigan

Department of Transportation (MDOT) collects traffic video images at the TRB

every two seconds [114].

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

69

For demonstration, a laptop computer (MacBook Pro mid 2014), a server computer (Dell

PowerEdge T620) and a desktop computer (A custom desktop computer with Windows 7)

are used as an onsite computer, a main server and a local computer, respectively.

3.4.1 Data store and retrieval

To simulate the in-situ bridge monitoring scenario, a script (written in Python) that

periodically sends the sensor data sets to the onsite computer is developed. Once the sensor

data is delivered to the onsite computer, the interface program (namely, onsite.py) on

the onsite computer automatically re-structures the raw data according to the defined data

schema for MongoDB and stores the parsed data to MongoDB. Figure 3.17 shows a

screenshot of the onsite.py in operation. Once a data set for a single data acquisition

event is stored in MongoDB on the onsite computer, another interface program (namely,

tomain.py) on the onsite computer parses the data set stored in MongoDB to the defined

Figure 3.16 Type and location of sensors installed on the Telegraph Road Bridge [110]

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

70

data schema for Cassandra data and uploads the data to the Cassandra database in the main

server. Figure 3.18 shows a screenshot of the tomain.py in operation.

Sensor data stored in the Cassandra database can be retrieved using CQL queries. Figure

3.19 shows an example of sensor data retrieval using a SELECT query. This query specifies

sensor ID (TRB_u07_ch0), year (2014) and time range (from 2014-08-

02T00:00:00 to 2014-08-02T01:00:00) to retrieve sensor data. Once the query is

Figure 3.17 onsite.py: Python script storing sensor data to MongoDB in onsite computer

Figure 3.18 tomain.py: Python script storing sensor data to Cassandra database in main

server

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

71

submitted, Cassandra database processes the query request and returns query results in a

tabular structure, as shown in Figure 3.19.

Bridge engineering model is also stored in the Cassandra database in the main server. For

storing the bridge engineering model, we export the FE model into Microsoft Excel format

using CSiBridge’s exporting function. The exported engineering model is first mapped into

BrIM schema encoded in XML. The engineering model encoded in BrIM schema is then

mapped into the database schema and stored in the Cassandra database in the main server

using the data mapping scripts. Once stored, the bridge engineering model can be retrieved

in different file formats. Figure 3.20(a) and (b) show the retrieved FE model (Excel file

format) visualized using CSiBridge and the retrieved BrIM geometry model (XML file

format) visualized using the OpenBrIM Viewer, respectively.

Similarly, sensor information is also stored in the Cassandra database in the main server.

To conduct this task, we develop a Python script to parse the sensor information stored in

Microsoft Excel Spreadsheet into the database schema and to send parsed sensor

Figure 3.19 Select query for sensor data retrieval and query result in a tabular format

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

72

information to the main server. Figure 3.21 shows the sensor information retrieved using

CQLSH, a command line client interface of Cassandra database.

3.4.2 Influence line analysis using sensor data and bridge

engineering model

To take advantage of the integrated bridge monitoring infrastructure, influence line

analysis, which compares bridge responses collected by the sensors with analytically

computed response using the FE model, is conducted following the procedure described

by Hou et al. [115]. In this analysis, we utilize sensor data collected from a field test for

identification of vehicle-bridge interaction [115]. In the dynamic loading test, a single test

truck instrumented with GPS sensor crosses the TRB without other traffics. The test truck

passes the middle lane of the bridge at approximately 60 mph. The specification of the test

(a) Finite element model (b) Bridge information model (geometry)

Figure 3.20 Bridge information model retrieved from Cassandra database in main server

Figure 3.21 Sensor information retrieved from Cassandra database in main server

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

73

truck can be found in Figure 3.22 and Table 3.1 [115]. When the test truck crosses the

bridge, strain gauges (installed as described in Figure 3.23) measure the dynamic strain

response of the bridge GPS sensor measures the location of the truck [115]. The collected

data sets are stored in the Cassandra database in the main server. In addition to the sensor

data, corresponding vehicle load and vehicle lane are defined in the FE model of the TRB

(as shown in Figure 3.24) for the simulation. The FE model is mapped and transmitted to

the Cassandra database in the main server.

Table 3.1 Test truck load description (unit: pound) [112]

Steer Axle Drive Axle Trailer Lead Axle Trailer Rear Axle Total
9,460 17,620 17,820 17,600 62,500

Figure 3.22 Test truck dimension

(a) Plan view (b) Section view

Figure 3.23 Location of strain gauges

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

74

Once all the data is stored in the main server, we plot the influence lines for sensor data by

retrieving the collected sensor data, including strain data and truck location data, and then

plotting the strain response along the truck location. Next, we download the FE model from

the main server and conduct static and dynamic FE analysis to compute the influence line

at the locations of the strain gauges. For the FE analysis, direct integration method (Hilber-

Hughes-Taylor method) without damping is employed, and 0.03 second is selected for the

time step for the integration. Furthermore, since strain response cannot be directly obtained

from the analysis results of CSiBridge, we calculate the strain indirectly using the stress

response obtained from the analysis. Finally, we compare the measured response and

analytical response of the bridge by overlaying the obtained influence lines. Figure 3.25(a),

(b), (c), and (d) show the overlays of the influence lines at four different sensor locations,

respectively. The results show that the measured response is very similar with the analytical

response, although the analytical response shows slightly higher maximum response than

the measured response.

(a) Vehicle load configuration

(b) Defined vehicle lane (c) Visualized test truck model

Figure 3.24 Test truck defined in FE model

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

75

3.4.3 Comparison of sensor data and analytically

computed bridge response

In this example scenario, we compare the bridge response measurements collected by the

accelerometers with the bridge responses computed at the FE nodes corresponding the

accelerometer locations. Since the bridge information, the sensor information and the FE

model are integrated in the database, scripts can be written to automate the process. Figure

3.26 shows the basic steps implemented for this example scenario.

(a) Strain gauge at end-span of girder 6 (b) Strain gauge at mid-span of girder 6

(c) Strain gauge at mid-span of girder 2 (d) Strain gauge at mid-span of girder 2

Figure 3.25 Influence line analysis result

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

76

As shown in Figure 3.26, the comparison of measurement and computed data is

implemented in six steps. In step 1, we retrieve sensor information from the Cassandra

database using CQL and Cassandra API. As shown in Figure 3.27, CQL query statement

is issued to retrieve the sensor id and the FENode from the sensor column family, which

stores the metadata and position information of all the sensors. The WHERE statement

specifies the query for the SingleAxisAccelerometers attached on the bridge. The

query is transmitted to the Cassandra database and the (selected) query results are shown

in Figure 3.27. The query results include the ID of the accelerometers and their

corresponding FENodes. This information will be used in step 2 and step 5.

In step 2, we retrieve acceleration data from the database. Figure 3.28 shows the query

requesting the retrieval of sensor data collected from sensors whose IDs are in the list

retrieved from step 1. The WHERE clause of the query specifies the time range from 2014-

08-01T00:00:00 to 2014-08-01T02:00:00. As shown in Figure 3.28, the query

results are presented in sorted order according to their timestamp. The query results are

stored and will be used in step 6 where the sensor data and analysis results are compared.

In step 3, the FE model of the bridge is retrieved from the Cassandra database. Using the

hierarchical relationship between objects using child and parent columns, we can automate

the process to rebuild the XML-based BrIM model. Figure 3.29 shows the pseudo code for

retrieving and rebuilding BrIM model using the recursive function

Figure 3.26 Workflow of example scenario for comparing sensor data and analytically

computed bridge reponse

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

77

RetrieveDataByKey (lines 1 to 10), which includes the query (see lines 2 to 4) to

(recursively) retrieve the FE model information. If retrieved object contains child column,

the function RetrieveDataByKey calls itself with input argument specifying the uid

and column family of child objects (line 9). As shown in line 14, the recursive function

starts from the root object of FE model whose uid is 448f641e-8e04-11e6-8f0d-

3c15c2e54ea0 and column family is Project. The query results are received in the

Python Dictionary data format and then converted into hierarchical XML object using

xml.etree.ElementTree package [108], as illustrated in Figure 3.30.

In step 4, the XML-based BrIM model created in step 3 is mapped to the Microsoft Excel

spreadsheet file that can be processed by the CSiBridge software. Figure 3.31 shows the

Figure 3.27 Step 1: Retrieving sensor information

Figure 3.28 Step 2: Retrieving sensor data

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

78

pseudo code for the data mapping from BrIM to the Excel spreadsheet. The pseudo code

has a recursive function to explore every object in hierarchical object-tree structure.

Specifically, the recursive function parses attributes, parameters and child objects of a

single object (lines 2 to 4), and then maps the parsed data entities onto an Excel spreadsheet

Figure 3.29 Step 3: Pseudo code of a recursive function for FE model retrieval

Figure 3.30 Step 3: Data mapping from query result to hierarchical BrIM model

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

79

(line 5). Specifically, we develop a mapping dictionary that matches BrIM object type with

corresponding spreadsheet name (see Figure 3.32). The xml.etree.ElementTree package

[108] and openpyxl package [116] are employed for parsing XML and Excel spreadsheet

files.

In step 5, the FE model created in step 4 is analyzed. To automate the analysis process, we

develop two Visual Basic for Application (VBA) scripts using CSiBridge’s APIs. As

shown in Figure 3.33, Python script calls the VBA scripts using Python extensions for

Windows (pywin32) package [117]. The first script accepts the list of FENodes as an input

argument called nodeList(). The script then reads the FE model file created in step 4,

runs the analysis, and records the response at the specified FENodes to spreadsheets. Here,

for demonstration purpose, we set a moving truck load at the middle lane of the bridge and

perform a time-history analysis. The results are then parsed with the second VBA script to

retrieve the analysis results for the specified FENodes.

Figure 3.31 Step 4: Pseudo code for FE model mapping from BrIM to Excel spreadsheet

Figure 3.32 Step 4: Mapping dictionary from BrIM to Excel spreadsheet

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

80

Finally, in step 6, the sensor data retrieved from step 2 and the analysis results obtained in

step 5 are compared. In this example scenario, we calculate the minimum and maximum

values of the computed response and plot them with the sensor measurements as shown in

Figure 3.34. The sensor “u131ch0” is an accelerometer that measures vertical vibration at

the leftmost girder of the bridge. The sensor measurements range from -31.28mg to

36.66mg, while the minimum and maximum values of computed response are

–35.92mg and 37.48mg. The results show that the bridge structure behaves within the range

of the analytically computed responses during the specified time period.

Figure 3.33 Step 5: Running FE analysis using CSiBridge and its APIs

xl = win32com.client.Dispatch("Excel.Application")
xl.Workbooks.Open(filepath, ReadOnly=1)

Run 1st VBA script
xl.Application.Run(“FEanalysis”, filename, node)

Run 2nd VBA script
result = xl.Application.Run("GetReturn")

Python	Script

Public Sub Feanalysis (filename As String, nodeList() As Variant)
Dim myCSIObject As cOAPI ‘Create CSI Bridge Instance

… Omitted …
ret = mySapModel.File.OpenFile(filename) ’Open FE model
ret = mySapModel.Analyze.RunAnalysis ‘Run analysis

… Omitted …
‘Get response at specific node in node list
For i = 0 To UBound(nodeList, 1)

ret = mySapModel.Results.JointAcc(CStr(nodeList(i)), … StepNum, …, U3, …)
‘Record result to active spreasheet
For j = LBound(StepNum) To UBound(StepNum)

ThisWorkbook.ActiveSheet.Cells(j + 1, i + 1) = U3(j)
Next j

Next I
End Sub

VBA	Script	1:	FEanalysis

Public Function GetReturn() As Variant
Dim nRow, nCol As Integer
nRow = Sheets("Sheet1").Cells(Rows.Count, 1).End(xlUp).Row
nCol = Sheets("Sheet1").Cells(1, Columns.Count).End(xlToLeft).Column
‘Return computed response
GetReturn = ThisWorkbook.ActiveSheet.Range(Cells(1, 1), Cells(nRow, nCol)).Value

End Function

VBA	Script	2:	GetReturn

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

81

3.4.4 Retrieval of sensor data along with traffic image

data

In this example scenario, we retrieve the sensor measurement data along with the traffic

image data. This example illustrates the retrieval of not only bridge response data collected

by a sensor, but also the traffic information that causes the bridge response. Figure 3.35

shows the three basic steps for implementing the data retrieval process.

Figure 3.34 Step 6: Plotting retrieved sensor measurement (u131ch0) along with the

maximum and minimum values of the response obtained from FE simulation

Figure 3.35 Workflow of example scenario for retrieving sensor data along with traffic-

image data

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

82

In step 1, the sensor measurements are retrieved using CQL. As shown in Figure 3.36, the

acceleration data is selected using the WHERE clause where the sensor ID is u131ch0, the

month of the timestamp is 201608, and the time period between 2016-08-

23T10:02:09 and 2016-08-23T10:03:08.

In step 2, traffic-monitoring images are retrieved to observe the vehicles that affect the

bridge response retrieved in step 1. Figure 3.37 shows the query statement for retrieving

the image data from the camera ID telegraph2, date 20160823 and the period

between 2016-08-23T10:01:54 and 2016-08-23T10:03:08. The time period is

extended slightly to capture the vehicles that went over the bridge before the sensor data

period since the traffic flow may affect the initial vibration of the bridge. The images are

retrieved as binary data stored in binary large object (BLOB) format and converted to an

image file format, such as JPEG, in step 3.

In step 3, the binary data is converted to image, for example, using Python’s StringIO

library [118]. Figure 3.38 shows the retrieved images with the corresponding sensor data.

Figure 3.36 Step 1: Query statement for retrieving sensor data

Figure 3.37 Step 2: Query statement for retrieving image data

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

83

The images shown in Figure 3.38(b) are trimmed to show only the northbound lane that we

are interested in. In this figure, the sensor data is divided into twelve segments as labeled

from 1 to 12 for matching with the corresponding images. The image 0 shows the vehicle

that crosses the bridge 11 seconds before the data acquisition began. The initial acceleration

(segments 1 and 2 in Figure 3.38) ranges from -4.48mg to 7.96mg due to the vehicles

captured in image 0. As shown in images 2, 3, 5 and 6 and the corresponding sensor data,

the compact cars and midsize cars increase acceleration only up to 14.82mg, even with cars

crossing the bridge at the same time. On the other hand, as shown in images 4, 8, 10 and

12 and the corresponding segments of sensor data, trucks and trailers increase the

acceleration level significantly and up to 44.57mg.

3.5 Summary

This chapter presents a scalable data management framework for handling massive data

collected from civil infrastructure monitoring. NoSQL database systems are leveraged for

the implementation of the framework. Unlike the traditional civil infrastructure monitoring

systems, the proposed framework offers high scalability on a distributed computing

environment, which makes the framework as a desirable alternative to handle ever-

increasing monitoring data. Furthermore, the proposed framework provides data schema

flexibility, which is useful to manage object-oriented civil infrastructure information. This

framework also enables data interoperability and integration based on the information

modeling standards.

The data management framework consists of four major components. The onsite computer

receives data from the sensors, stores it temporarily, (optionally) performs simple analysis

and transmits the data to the main server. The main server stores the sensor data

permanently along with the relevant information, such as sensor metadata, geometric

model and engineering model. The local computer retrieves data from the main server,

performs analyses and returns analysis results back to the main server. The end user device

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

84

(a) Retrieved acceleration data

(b) Retrieved traffic-monitoring images

Figure 3.38 Acceleration response of the TRB from 2016-08-23T10:02:09 to 2016-08-

23T10:03:08 collected by “u131ch0” and corresponding traffic-monitoring images.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CHAPTER 3. NOSQL-BASED SCALABLE DATA MANAGEMENT

85

retrieves data and visualizes the data on user interfaces. Based on the data management

requirements of each component, a column family database (Cassandra database in current

implementation) that is suitable for large-scale distributed database is employed for the

main server, while a document-oriented database (MongoDB in current implementation)

that has advantages on the schema-less data structure and fast, convenient query is

employed for the onsite computer and local computer. Data schemas for sensor data, sensor

information and bridge information model are designed to facilitate system automation and

to improve data management performance. More specifically, data schemas for bridge

information and sensor information are defined based on the BrIM schema to enable data

mapping between BrIM schema and database schema, which can allow the data stored in

the database to be utilized and integrated by different applications. Furthermore, data

schema for time-series sensor data is defined using time-series data modelling scheme of

Cassandra database for the fast query performance.

The proposed framework is demonstrated using the sensor data collected from the

Telegraph Road Bridge and bridge models of the bridge. In addition to basic data store and

retrieval examples, this chapter presents three case scenarios that involve different types of

bridge information, which are typically managed by isolated systems and hard to integrate.

The first scenario is the influence line analysis that compares the influence line measured

by sensors with the influence line obtained from finite element analysis. The second

scenario compares the vibration response measured by sensors with the vibration response

obtained from finite element analysis. The third scenario compares the vibration response

measured by sensors with the traffic images collected by traffic monitoring system. The

results show that the proposed data management framework not only offers scalable data

management environment, but also allows client systems to easily query and integrate

heterogeneous data in bridge monitoring applications.

Chapter 4

A Cloud-based Cyberinfrastructure
Platform for Civil Infrastructure
Monitoring

4.1 Introduction

With the advances in information and communication technology (ICT), as well as reduced

cost of monitoring system, recent trends of civil infrastructure monitoring include the use

of sensor network with higher density. The advanced ICT and increasing use of sensors

will realize the concept of cyber-physical system (CPS) wherein physical systems (e.g.,

civil infrastructure) and computational systems (e.g., data repository and analysis modules)

are tightly integrated [119]. Physical systems can be monitored, assessed and controlled

with or without human intervention. Furthermore, with the rapid development of data-

driven analysis methods, massive and diverse data collected from monitoring systems offer

promising opportunities to find new insights about the physical systems. To facilitate data

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

87

utilizations, data needs to be accessed and retrieved easily by different applications, such

as data analysis modules and user interfaces. However, current monitoring systems are not

designed to support interoperable data access; rather engineers often need to download data

and feed the data into applications manually. This limits the rapid prototyping of

applications and system automation. In order to facilitate the use of valuable monitoring

data, a comprehensive data management platform that offers interoperable interfaces and

easy-to-use data management service will be necessary.

In the IoT domain, many IoT software platforms have been developed to support sensor

data management [25, 26, 27, 28, 29]. Sensor can transmit data to such IoT platforms via

interfaces adhering to standard communication protocols. Sensor data transmitted to IoT

platforms can be retrieve by different applications also via standardized interfaces. Based

on the machine-understandable interfaces, IoT platforms can ease the application

development and enables automated data utilization. However, such IoT platforms are

typically designed to handle mainly sensor measurement data. In civil infrastructure

monitoring domain, a data management platform needs to handle not only the sensor data,

but also the domain information, such as engineering model, geometric model, inspection

information, etc.

This chapter presents a cyberinfrastructure platform which offers data management as

services similar to IoT software platforms but is tailored to civil infrastructure monitoring

[73, 74, 75, 76]. The proposed platform brings together the information modeling

(described in Chapter 2), NoSQL-based data management system (described in Chapter 3),

web service technologies and cloud computing to offer interoperable data management

services. Based on standard communication protocols, web services, as a database wrapper,

offer interfaces to different systems and applications for accessing the database. The

cyberinfrastructure platform is deployed on cloud computing environment to offer reliable

data management service for handling continuously incoming sensor data, as well as

scalability for handling ever-increasing amount of sensor data. This chapter also discusses

a hybrid cloud-based deployment of the platform for outsourcing the management of non-

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

88

sensitive, voluminous data to the public cloud, while managing sensitive data and

applications within the private cloud separately.

This chapter is organized as follows. Section 4.2 provides an overview of the proposed

cyberinfrastructure platform for civil infrastructure monitoring. Section 4.3 and Section 4.4

describe data store process and data retrieval process, respectively, with the details of web

services. Section 4.5 presents cloud-based implementations of the cyberinfrastructure

platform. Section 4.6 demonstrates a prototype implementation of the cyberinfrastructure

platform using the monitoring data of the Telegraph Road Bridge in Monroe, Michigan.

This chapter is concluded with a summary in Section 4.7.

4.2 Overview of Cyberinfrastructure Platform

Figure 4.1 shows the overall architecture of the proposed cyberinfrastructure platform for

civil infrastructure monitoring [74]. The platform receives data from various data sources,

including sensor networks and information models. Sensor networks (e.g., structural health

monitoring system) collects heterogeneous sensor data, ranging from high-frequency time-

series data to video and camera images. Collected sensor data is transmitted to the

cyberinfrastructure platform through the communication network (e.g., the Internet) and

Figure 4.1 Overall architecture of the cyberinfrastructure platform for engineering

Cloud computing environment

Web
server

&
Message

Broker
Standard
comm.

interfaces

Data
mapper

Information
models

→
Database
schema

Distributed database

Comm.
layer

Mapping
layer

Storage
layer

Cyberinfrastructure platform

Data
mapper
Database
schema

→
Information

models

Mapping
layer

Web
server

&
Message

Broker
Standard
comm.

interfaces

Comm.
layer

Partitioning & Replication

replica

replica

replica

coordi
-nator

replica

Information
models

Sensor
networks

Data sources

H
TT

P
M

Q
TT

, H
TT

P

Analysis
tools

User
interface

Applications

M
Q

TT
, H

TT
P

M
Q

TT
, H

TT
P

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

89

stored. Information contains comprehensive information (e.g., geometry, physical

properties, functional characteristics and sensor information) of target systems.

Information models are created on engineers’ personal computer and transmitted to the

cyberinfrastructure platform through the communication networks.

The cyberinfrastructure platform serves as a data hub that receives, processes, analyzes,

stores, distributes and shares monitoring data. The cyberinfrastructure platform is

composed of three basic layers, namely, communication layer, mapping layer and storage

layer, to support data store and retrieval. For data store processes, the communication layer

handles communication with the data sources. Specifically, the web server and message

broker in the communication layer provide standardized interfaces to receive data from

different data sources via the Internet. The mapping layer includes data mappers (which is

described in Section 3.3.2.2.2) that map the received semi-structured information models

onto the database schema. The mapped data is passed to the storage layer which includes

a NoSQL-based distributed database system (which is described in Chapter 3) that

partitions, replicates and stores data.

The data stored in the cyberinfrastructure platform needs to be accessed and retrieved by

different applications, such as data analysis tools, engineering analysis software, 3-D

modeling tools and mobile user devices. To support data retrieval services that can be

invoked by different applications, the cyberinfrastructure platform offers platform-neutral

interfaces which are hosted on the web server in the communication layer. Once invoked,

a data retrieval service retrieves data from the storage layers and maps the data through the

mapping layer. The retrieved data is then delivered to the application that invokes the data

retrieval service.

The proposed cyberinfrastructure platform is deployed on a cloud computing environment

for scalability, accessibility and reliability. Specifically, the cyberinfrastructure platform

can be deployed on the Infrastructure as a Service (IaaS) layer of cloud (i.e., virtual

machines offered by cloud) [56], which assures platform portability across different cloud

vendors or among public cloud, private cloud and hybrid cloud.

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

90

4.3 Data Store Process

This section describes the process of acquiring and storing the data with the

cyberinfrastructure platform [73, 74]. Data store requests are processed through three

layers: communication, mapping and storage. The communication layer employs web

server and message broker built upon standard protocols, so that various data sources can

access the platform. The mapping layer defines the mapper to help store the semi-structured

information models in the database. Finally, the storage layer employs a distributed NoSQL

database to enable scalable data management.

4.3.1 Communication layer

The communication layer is exposed to clients (e.g., data sources) via the Internet to enable

remote access. The layer serves as intermediary and accepts messages with the data from

the clients, parses the message to extract the data, and passes the data to the appropriate

layer. To support different communication protocols often used in IoT applications, this

layer includes two systems: (1) a web server based on the Hypertext Transfer Protocol

(HTTP) for supporting client-server communications and (2) a message broker based on

the Message Queuing Telemetry Transport (MQTT) for supporting publish-subscribe

communications. In the prototype implementation, both systems are deployed using

Node.js [120], a server-side JavaScript runtime environment.

4.3.1.1 Web server

The web server is implemented to provide web services, which is, as defined by W3C, is a

“software system designed to support interoperable machine-to-machine interaction over a

network [121].” Web services enable sharing of data and integration of applications over

the network. Since the cyberinfrastructure platform needs to support utilization of data

from various devices (e.g., cloud, local computer, micro-computer and mobile devices) and

platforms (e.g., different operating systems), it is important to employ a widely-adopted

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

91

web service protocol. Furthermore, the cyberinfrastructure platform needs to support

conditional queries involved in SHM applications (e.g., range query for time-series data).

To meet these requirements, the cyberinfrastructure platform employs RESTful web

services [66] which have fast performance and high scalability [68]. RESTful web services

are described using five constraints [122]:

• Resource identification. Resources are identified by uniform resource identifiers

(URI).

• Uniform interface. Resources can be accessed via the HTTP.

• Self-descriptive messages. Resources are represented using standardized formats,

such as Hypertext Markup Language (HTML), XML and JavaScript Object

Notation (JSON).

• Hypermedia as the engine of application state. Resources contain links by which

clients can interact with web services.

• Stateless interactions. Requests contain all the required information for web

services to process the requests.

The proposed web server hosts a set of web services to handle different types of data. Table

4.1 summarizes the data store web services currently implemented in the

cyberinfrastructure platform. Here, the HTTP method POST is used to submit data to the

specified URIs [66]. For example, Figure 4.2 shows a schematics of a web server hosting

web services for storing engineering models and sensor data. In this example, a client

system, such as a local desktop computer, sends an HTTP request specifying the host name

Table 4.1 RESTful data store web services currently implemented on the

cyberinfrastructure platform

Service HTTP method URI
Sensor data store POST /sensordata

Traffic image store POST /imagedata
Sensor information store POST /sensor
Geometric model store POST /geometricmodel

Engineering model store POST /femodel

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

92

(<wsAddress>) and the Uniform Resource Identifier (URI) (/femodel) of the web

service for engineering model store. In addition, the HTTP request includes an engineering

model file written in standard syntax such as eXtensible Markup Language (XML) that the

client wants to store in the cyberinfrastructure platform. Upon receiving the message, the

web server calls the web service corresponding to the request specified. The web service

then parses the HTTP request, extracts the engineering model file, and delivers the file to

the next layer (i.e., mapping layer). Once the process is completed, the web service returns

an HTTP response notifying that the request has been processed successfully. If any error

occurs during the process, the web service returns an HTTP response with an error

message.

The web server processes a sensor data store request in a similar manner. In Figure 4.2, for

example, a gateway system connected to a sensor network sends an HTTP request that

contains sensor data written in JSON format, as well as the host address (<wsAddress>)

and the URI (/sensordata/001) for the sensor data store service. Once the web server

receives the request, a web service is invoked, parses the request and extracts sensor data.

It should be noted that the sensor data is delivered directly to the storage layer without

Figure 4.2 Web server hosting web services for engineering model and sensor data store

Local computer

Prepare engineering model

Create HTTP request

enclosing the model

Send HTTP request

Web server

Service: Engineering

model store

Service: Sensor data

store

Gateway of sensor network

Receive data from sensors

Parse data into JSON format

Create HTTP request

enclosing the parsed data

Send HTTP request

Mapping

layer

Storage

layer

…

Other services

Cyberinfrastructure Platform
POST /femodel HTTP 1.1

HOST <wsAddress>

<Engineering model in XML>

POST /sensordata/001

HTTP 1.1

HOST <wsAddress>

<Sensor data in JSON>

INSERT

query

Information

model

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

93

going through the mapping layer in the current implementation, since sensor data typically

does not require complex data mapping.

4.3.1.2 Message broker

The message broker is implemented to support M2M communication for sensor data

exchange based on the publish-subscribe paradigm. Publisher clients (e.g., data sources)

and subscriber clients (e.g., application programs) can exchange messages in one-to-one,

one-to-many and many-to-many communication in real time. This real time messaging can

be used not only to store data, but also to enable tasks, such as real time analytics and event

triggering, executed in real time. The message broker manages several “topics”, each of

which is defined for a specific type of sensor data. Data sources can use the topic to specify

the type of data. Figure 4.3, for example, describes a message broker for sensor data store.

In this example, a gateway device publishes a message including a topic (sensor/data)

and sensor data written in JSON to the message broker through the MQTT protocol. The

message broker classifies published message based on the topic, parses message to extract

data and passes the data to the storage layer by sending an INSERT query statement. In

addition, the published message is broadcasted to every application subscribing the topic

(sensor/data) in real-time. Therefore, the message broker can support real-time tasks,

such as real-time analysis and event handling.

Figure 4.3 Message broker including a topic for sensor data exchange

Message broker

Topic: sensor/data

Gateway device (publisher)

Receive data from sensors

Parse data into JSON format

Publish a message with data

and topic (e.g. “sensor/data”)

Storage
layer

…

Other topics

Subscribers of topic

“sensor/data”

INSERT

query

Message (MQTT)

- Topic: “sensor/data”

- Payload: <JSON data>

Message (MQTT)

- Topic: “sensor/data”

- Payload: <JSON data>

Cyberinfrastructure Platform

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

94

4.3.2 Mapping layer

The mapping layer receives the information models from the communication layer, maps

the model to a database schema, and loads the mapped data to the database. Information

models are typically written in object-oriented manner to represent a system as a set of

hierarchical objects. Each object includes information about its characteristics, such as

physical properties, functional role and relationship with other objects. For interoperability,

information models are often written with XML or XML-based syntax adopted by

information modeling standards. For the mapping of such information models, the mapping

layer includes a data mapper that has information about the relation between the

information model schema and the database schema. In the prototype implementation, a

Python script is written as a data mapper which can be called by a web service in the

communication layer. The data mapper uses an XML parser (e.g., Python

xml.etree.ElementTree package [108]) to parse an XML-based information model and a

database driver (e.g., Cassandra driver API [105]) to transmit the mapped data to the

storage layer.

The data mapper works as follows. Upon receiving an information model, the data mapper

is invoked. The data mapper first parses the model written in XML into a hierarchical object

structure using the XML parser. Each object in the structure includes information about its

properties as well as hierarchical relationship (e.g., parent and child objects information).

The mapping script accesses the root object and maps the root object into the database

schema. The data mapper then creates an INSERT query request for the mapped object

and delivers the query request to the next layer (i.e., storage layer) using the database

driver. This process is conducted recursively for the child objects in the hierarchical object

structure until all the leaf node objects are processed.

4.3.3 Storage layer

The storage layer provides a data management service implemented using a distributed

database. This layer receives information model data (from the mapping layer) and sensor

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

95

data (from the communication layer), and stores them in the database. For the effective

data management, it is critical to choose an appropriate database management system

(DBMS). Since the cyberinfrastructure platform aims to manage a large volume of sensor

data and engineering information model, scalability is an important factor for choosing a

DBMS. As discussed in Chapter 3, Apache Cassandra database [99] is suitable for large-

scale distributed data management. The prototype implementation of the platform employs

Cassandra database for data management in the storage layer.

Using cloud computing environments (in particular, IaaS), a Cassandra database cluster is

composed of multiple nodes, each of which can be employed on a physical or virtual

machine. Cassandra glues the nodes distributed over multiple machines. Furthermore,

Cassandra handles data partitioning and replications over multiple nodes according to the

defined network topology and replication factor. For instance, a Cassandra database

cluster, which has replication factor of two, partitions incoming data into multiple pieces

and stores them twice over the distributed database nodes. With partitioning and

replication, a Cassandra database cluster can be available even when some of the nodes are

down.

4.4 Data Retrieval Process

This section describes data retrieval process with the proposed cyberinfrastructure platform

[73, 74]. Web services for data retrieval are developed to provided standardized interfaces

that applications on various systems and devices can invoke. In a data retrieval process, a

request is delivered from an application to the communication layer, to the mapping layer

and to the storage layer, whereas data is delivered in reverse order. The provided web

services can be composed together to create new services.

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

96

4.4.1 Data retrieval using web services

The communication layer handles the communication required by the applications. The

communication layer includes a web server that provides RESTful web services for

applications to retrieve the data, including (partial and entire) information models and

heterogeneous sensor data. Table 4.2 summarizes the data store web services currently

implemented in the cyberinfrastructure platform. Here, the HTTP method GET is used to

retrieve data from the specified URIs [66].

For example, as shown in Figure 4.4, an engineering analysis application can download an

analysis model, which is a part of an information model, through the communication,

mapping and storage layer, as follows:

(1) The client sends a GET request to the web server in the communication layer with

URI (/femodel/TRB), protocol (HTTP/1.1) and host (<ws_address>).

(2) The corresponding web service runs a BrIM mapper (cass_to_brimfem.py)

in the mapping layer.

Table 4.2 RESTful data retrieval web services currently implemented on the

cyberinfrastructure platform

Service HTTP
Method

URI Parameter

Sensor data
retrieval

GET /sensordata/
{sensorID}

event_time_begin,
event_time_end

Traffic image
retrieval

GET /imagedata/
{cameraID}

event_time_begin,
event_time_end

Sensor list
retrieval

GET /sensor sensor_type,
install, remove

Sensor
information

retrieval

GET /sensor/{sensorID} install, remove

Geometric
model retrieval

GET /geometricmodel/
{BridgeID}

Engineering
model retrieval

GET /femodel/
{BridgeID}

file_format (xml or
xlsx)

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

97

(3) The BrIM mapper retrieves and maps relevant data entities recursively from the

distributed database in the storage layer using the child list stored in each row.

(4) The BrIM mapper returns XML-encoded engineering model to the web server.

(5) The web server returns a response enclosing the XML-encoded engineering

model and the status code 200 to the client.\

Similarly, as shown in Figure 4.5, an engineering analysis application can retrieve sensor

data from the platform by sending an HTTP GET request, as follows:

(1) The client sends a GET request to the web server with URI

(/sensordata/TRB_u131_ch0), query parameters (e.g.,

event_time_begin and event_time_end), protocol (HTTP/1.1) and

host (<ws_address>).

Figure 4.4 Engineering model retrieval from the cyberinfrastructure platform

Figure 4.5 Sensor data retrieval from the cyberinfrastructure platform

Cl
ie
nt

W
eb
	s
er
ve
r

Database

Br
IM

m
ap
pe
r

GET /femodel/TRB HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

python cass_to_brimfem.py
SELECT * FROM ...

Object (column-oriented schema)

SELECT * FROM ...

Object (column-oriented schema)

...

<?xml version="1.0" ?>
<O N="TRB_FEM" T="Project">

...
</O>

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0" ?>
<O N="TRB_FEM" T="Project">

...
</O>

①

② ③

④
⑤

Cl
ie
nt

W
eb
	s
er
ve
r

Database

GET /sensordata/TRB_u131_ch0?event_time_begin=
2016-09-01T12:02:00.000z&event_time_end=
2016-09-01T12:02:10.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

HTTP/1.1 200 OK
Content-Type: application/json

{"Content": [{"sensor_id":"TRB_u131_ch0",
"event_time":"2016-09-01T12:02:12.000z",
"data":[32227,32189,32293,...,32361]}, ...], ...}

SELECT sensor_id, event_time, data
FROM sensordata
WHERE sensor_id="TRB_u131_ch0" AND year="2016"
AND event_time>="2016-09-01T12:02:00.000z"
AND event_time<="2016-09-01T12:02:10.000z"

[{"sensor_id":"TRB_u131_ch0",
"event_time":"2016-09-01T12:02:12.000z",
"data":[32227,32189,32293,...,32361]}, ...]

①
②

③

④

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

98

(2) The web server sends a SELECT query corresponding to the query parameters to

the database.

(3) The database returns query result to the web server.

(4) The web server returns a response enclosing JSON-encoded query result and the

status code 200 to the client.

4.4.2 Service composition

This section describes how web services offered by the cyberinfrastructure platform can

be used for developing and integrating SHM applications. Web service composition refers

to the process of combining different web services to provide a new service that carries out

composite functions [123]. Standardized web services can be efficiently composed.

Different methods have been suggested for composition of RESTful web services [67, 124,

125, 126]. For visual demonstration purpose, this study adopts the approach in [126] that

uses JOpera [127], a visual composition language. JOpera describes control flow and data

flow between programs using a graphical model [128]. Each node of the graph represents

either a program, an input of a program, or an output of a program, while each edge of the

graph represents a control flow or data flow between nodes. Each program performs a

function, such as web service invocation, script execution and HTML document creation.

The following briefly describes two examples to illustrate the composition of RESTful web

services implemented on the cyberinfrastructure platform.

Figure 4.6 shows the JOpera data flow of the first demonstrative application named

DataRetrievalByLocation. This application composes two web services Sensor

list retrieval and Sensor data retrieval in order to retrieve sensor data measured at a

specified location by a specified type of sensor. Here, the hollow arrows describe the input

and the output flow of each program, while the solid arrows describe the data flow and

control flow between programs. As described in Figure 4.6, the application consists of three

programs, namely SensorListRetrieval, SearchByLocation and

SensorDataRetrieval, and processes a request in five steps:

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

99

(1) The application accepts input arguments including target time period

(start_time, end_time), sensor type (sensor_type) and local coordinate

(loc_X and loc_Y) from a client.

(2) The start_time, end_time and sensor_type are passed to the program

SensorListRetrieval as input parameters. The program invokes the Sensor

list retrieval service with the input parameters, and then returns an output

parameter SYS.page enclosing the retrieved sensor list.

Figure 4.6 A composite application DataRetrievalByLocation: data flow

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

100

(3) The loc_X and loc_Y and the SYS.page from the previous step are passed to

the program SearchByLocation as input parameters. The program searches a

sensor corresponding to the loc_X and loc_Y from the sensor list, and then

returns sensor_id of the searched sensor.

(4) The start_time, end_time and the sensor_id from the previous step are

passed to the program SensorDataRetrieval as input parameters. The

program invokes the Sensor data retrieval service with the input parameters, and

then returns an output parameter SYS.page enclosing the retrieved sensor data.

(5) Finally, the SYS.page from the previous step is passed to the application’s

output sensor_data which is returned to the client.

Figure 4.7 shows the retrieved sensor data when the application is executed with the input

arguments 2014-08-01T00:00:00, 2014-08-10T00:00:00,

Accelerometer, 102 and -50, which correspond to start_time, end_time,

sensor_type, loc_X and loc_Y, respectively.

Figure 4.8 shows the data flow of the second application named SensorInfoOnMap that

composes an internal web service Sensor information retrieval and an external service

Google Map API. Given a sensor’s ID, the application shows sensor information at the

location of the sensor on the map. As shown in Figure 4.8, the application consists of three

programs, including SensorInfoRetrieval, SensorInfoParser and

MapHandler, and processes a request in five steps:

(1) The application accepts an input argument sensor_id from a client.

(2) The sensor_id is passed to the SensorInfoRetrieval as an input

parameter. The program invokes the Sensor information retrieval service with the

input parameter, and then returns an output parameter SYS.page enclosing the

sensor information.

(3) The output parameter of the previous step (i.e., SYS.page) is passed to the

SensorInfoParser as an input parameter. The program parses the sensor

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

101

information and returns extracted data entities including sensor’s ID, coordinate,

type, position and description.

(4) The data entities from the previous step are passed to the MapHandler. The

program returns an HTML document that displays extracted data entities on the

Google Map by using the Google Map JavaScript API [129].

(5) Finally, the HTML document from the previous step is passed to the application’s

output that can be visualized by a web browser.

Figure 4.7 A composite application DataRetrievalByLocation: Execution example

Input	screen

Retrieved	data

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

102

Figure 4.9 shows the result of the SensorInfoOnMap application with an input

argument TRB_u07_ch0, where the sensor information and the location marker are

displayed on the Google map.

Figure 4.8 A composite application SensorInfoOnMap: Data flow

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

103

4.5 Cloud-based Implementation

This section describes the cloud-based implementation of the proposed cyberinfrastructure

platform [73, 74]. The cyberinfrastructure platform needs to be scalable to handle large and

increasing amount of sensor data. The use of cloud computing enables scalability of the

Figure 4.9 A composite application SensorInfoOnMap: Execution example

Input	screen

Sensor	information	visualized	on	Google	map

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

104

cyberinfrastructure platform. The prototype implementation leverages Infrastructure as a

Service (IaaS) of cloud computing to enable portability. In addition, a hybrid cloud-based

decentralized data management is discussed to facilitate information sharing.

4.5.1 Cloud computing environment

The past decade has seen wide adoption of cloud computing in many large-scale industrial

applications, particularly in the Internet of Things (IoT) and big data arena. Advances in

cloud computing provide highly scalable and accessible computing environment, lessen

the burdens on the deployment, operation, maintenance and management of computational

resources, and reduce the cost [7, 57, 58, 59]. Many state-of-the-art data management

platforms take advantage of cloud computing to allow communication and data sharing

among physical systems, sensors, software applications and users. Using cloud computing,

an application, such as an engineering cyberinfrastructure platform, can be easily scaled

according to demand and optimized for usages of computing and storage resources.

Cloud computing services are typically categorized into three service models [56]: (1)

Software as a Service (SaaS) that provides applications and web services to end users, (2)

Platform as a Service (PaaS) that provides runtime and database supports, and (3)

Infrastructure as a Service (IaaS) that provides the basic computing utilities including

network, processor and storage. As depicted in Figure 4.10, the cloud-based engineering

cyberinfrastructure platform acts as PaaS and SaaS that utilize the computing

infrastructures and platforms (i.e., IaaS and PaaS) for hosting the data management and

application services.

IaaS utilities are typically offered in the form of virtual machines (VMs). A VM is a

virtualized computing system that emulates the underlying architecture of a physical

computer and offers the same functionalities of the physical computer [130]. A VM can be

provisioned and configured in minutes and be managed through cloud interfaces offered

by a cloud vendor. For example, Figure 4.11(a) shows the web portal interface of the

Microsoft Azure cloud platform [131] that shows the information about a VM such as its

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

105

name, status, operating system (OS) and size. Once provisioned, a VM can be accessed via

standard network protocols, such as Secure Shell (SSH) and Secure Copy Protocol (SCP).

Figure 4.11(b) shows the shell interface of a VM on the Azure cloud platform accessed via

the SSH protocol. Similar to using a remote server, a VM can be used to gain access to the

computing resources and software tools. The proposed cyberinfrastructure platform utilizes

VMs to access the computational services, such as distributed database, web servers and

engineering software applications.

The IaaS utilities can be scaled both vertically (by increasing capability of a VM) and

horizontally (by adding new VMs) on demand. While vertical scalability is limited to the

maximum capability of a single VM, the horizontal scalability is nearly unlimited since

cloud vendors allow adding as many VMs as needed. Figure 4.11(c), for example, shows

that multiple VMs are deployed as needed on the Azure cloud platform. To take advantage

of the scalability of an IaaS utility, thereby enabling scalable SHM data management, the

cloud-based cyberinfrastructure platform is designed to run on a distributed computing

environment such that new VMs can be dynamically added on demand. For example, the

cyberinfrastructure platform adopts a NoSQL database system which can be effectively

executed on multiple VMs to support distributed data management.

Figure 4.10 A model of cloud computing for SHM

Cloud-based	cyberinfrastructure	platform

Computing	Infrastructure
(e.g.,	Public	 cloud,	private	cloud,	hybrid	cloud)

Sensors,	applications,	users

Computing	 infrastructure	and	platform	(IaaS,	PaaS)

Data	management	and	application	services	(PaaS,	SaaS)	

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

106

(a) Web-based cloud interface

(b) Shell interface

(c) List of virtual machines deployed on Azure cloud platform

Figure 4.11 Virtual machine created on Microsoft Azure cloud platform

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

107

4.5.2 Hybrid cloud-based decentralized data management

Public cloud is the most common and well-known deployment model of cloud computing.

Public cloud vendor (e.g., Amazon, Microsoft and Google) owns, manages and operates

huge data centers and lend computing resources to customers over the Internet on a pay-

per-use basis. Based on resource pooling and virtualization, public cloud customers can

easily create, configure and scale computing resources on public cloud without the hassle

of managing and operating server hardware. Given the scalability, flexibility and reduced

maintenance effort, public cloud can be a viable alternative to on-premise server. In civil

infrastructure monitoring practice, however, there is also still a desire to maintain an on-

premise server to manage sensitive data, which civil infrastructure managers do not want

to upload to a public cloud operated by third-party vendors due to security concern. This

demand remains to be an issue that impedes the adoption of cloud computing for civil

infrastructure monitoring systems.

Hybrid cloud is another cloud deployment model where heterogeneous cloud

infrastructures (e.g. public cloud operated by public cloud vendor and on-premise private

cloud operated by private company) are bound together [56]. Hybrid cloud is useful to

optimize computing resources and to protect privacy of data. More specifically, a company

can adopt hybrid cloud for outsourcing the management of non-sensitive, voluminous data

to the public cloud, while managing sensitive data and applications within the private cloud

[132, 133]. Therefore, hybrid cloud can be a suitable computing infrastructure for

cyberinfrastructure platform for civil infrastructure monitoring.

Figure 4.12 depicts the conceptual framework of the hybrid-cloud based implementation

of cyberinfrastructure platform. Unlike the on-premise or public cloud-based platforms,

hybrid cloud-based platform can distribute data and applications over multiple locations

(e.g., public cloud and private cloud) according to their characteristic, such as volume,

sensitivity, privacy and ownership. In the proposed platform, public cloud system is

employed for the management of voluminous sensor data which requires high scalability

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

108

and availability, while the private cloud plays a role to handle sensitive data, such as

engineering models.

These two separate systems can communicate with each other through web services. For

example, when an application program requests sensor data retrieval from the public cloud,

the data is directly retrieved from the database on public cloud. On the other hand, when

an application program requests for an engineering model from the public cloud, the public

cloud forwards the request to the private cloud. The private cloud then retrieves

corresponding information from its database and deliver the information to the client via

the public cloud. In this way, the hybrid cloud system can abstract the underlying complex

structure and provides unified web services to clients.

4.6 Case Scenario: Civil Infrastructure Monitoring
Application

This section describes a case scenario using a bridge monitoring system as an example [73].

For demonstration, data collected from the Telegraph Road Bridge (TRB) is used. As

Figure 4.12 A framework of hybrid cloud-based implementation of cyberinfrastructure

platform for decentralized data management

Cyberinfrastructure Platform

Mapping layer
Storage layer (Sensitive data)

Communication layer

Private cloud

① Send
request

Applications

Cyberinfrastructure Platform

Mapping layer
Storage layer (Large data)

Communication layer

Public cloud

④ Return
response

② Forward
request

③ Return
response

Communication for
retrieving data residing

in private cloud

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

109

discussed in the previous chapter, the data include sensor data, traffic video image data,

geometric model, engineering model and sensor information. A prototype

cyberinfrastructure platform is implemented using the VMs provisioned on the Microsoft

Azure cloud computing service, as well as a private server. Table 4.3 summarizes the list

of computers composing the prototype cyberinfrastructure platform and their role.

4.6.1 Automated data store and retrieval

Two automated data store applications are developed using the cyberinfrastructure’s web

services to archive sensor data and video image data, respectively. Figure 4.13 shows the

workflow of the first application that runs on onsite computers and transmits sensor data

from an onsite computer to the cloud-based cyberinfrastructure platform. When new data

is transmitted from the sensor network to the onsite computer, the application records the

list of the new data files and labels them as “un-transmitted”. For an “un-transmitted” file,

the application parses the raw data file encoded in DAT file format (see Figure 4.14(a))

into a JSON format (see Figure 4.14(b)) that the “Sensor data store” service of the

cyberinfrastructure can read. The application then invokes the “Sensor data store” service

with the parsed sensor data. If the service returns a status code 200, the application changes

the label of the data file to “transmitted”. Otherwise, the application retries invoking the

“Sensor data store” service up to N times (i.e., a predefined maximum number of retries)

to ensure the transmission is done properly. This parsing and storing process is repeated

Table 4.3 Specification and role of cloud virtual machines and private server composing

cyberinfrastructure platform

Type Spec Quantity Role

Public cloud VM

Azure
Standard_A2m_v2 (2

cores, 16 GB memory)
5 Distributed database for

large data

Azure Standard DS2
v2 (2 cores, 7 GB

memory)
3 Web server

Private server Dell PowerEdge T620 1 Local data storage for
sensitive data

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

110

Figure 4.13 Workflow: application for data store automation

(a) Raw data file (b) Parsed sensor data

Figure 4.14 Sensor data file

Start

Is	there	a	new	data	file(s)?

n:	number	of	re-trying	web	service
N:	max	#	of	re-try	web	service
W:	waiting	time	between	loops

Store	data	file	list	to	a	local	storage	and	label	“un-transmitted”	

Parse	an	“un-transmitted”	data	file	and	set	n=0

Invoke	 the	sensor	data	store	service

Is	status	code	200?

Wait	for	W	
seconds

Mark	the	file	“transmitted”	(or	“failed”)

Is	there	un-transmitted	file?

Yes

No

n=n+1
No

Yes	(or	n=N)

Yes

No

Is	stop	requested?
No

Finish

Yes

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

111

until there are no “un-transmitted” data files in the list. Unless the application is forced to

be stopped, the application repeats the whole process every W seconds (i.e., a predefined

waiting duration between the repeats). Since the application keeps track of data

transmission status of data files, data losses due to an unstable network connection can be

minimized.

Figure 4.15 shows the workflow of the second application for collecting traffic video

images from an external data source (i.e., MDOT’s traffic monitoring system) and the

manner by which images are archived along with the camera ID and timestamp. The

application first accesses the data source to locate the dynamic Uniform Resource Locators

(URLs) of video image files. Once the URLs are found, the application fetches the video

image files and converts them to the BLOB format. The application then transmits the

Figure 4.15 Workflow: traffic video image collecting application

Start

n:	number	of	re-trying	web	service
N:	max	#	of	re-try	web	service
W:	waiting	time	between	loops

Is	status	code	200? n=n+1

No

Access	to	traffic	monitoring	system	and	download	HTML	document

Parse	the	HTML	document	to	find	the	URL	to	image	file

Fetch	the	image	data	and	convert	 into	BLOB	format	and	set	n	=	0

Invoke	 the	traffic	image	store	service

Is	stop	requested?

Finish

Yes

No

Yes	(or	n=N)

Wait	for	W	
seconds

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

112

BLOB data to the cyberinfrastructure by invoking the “Traffic image store” service. The

application service repeats this process every two seconds corresponding to the time

interval between new images in the MDOT’s traffic monitoring system.

Data stored in the cloud-based cyberinfrastructure platform can be easily retrieved using

data retrieval services. For example, Figure 4.16(a) shows a request for the “Sensor data

retrieval” service with query conditions including sensor ID (TRB_u131_ch0),

event_time_begin (2016-09-01T12:02:00.000z) and event_time_end

(2016-09-12T12:02:10.000z). Similarly, Figure 4.16(b) shows a request for the

“Traffic image retrieval” service with query conditions including camera ID

(Telegraph2), event_time_begin (2016-08-18T18:01:00.000z) and

event_time_end (2016-08-18T18:01:20.000z).

4.6.2 Data integration and utilization

The advantages of the cloud-based cyberinfrastructure platform are its ability to support

easy access, integration and utilization of SHM data. This section presents a demonstrative

example application developed to extract patterns from heterogeneous data (e.g., structural

(a) Sensor data retrieved by invoking the sensor data retrieval service

(b) Traffic images retrieved by invoking the traffic image retrieval service

Figure 4.16 Data retrieval using web services

GET /sensordata/TRB_u131_ch0?
event_time_begin=2016-09-
01T12:02:00.000z
&event_time_end=2016-09-
01T12:02:10.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

GET /imagedata/Telegraph2?
event_time_begin=2016-08-
18T18:01:00.000z
&event_time_end=2016-08-
18T18:01:20.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

113

sensing data and environmental data) to find the relationships between the modal

frequencies derived from sensor data with temperature measurements. The

cyberinfrastructure platform enables machine-to-machine communication so that the

workflow can be fully automated with applications written using programming scripts, for

example, Python. As shown in the conceptual workflow described in Figure 4.17, the

application accesses the cyberinfrastructure platform via web services, retrieve

acceleration data and temperature data, and performs analyses. The application service

comprises of the following steps:

(1) The application reads the input arguments StartTime and EndTime

specifying the target time period which typically includes multiple data

acquisition events.

(2) The application service retrieves the accelerometer list for a data acquisition event

by submitting request as a web service to the “Sensor list retrieval service” as

shown in Figure 4.18(a).

(3) The application service retrieves the acceleration data collected from the data

acquisition event for each accelerometer in the list by submitting a request (as

Figure 4.17 A workflow for relating structural behavior with temperature data

Cyberinfrastructure

Internet

(1) Read input
“StartTime” and

“EndTime”

(2) Retrieve
accelerometer list

(3) Retrieve
acceleration data

(4) Calculate natural
frequency

(5) Retrieve
thermistor list

(6) Retrieve
temperature data

(7) Run Gaussian
process regression

analysis

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

114

another web service) to the “Sensor data retrieval” service, as shown in Figure

4.18(b).

(4) The application executes the subspace identification module service [134] to

compute the modal frequency from the retrieved acceleration data.

(5) The application service retrieves the thermistor list for the data acquisition event

by submitting a request (as a web service) to the “Sensor list retrieval service” as

shown in Figure 4.18(c).

(6) The application service retrieves temperature data collected from the data

acquisition event by submitting a request to the “Sensor data retrieval” service, as

shown in Figure 4.18(d).

(a) HTTP request for accelerometer list retrieval

(b) HTTP request for acceleration data retrieval

(c) HTTP request for thermistor list retrieval

(d) HTTP request for temperature data retrieval

Figure 4.18 HTTP requests and corresponding CQL queries for sensor list and data

retrieval

GET /sensor?sensorType=Accelerometer&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u07_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensor?sensorType=Thermistor&
install=2014-08-01T00:00:00.000z&
remove=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

GET /sensordata/TRB_u45_ch0?
event_time_begin=2014-08-01T00:00:00.000z&
event_time_end=2014-08-01T02:02:00.000z HTTP/1.1
HOST: <ws_address>.cloudapp.azure.com

<-- Rest is omitted -->

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

115

(7) Executing Gaussian Process Regression (GPR) service to find the general pattern

on the variation between the fundamental modal frequency and temperature

measurements.

The application service repeats step 2 to step 6 by moving on to the next data acquisition

event until reaching the EndTime of the targeted period. Once modal frequencies and

temperature measurements that share the same timestamps are collected, the application

service proceeds to step 7 to perform regression analysis.

Figure 4.19(a) shows the history of the first modal frequency over the duration from June

2013 to August 2015. The modal frequencies vary with a seasonal trend and tend to

increase during the winter and decrease during the summer. As shown in Figure 4.19(b),

the GPR analysis result shows a nearly bilinear relation between the modal frequency and

temperature. This example application shows that the cyberinfrastructure platform can be

used to automate repetitive tasks involving multiple SHM data sets.

4.6.3 Web and mobile user interfaces

To facilitate ubiquitous access to the bridge monitoring information, preliminary web and

mobile user interfaces are developed based on the cloud-based cyberinfrastructure

platform. A web interface is an interactive program that reads user inputs via a web browser

(e.g., Google Chrome), invokes the requested web services and returns a web page

displayed on a web browser. The preliminary web interface supports the retrieval of sensor

list, sensor data, traffic video images and bridge models. The sensor information retrieval

interface (Figure 4.20(a)) allows users to retrieve the sensor list with query parameters

(e.g., “Sensor ID”, “Sensor type”, “Install before” or “Removed after”) by invoking the

“Sensor list retrieval” service. The sensor data retrieval interface (Figure 4.20(b)) accepts

query parameters (e.g., “Sensor ID, “Begin timestamp” and “End timestamp”) and returns

corresponding sensor data by invoking the “Sensor data retrieval” service. Similarly, the

traffic video image retrieval interface (Figure 4.20(c)) accepts query parameters (e.g.,

“Camera ID”, “Begin timestamp” and “End timestamp”) and returns corresponding traffic

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

116

video images by invoking the “Traffic image retrieval” service. The bridge model retrieval

interface (Figure 4.20(d)) allows users to download bridge models by invoking either the

“Geometric model retrieval” or “Engineering model retrieval” service. Through this

interface, users can specify the “Bridge name” and model type (e.g., “GeometricModel”,

(a) History of first modal frequency (from August 2013 to August 2015)

(b) Gaussian process regression showing the confidence interval of modal frequency

according to temperature changes

Figure 4.19 Patterns of modal frequency of the Telegraph Road Bridge

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

117

“FEModel (xml)” and “FEModel (xlsx)”). The bridge models downloaded can be

regenerated by proper software tools, such as the OpenBrIM Viewer [81] for geometric

models (Figure 4.21(a)) and CSiBridge for engineering models (Figure 4.21(b)).

(a) Sensor information retrieval (b) Sensor data retrieval

(c) Traffic image retrieval (d) Bridge model retrieval

Figure 4.20 Prototype web-based user interface

(a) Geometric model visualized by

OpenBrIM Viewer

(b) Engineering model visualized by

CSiBridge

Figure 4.21 Telegraph Road Bridge model downloaded from the web-based user

interface

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

118

A mobile user interface is also developed based on the cyberinfrastructure platform. The

mobile user interface reads user inputs via the mobile devices, invokes the web services,

and displays the retrieved information on the mobile devices. The preliminary mobile user

interface is built upon iOS operating system and supports the retrieval of sensor list, sensor

information and sensor data. For example, Figure 4.22(a) shows the sensor list view that

reads user’s search keyword (e.g., “Accelerometer”) and retrieves sensor list by invoking

the “Sensor list retrieval” service. Figure 4.22(b) shows the sensor map view that displays

the retrieved sensor list on a map view. Figure 4.22(c) shows the sensor detail view that

displays brief information about a sensor along with its sensor data by invoking the “Sensor

data retrieval” service. Figure 4.22(d) shows the sensor information view that displays a

sensor’s detailed information by invoking the “Sensor information retrieval” service.

4.7 Summary

This chapter describes a cyberinfrastructure platform tailored to civil infrastructure

monitoring. The platform offers easy-to-use data management services with interoperable

(a) Sensor list view (b) Sensor map

view

(c) Sensor detail

view

(d) Sensor

information view

Figure 4.22 Prototype mobile interface

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

119

interfaces, through which client systems can easily store and retrieve data, in order facilitate

the utilization of monitoring data. The platform consists of three layers: communication

layer, mapping layer and storage layer. The communication layer leverages web services

based on standard communication protocols to offer interoperable interfaces for data

management services. The mapping layer enables data mapping between the standardized

information modeling schema and database schema. The storage layer adopts the NoSQL-

based data management system (which was described in Chapter 3) to enable scalable data

management. The data management services offered by the cyberinfrastructure platform

can not only be invoked by different client systems, but also be composed with internal

and external web services to develop new services.

This chapter also presents the implementation of the cyberinfrastructure platform on cloud

computing environment. For the implementation, virtual machines deployed on public

cloud are employed. The use of cloud computing services has advantages on the scalability,

reliability, availability and easy maintenance of the underlying computing infrastructure.

In addition to public cloud-based implementation, this chapter also describes the hybrid

cloud-based implementation of the platform for the secure data management. Specifically,

the hybrid cloud-based platform is designed to handle voluminous sensor data on the

scalable public cloud, while the sensitive bridge information is stored on the private cloud.

The cyberinfrastructure platform is demonstrated with a case scenario of civil infrastructure

monitoring. Specifically, the prototype cyberinfrastructure platform has been implemented

for the bridge monitoring systems on the Telegraph Road Bridge. Several demonstrative

applications have been shown to illustrate the ease of use of the cyberinfrastructure

platform for civil infrastructure monitoring. For example, automated data store applications

are developed to transmit sensor data and traffic video image to the cyberinfrastructure

platform in real time. Furthermore, a demonstrative application that calculates the modal

frequency history is developed to show that applications, which involves multiple analysis

tasks, multiple queries and iterative jobs, can be developed by leveraging the

cyberinfrastructure platform. Finally, preliminary web and mobile user interfaces are

developed based on the cyberinfrastructure platform to support ubiquitous access to the

CHAPTER 4. CLOUD-BASED CYBERINFRASTRUCTURE PLATFORM

120

bridge monitoring. The demonstration results show that the cyberinfrastructure platform

enables easy prototyping and development of applications, and thus, facilitates the

utilization of monitoring data.

Chapter 5

Implementation of Data-driven Sensor
Data Reconstruction Procedure
utilizing the Cyberinfrastructure
Platform

5.1 Introduction

The cyberinfrastructure platform described in the previous chapter is designed to facilitate

sharing and utilization of data involved in civil infrastructure monitoring. Various

applications deployed on different computing systems (e.g., desktop computers, mobile

devices and cloud computing environments) can easily retrieve data in machine-readable

formats from the cyberinfrastructure platform via standardized communication protocols.

Through the cyberinfrastructure platform, applications can also share analysis results

among each other. This distributed computing environment can be very useful, particularly,

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

122

in performing computationally demanding data-driven analyses. For example, training of

artificial neural network (ANN) models is often computationally demanding and not

efficient to be performed on ordinary desktop computers. The cyberinfrastructure platform

can enable an automated data analysis pipeline that trains ANN models remotely on a high-

performance computing platform, stores the trained ANN models in a model repository

and shares the trained ANN models for use on ordinary desktop computers. The desktop

computers can perform less computational prediction procedure using the shared trained

model. To showcase the use of the cyberinfrastructure platform, this chapter presents a

data-driven sensor data reconstruction method implemented using the cyberinfrastructure

platform.

Sensor data reconstruction is an important task for the recovery of missing or faulty sensor

data, as well as for the detection of anomalies [135, 136]. Accurate reconstruction of sensor

data is critical for ensuring and maintaining a healthy sensor network of a monitored system.

Many sensor data reconstruction methods use the spatial correlation among the data in a

sensor network in order to estimate the data of the target sensors based on the data collected

by other sensors. For example, Kerschen et al. [137] present a principal component analysis

(PCA)-based method that extracts the PCA modes from the training data to perform

detection, identification and reconstruction of a faulty sensor. Kullaa [138] presents a

minimum mean square error (MMSE)-based method to reconstruct sensor data using the

covariance among the data from different sensors. Many data-driven machine learning

techniques have also been applied for the fault detection and diagnosis (FDD) problem

[139]. Artificial neural networks (ANNs), for instance, is one widely used technique for

sensor validation and reconstruction. For example, feedforward neural networks (FNN)

have been employed for sensor data reconstruction by structuring a neural network to have

the data of a target sensor as output and the data of other sensors as input [140, 141, 142,

143]. These studies show that FNN can effectively learn the nonlinear spatial relations

among the data collected from multiple spatially distributed sensors. Support vector

regression (SVR) has also been employed for sensor data reconstruction [144]. Methods

that consider only the correlations among the spatially distributed sensors, however, are

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

123

not effective when spatial correlation among sensors is weak (e.g., sensors separated by a

long distance). The spatial correlation-based methods can be improved for obtaining better

accuracy by taking into consideration other relevant information, such as the temporal

correlations of the sensor data.

Engineering systems, which are typically dynamic systems, often involve temporal

correlation (e.g., natural frequencies of the system) in addition to spatial correlation (e.g.,

mode shapes of the system) within the sensor data [145]. Effective use of spatiotemporal

correlation can potentially improve the accuracy of data reconstruction. However,

relatively little attention has been paid on spatiotemporal correlation-based sensor data

reconstruction, probably due to the increase of complexity. For example, by extending the

MMSE-based method to utilize the linear spatiotemporal correlation among the sensors,

Kullaa [138] has shown that more accurate data reconstruction can be achieved when

compared to using only the spatial correlation. ANN-based methods can be employed to

effectively learn the nonlinear spatiotemporal correlation among the sensor data.

Moustapha and Selmic [146], for example, employ recurrent neural network (RNN) to

learn about the spatial and the temporal correlation among the sensor data. One

shortcoming of RNN is that it considers only the information from the past in its input.

Future context, if available, can further improve the accuracy of sensor data reconstruction.

This chapter introduces an ANN-based sensor data reconstruction method that considers

both spatial and bidirectional temporal correlation among sensor channels from the same

system [77]. Specifically, bidirectional recurrent neural network (BRNN) [147], which is

an ANN architecture designed to learn about the temporal behavior in both the positive

time direction (i.e., past to present) and the negative time direction (i.e., future to present),

is employed. While this method can potentially improve reconstruction accuracy

compared to other existing methods, the training of a BRNN model is computationally

demanding. For efficient BRNN model training and sensor data reconstruction, a data

analysis pipeline is designed to enable seamless data flow between high-performance

computing platform and ordinary user devices (e.g., desktop computers) by leveraging the

previously described cyberinfrastructure platform.

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

124

This chapter is organized as follows. Section 5.2 presents a BRNN-based sensor data

reconstruction method. Section 5.3 validates the sensor data reconstruction method with

datasets obtained from numerical simulations. Section 5.4 presents a data analysis pipeline

for deploying a sensor data reconstruction procedure based on the cyberinfrastructure

platform. Section 5.5 demonstrates the use of the data analysis pipeline for the BRNN-

based sensor data reconstruction method with sensor data collected from the Telegraph

Road Bridge (Monroe, MI). Finally, this chapter conclude with a summary in Section 5.6.

5.2 BRNN-based Sensor Data Reconstruction
Method

This section describes a data-driven BRNN-based method for sensor data reconstruction.

The basic assumption is that the target system contains redundant information inherent in

the sensor network and that there exist spatial and temporal correlations among the sensor

data. The time series data of the (output) sensor of interest can be estimated using the time

series data collected from the other (input) sensors. Figure 5.1 describes the overall

framework of the sensor data reconstruction process which consists of two main phases:

Figure 5.1 Overview of sensor data reconstruction

Preprocessing BRNN model
training

Preprocessing

Performing
Reconstruction

Reconstructed
data

Receiving
Training data

models &
relevant info

Receiving
testing data

(1) Training phase

(2) Reconstruction phase

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

125

(1) the training phase, and (2) the reconstruction phase. In the training phase, the time series

sensor data collected from the normal state of the target system is employed as the training

dataset. The training data is preprocessed (i.e., normalized and scaled) and the

normalization and scaling factors are stored for later use in the sensor data reconstruction

phase. BRNN models are then constructed and trained using the pre-processed data. In the

reconstruction phase, the trained BRNN models utilize the preprocessed testing data and

reconstructs the time-series data for the sensor of interest.

5.2.1 Data preprocessing and normalization

Consider the time series input data $ collected from N sensors denoted as:

$ =

⎣
⎢
⎢
⎢
⎡)*

* ⋯)*
, ⋯)*

-

⋮ ⋱ ⋮ ⋮
)0
* ⋯)0

, ⋯)0
-

⋮ ⋮ ⋱ ⋮
)1
* ⋯)1

, ⋯)1
-⎦
⎥
⎥
⎥
⎤

		 (5.1)

where)0, denote the measurements at time ! for an input sensor 6. The !07 row of $ is

denoted as 80 = ()0
*, … ,)0

,,… ,)0
-) which contains the measurements from all = input

sensors at time !. The 607 column of $ is denoted as 8, = ()*
,,… ,)0

,,… ,)1
,)1 which is

the time series measurements of length > for the 607 input sensor. Similarly, the output

data ? from a single output sensor is denoted as:

? =

⎣
⎢
⎢
⎢
⎡
@*
⋮
@0
⋮
@1⎦
⎥
⎥
⎥
⎤

 (5.2)

where @0 denote the measurements at time ! for the output sensor. Given the paired time

series data A = ($; ?) , the sensor data reconstruction problem is considered as a

supervised regression problem for finding the nonlinear relationships between the input

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

126

sensors and output sensor utilizing the spatial and temporal correlations among the sensor

data.

To ensure the covariance of the input data in approximately of the same order between

different instances of the data (which ensures good convergence during the training

process), the input time series data is normalized to have zero mean and scaled within the

range of 〈−1,1〉 as [148]:

)0
, ←

)0
, − G,

H,
		 (5.3)

where G, and H, are, respectively, the mean and the absolute maximum value of the input

data vector 8I for sensor 6. Similarly, to make the output values within the typical range

of the neural network, the output time series data is normalized and scaled as [149]:

@0 ←
@0 − G̅
H̅

 (5.4)

where G̅ and H̅ are, respectively, the mean and the absolute maximum value for the output

data vector ?. The mean and the absolute maximum values for both the input and output

data vectors are recorded for later use during the sensor data reconstruction phase.

5.2.2 Architecture of the BRNN model

The bidirectional recurrent neural network (BRNN) model with a single hidden layer is

depicted as shown in Figure 5.2, Figure 5.3 and Figure 5.4. Figure 5.2 shows the basic

computational flow of the BRNN. Note that the computations involve values from both

positive and negative time directions across all time steps ! = 1, … , >. As shown in Figure

5.3, for every time step !, the BRNN model consists of three basic layers:

• An input layer with = input units containing the input data vector 80

• An output layer with a single output unit containing the predicted output @K0

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

127

• A hidden layer that consists of L forward hidden units with values denoted by

Mℎ0
O(1),… , ℎ0

O(L)P and L backward hidden units with values denoted by Q0R =

{ℎ0
R(1),… , ℎ0

R(L)}

One distinguishing feature of BRNN is the cyclic computational flows among the

computational units (called neurons) that enable the outputs of neurons at a time step to

become a part of the inputs of the neurons at different time steps. To consider both the past

data and the future data when reconstructing the present data, the BRNN model has

connections in the positive time direction for the forward hidden units, as well as

Figure 5.2 Structure of bidirectional recurrent neural network with a single hidden layer

and the computation flow of a forward pass

Figure 5.3 Organization of BRNN layers at a time step !

! − 1

$%$&

'(')

*+,-

.+,-(

.+,-)

/0+,-

! + 1

$%$&

'(')

*+2-

.+2-(

.+2-)

/0+2-

!

$%$&

'(')

*+

.+(

.+)

/0+

3

$%$&

'(')

*4

.4(

.4)

/04

5% 5%

5& 5&

1

$%$&

'(')

*-

.-(

.-)

/0-

Input
layer

Hidden
layer

Output
layer

… …

Positive time direction
Negative time direction

…"#$ "#% "#&'#

…ℎ#)(1) ℎ#)(2) ℎ#)(.)/#)

…ℎ#0(1) ℎ#0(2) ℎ#0(.)/#0

12#

Input
layer

Hidden
layer

Output
layer

Positive time direction
Negative time direction

34 35

6) 60

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

128

connections in the negative time direction for the backward hidden units, as shown in

Figure 5.2. For each time step !, the neurons are interconnected as follows:

• Each of the L forward hidden units containing Q0
O	is connected to each of the

input units of 80 as well as the L forward hidden units containing Q0U*
O of the

previous time step ! − 1.

• Each of the L backward hidden units containing Q0R is connected to each of the

input units of 80 as well as the L backward hidden units containing Q0V*R of the

next time step ! + 1.

• An output unit for @K0 is connected to all the L forward and the L backward

hidden units containing Q0
O and Q0R, respectively.

In summary, as illustrated in Figure 5.4, the BRNN is designed as a fully connected

network within each time step and between the hidden layers of the adjacent time steps.

Figure 5.4 Expanded view of interconnection between time steps ! and ! + 1 in the

BRNN structure

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

129

In Figure 5.2, the variables, WX, WY,ZX,ZY, [O	and	[R, denote the weights for the neural

network. The values Q0
O of the forward hidden units are computed using the input data 80

and the values Q0U*
O from the previous time step via an activation function _(∙) as:

Q0
O = _aWX80 +ZXQ0U*

O + bOc (5.5)

where bOis termed the bias for the forward hidden units. Similarly, the values Q0R of the

backward hidden units are computed using the input 80 and the values Q0V*R from the next

time step using the same activation function _(∙) as:

Q0
R = _aWY80 +ZYQ0V*

R + bRc (5.6)

where bRis the bias for the backward hidden units. Because of its ability to model nonlinear

relationships among the data, the hyperbolic tangent function is employed as the activation

function:

_(d) = tanh(d) =
(gh − gUh)
(gh + gUh)

 (5.7)

Finally, the predicted output is computed using a linear function as:

@K0 = [O ⋅ Q0
O + [R ⋅ Q0

R + j (5.8)

where j is the bias for the output unit. The weights and the bias represent the parameters

of the BRNN model to be “trained” using the input and output data sets.

5.2.3 Training of BRNN model

The BRNN model is trained by adjusting iteratively its parameters to minimize the loss

function k that measures the difference between the output data ? = (@*, … , @0 ,… , @1)1

and the reconstructed output data ?l = (@K*,… , @K0, … , @K1)1 . For initialization, the biases

bO, bR and j are set to zero and the elements for the weights WX, WY,ZX,ZY, [O	and	[R of

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

130

the BRNN are assigned randomly using a uniform distribution between − *

√n
 and *

√n
, where

o is the size of a prior layer (where, in this case, o = = for WX and WY , and o = L for

ZX,ZY, [O	and	[R) [150].

Once the parameters are initialized, the backpropagation through time (BPTT) algorithm

is employed for training the BRNN model [147, 151]. For each iteration, BPTT consists of

three steps: forward pass, backward pass and parameter updating. In each iteration, the

values Qp
O of the forward hidden units and the values Q1V*R for the backward hidden units

are initialized to be zero. In the forward pass, the predicted output @K0 , ! = 1,… , >, is

calculated using the input data $ through Eqs. (5.5), (5.6) and (5.8). In the backward pass,

the gradients of the loss function k (i.e., difference between the measured output ? and the

predicted output ?l) with respect to the parameters are computed. In this study, the loss

function, k, is computed using the mean-squared-error (MSE) function as:

k =
1
>
q(@0 − @K0)r
1

0s*

 (5.9)

For each time step !, the gradient of the loss function k with respect to the predicted output

@K0 is computed and is then propagated forward and backward through time via the network

to calculate the gradients of the loss function k with respect to the parameters. The

gradients for each parameter are summed over all > time steps for parameter updating. The

gradients of k computed with respect to the parameters are used to adjust the corresponding

parameters using an optimization procedure, such as Adaptive Moment Estimation (Adam)

[152]. Additionally, learning rate which limits the amount of adjustment per each iteration

is defined. The learning rate can affect the number of iterations in the training process and

the accuracy of the BRNN model. A higher learning rate can speed up the training, while

a lower learning rate likely improves the accuracy of the BRNN model. The three steps of

forward pass, backward pass and parameter updating iterate until either k converges or the

number of epochs (i.e., the number of times that the entire datasets are being processed)

reaches a prescribed limit. It should be noted that in the BRNN model, the weights

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

131

WX, WY, [O	and	[R and the biases bO, bR and j are the same for every time step, and the

weights ZX and ZY are the same for each forward and backward time step. Details on the

forward pass, backward pass and parameter update for BRNN can be found in [151, 153].

One issue of training BRNN is their significant computational and memory requirements

due to the chains of connections linking the neurons. For unidirectional RNN, truncated

BPTT (TBPTT) methods are often used to reduce the computational cost and memory

usage by limiting the number of time steps for which the loss is propagated [154, 155].

However, implementing the TBPTT strategy for BRNN is not practical because the hidden

units along either the positive or negative time directions need to be processed over all time

steps in order to compute the estimated outputs. Instead, this work adopts a batch learning

approach [155]. As summarized in Algorithm 5.1, the approach defines a batch size t

which is the maximum number of consecutive data points to be used in an iteration

(corresponding to one cycle of forward pass, backward pass and parameter updating for

that batch). That is, the training dataset A = ($; ?) with > consecutive data points is

divided into ⌊>/t⌋ batches so that the batches A*, … ,A⌊1/x⌋U* each contains t

consecutive data points whereas A⌊1/x⌋ contains the remaining > − (⌊>/t⌋ − 1) × t

consecutive data points (see step 3 of Algorithm 5.1). As shown from steps 6 to 11 in

Algorithm 5.1, each batch of the dataset is trained independently. Step 4 of the Algorithm

5.1 shows the stopping criteria for the training when either the maximum number of

epochs	z is reached or the loss change, ∆k, is within a defined threshold, ∆k|}~�Ä. With this

approach, BRNN can be trained with a large amount of training data without causing

excessive memory usage by limiting the number of times the loss is propagated.

5.2.4 Sensor data reconstruction

Consider a test dataset A′ = ($Ç; ?Ç) collected from the same = input sensors and an

output sensor with >Ç consecutive data points per sensor. The length of the data points (i.e.,

the sensor data) should span over a certain time period sufficient to establish the temporal

correlation among the sensor data. The sufficient period may preclude true real-time data

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

132

reconstruction, but the actual time duration is relatively short. As shown in the examples

described later in Section 5.3, collecting 1,000 consecutive data points takes only five

seconds at a sampling rate of 200 Hz.

The sensor data reconstruction is performed as follows. Using the normalization and

scaling factors recorded in the training phase, the data A′ is first normalized and scaled

using Eqs. (5.3) and (5.4). The trained BRNN model then takes the input data $′ to compute

the prediction ?lÇ for the output sensor’s data according to Eqs. (5.5), (5.6) and (5.8). Here,

the initial forward hidden units Qp
O and the backward hidden units Q1ÉV*

R are assumed to be

vectors of zeros. It should be noted that the reconstructed data for the first and the last few

Algorithm 5.1. Training of BRNN model
Input:

 A = ($; 	?): preprocessed training dataset
>: number of training data points
t: batch size
z: number of maximum epochs
∆k|}~�Ä: minimum value of loss change
Ñ: learning rate

1: Initialize the BRNN model’s weights and biases
2: Initialize: number of epochs Ö ← 0, loss in the previous step ká~�à ← ∞, and

change of loss ∆k ← ∞
3: Divide A into ⌊>/t⌋ batches: A = MA,… ,A⌊1/x⌋P
4: while (Ö < z) or (∆k > ∆k|}~�Ä) do
5: Set kåç~~ ← 0
6: for each Aé = ($é; ?é), è = 1, …, ⌊>/t⌋ do
7: Forward pass: compute ?lé using input $é according to Eqs. (5.5), (5.6) and

 (5.8)
8: Backward pass: (a) compute the loss function k between output ?é and ?lé

 using the MSE function in Eq. (5.9), and (b) compute the gradients of
 the loss with respect to the BRNN parameters

9: Parameter updating: update the weights and biases based on the gradients
 of the loss with respect to the parameters and the learning rate Ñ using
 Adam [146]

10: kåç~~ ← kåç~~ + k
11: end for
12: Update Ö ← (Ö + 1); kåç~~ ←

êëíìì
⌊1/x⌋

; ∆k ← îká~�à − kåç~~î; ká~�à ← kåç~~
13: end while

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

133

(e.g., 10) time steps can be erroneous due to the effect of the initial hidden units. The

accuracy of the reconstructed data can be evaluated by measuring the discrepancy between

the measured output ?Çand the predicted output ?l′, for example, using the root-mean-

square-error (RMSE) as:

ï = ñ∑
(@K0

Ç − @0
Ç)r1É

0s*

>′
 (5.10)

The trained BRNN model can have at least two different usages. First, if the output sensor

is known to be faulty, the faulty measurement data can be replaced by the reconstructed

data (as will be discussed in Section 5.5.4). The reconstructed data can be further utilized

to estimate the health condition (e.g., operational frequency and mode shapes) of the

monitored system even when some of the sensors are faulty. Second, if the output data

possesses the possibility of anomalies, the testing error ï computed by Eq. (5.10) can be

used as to validate the output sensor (as will be illustrated in Section 5.3.1.3). Since the

BRNN model’s testing errors computed using the intact datasets tend to lie within a narrow

range, some statistical information (such as, maximum value or 95% confidence interval)

about the testing errors can be used as the thresholds for distinguishing the potential

anomaly. The utilization of the BRNN-based sensor data reconstruction method will be

further discussed in Section 5.3 and Section 5.5.

5.3 Demonstration of Sensor Data Reconstruction
Method with Numerical Simulation

In this section, the BRNN-based sensor data reconstruction method is demonstrated with

vibration data obtained from numerical simulations. The FE model, as shown in Figure

5.5(a), is constructed for the Telegraph Road Bridge [156, 157]. Vertical vibration

responses due to randomly traveling vehicles are simulated and recorded at 18 (sensor)

locations on the two exterior girders, as shown in Figure 5.5(b).

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

134

To emulate the load conditions on a bridge, the moving vehicles are randomly defined

using the variables summarized in Table 5.1. The vehicle types (labelled as auto, H-20,

HS-20 and HS-25) and their loads are defined based on the AASHTO (American

Association of State Highway and Transportation Officials) standard [158], as shown in

Figure 5.6. Dynamic time history analyses using CSiBridge are performed with

randomized traffic on the bridge to generate the vertical vibration response (sensor) data.

It should be noted that the vehicle-bridge interaction is ignored in the analyses. Each

analysis assumes a 10-second duration with incremental time step size of 0.005 (i.e., a

(a) 3-D FE model (b) Sensor layout

Figure 5.5 (a) Finite element model and (b) sensor layout of the Telegraph Road Bridge

Figure 5.6 Vehicle load definition

Table 5.1 Random variables composing randomized traffic

Factor Values
Number of vehicles 1, 2, …, 9
Vehicle type Auto, H-20, HS-20, HS-25
Vehicle speed 70 – 120 km/h (45 – 75 mph)
Vehicle lane Three lanes (lane 1, lane 2 and lane 3)
Vehicle interval in a lane 1.5, 3.0, 4.5, 6.0 seconds

Direction

68m

15m

Lane 1 Lane 2 Lane 3

Span
considered

19m 31m = 3.875m X 8 18m 10m

31m = 3.875m X 810m 18m 19m

9 1210 15 16 1711 13 14

0 31 6 7 82 4 5

Direction

Lane 1

Lane 2

Lane 3

Span considered

8 kips 32 kips

14'

H-20

8 kips 32 kips

14'

32 kips

28'

HS-20

10 kips 40 kips

14'

40 kips

28'

HS-25

Auto

4 kips 4 kips

9'

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

135

sampling rate of 200 Hz). To generate sufficient amount of data for the data-driven method,

a total of 300 analyses are conducted for each FE bridge model with randomized moving

vehicle loads. Through 300 analyses, 600,000 data points per sensor location are collected,

normalized, and scaled as shown in Figure 5.7.

BRNN models are constructed using PyTorch [159]. The hyperparameters for the BRNN

model training are selected heuristically to ensure sufficient data reconstruction accuracy,

as well as reasonable computing time. The selected hyperparameters are as follows:

• Number of forward hidden units: 50

• Number of backward hidden units: 50

• Maximum number of epochs: 200

• Learning rate 10Uò

The appropriate training dataset size and the batch size will be examined and discussed

first based on the reconstruction accuracy of the BRNN.

Figure 5.7 Simulated vertical acceleration measurements of the Telegraph Road Bridge

(Monroe, MI)

1

3

2

4

5

6

7

8

9

10

11

13

15

17

12

14

16

0

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

136

5.3.1 Effects of training parameters

This section describes the training of BRNN models for sensor data reconstruction and

discusses the effect of batch size, training dataset size and testing dataset size on the data

reconstruction accuracy and computing speed. Two BRNN models for two different output

sensors are considered for testing purpose. The first model has Sensor 4 (located at the

middle of the topmost girder of Figure 5.5(b)) as the output sensor, while all other sensors

are the input sensors. The second model has Sensor 9 (located near the support of the

bottommost girder) as the output sensor, while all the other sensors are the input sensors.

For the implementation of sensor data reconstruction procedure as described in Algorithm

5.1, it is important to choose the appropriate batch size. On the one hand, if the batch size

is too small, sensor data reconstruction would be inaccurate because of the initial hidden

units of zero values, as well as insufficient temporal correlation. On the other hand, if the

batch size is too large, model training would require very large memory usage (which does

not necessarily lead to better accuracy). To investigate the effect of batch size, the two

BRNN models are trained with different batch sizes using the training dataset of fixed size.

Here, 100,000 data points (from the data points 1 to 100,000) are selected as a training

dataset. Five testing datasets, each of which has 40,000 consecutive data points per sensor,

are selected from the data points 200,001 to 400,000. Figure 5.8 shows the RMSE error

between the actual and reconstructed values, the training time per epoch and the

reconstruction time with respect to the different batch sizes for Sensors 4 and 9. For both

sensors, the errors are relatively low when the batch size is higher than 100. In addition,

the training times are relatively low when the batch size ranges from 100 to 2,000. It can

also be seen that the time for testing is almost the same for all batch sizes. Based on the

results, the batch size ranging from 200 to 2,000 data points is able to achieve a good

balance of training time and reconstruction error from the testing datasets.

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

137

The next example examines the effect of the training dataset size on data reconstruction.

The two BRNN models are trained using training datasets of different size ranging from

5,000 to 150,000, while the batch size is kept at 200 data points. For every training dataset,

the normalization and scaling factors are obtained from the largest dataset with 150,000

data points so that the testing errors can be compared. Similar to the previous example, five

testing cases each of which has 40,000 consecutive data points per sensors (selected from

the data points 200,001 to 400,000) are used. Figure 5.9 shows the testing error, the training

time per epoch and the testing time with respect to the different training data size for

Sensors 4 and 9. As can be seen in the figure, the training time increases nearly linear as

the training data size increases, while the testing times are the same regardless of the

training data size. For both sensors, the error decreases rapidly until the training data size

reaches 80,000; beyond that, little improvements (sometimes worsen) are observed. Based

(a) Sensor 4

(b) Sensor 9

Figure 5.8 Reconstruction error, training time and reconstruction time with respect to

different batch sizes

0
20
40
60
80
100
120
140
160

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

10 100 1000 10000

Ti
m

e
(s

)

Re
co

ns
tr

uc
tio

n
er

ro
r (

RM
SE

)

Batch size

test1 test2 test3 test4 test5 training time (per iter) testing time

0

20

40

60

80

100

120

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

10 100 1000 10000

Ti
m

e
(s

)

Re
co

ns
tr

uc
tio

n
er

ro
r (

RM
SE

)

Batch size

test1 test2 test3 test4 test5 training time (per iter) testing time

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

138

on the results, the training dataset size equal to or higher than 80,000 data points would

achieve a good accuracy for sensor data reconstruction.

The last example examines the effect of the size of the testing dataset on data

reconstruction. Since the initial hidden units (i.e., Qp
O and Q1ÉV*

O) of BRNN models are set

to zero vectors, the testing error could be high when the testing dataset is very short. Sensor

data reconstructions are performed using the two BRNN models for different testing data

sizes ranging from 10 to 40,000. To see the effects due to the zero vectors of the initial

hidden units, the testing dataset is selected from the data with relatively high amplitudes

(from the data points 200,401 to 240,400). In addition, the two BRNN models are trained

with 80,000 data points (from the data points 1 to 80,000) per sensor and a batch size of

200 data points. Figure 5.10 shows the error and the computational time for the testing

dataset with respect to the data size. The results show that the errors are relatively consistent

(a) Sensor 4

(b) Sensor 9

Figure 5.9 Reconstruction error, training time and reconstruction time with respect to

different training data sizes

0
20
40
60
80
100
120
140

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

0 20 40 60 80 100 120 140 160

Ti
m

e
(s

)

Re
co

ns
tr

uc
tio

n
er

ro
r (

RM
SE

)

Training data size (1,000 data points)

test1 test2 test3 test4 test5 training time (per iter) testing time

0
20
40
60
80
100
120
140

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0 20 40 60 80 100 120 140 160

Ti
m

e
(s

)

Re
co

ns
tr

uc
tio

n
er

ro
r (

RM
SE

)

Training data size (1,000 data points)

test1 test2 test3 test4 test5 training time (per iter) testing time

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

139

when the testing data size reaches 1,000 or higher for both sensors. It can also be seen that

the data reconstruction time increases linearly as the size of testing dataset increases. Based

on the results, the testing dataset size equal to or higher than 1,000 data points would be

sufficient to mitigate the effect of initial hidden units with zero vectors.

5.3.2 Comparison of BRNN-based sensor data

reconstruction with other methods

As discussed in the introduction section of this chapter, other data-driven sensor data

reconstruction methods, such as principal component analysis (PCA) [137], minimum

mean square error (MMSE) estimation [138], feedforward neural network (FNN) [142] and

recurrent neural network (RNN) [146], have been proposed. In this section, the BRNN-

(a) Sensor 4

(b) Sensor 9

Figure 5.10 Reconstruction error and testing time with respect to different testing data

sizes

0

2

4

6

8

10

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

10 100 1000 10000 100000

Ti
m

e
(s

)

Te
st

in
g

er
ro

r (
RM

SE
)

Testing data size

error testing time

10 102 103 104 105

0

2

4

6

8

10

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

10 100 1000 10000 100000

Ti
m

e
(s

)

Te
st

in
g

er
ro

r (
RM

SE
)

Testing data size

error testing time

10 102 103 104 105

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

140

based sensor data reconstruction method is evaluated by comparing it with the existing

methods. Again, two BRNN models for reconstructing the data of Sensor 4 and Sensor 9

are created for testing purpose. For comparison, PCA, MMSE, FNN and RNN models

corresponding to the two BRNN models are also created. As listed in Table 5.2, the FNN-

and RNN-based models are created with the same hyperparameters of the BRNN model.

All the models are trained with 80,000 data points (from the data points 1 to 80,000) per

sensor. For evaluation, the testing dataset has 40,000 data points per sensor and is selected

from the data points 80,001 to 120,000. Figure 5.11 shows the samples of sensor data

reconstruction results using the different methods. It should be noted that Figure 5.11

shows only 100 data points out of 40,000 data points of entire reconstructed data so that

the plots can clearly shows the comparison between the original data and the reconstructed

data.

As can be seen in Figure 5.11(a), all methods work well for Sensor 4 which is located at

the center of the bridge. For Sensor 9, which is located near the span support, the RNN and

BRNN methods work better than the other methods as shown in Figure 5.11(b). Table 5.3

provides detailed information on the reconstruction results, including the computation time

and the testing errors. A notable aspect shown in the results is that the testing error for the

sensor at the center of the bridge (i.e., Sensor 4) is generally lower than the sensor located

near the support of the bridge (i.e., Sensor 9). This is because the sensor located near the

Table 5.2 Data-driven sensor data reconstruction models for comparison

 FNN RNN
Number of hidden layers 1 1
Number of hidden units 100 100
Transfer function (hidden layer) Hyperbolic tangent

function
Hyperbolic tangent

function
Transfer function for output layer Linear function Linear function
Optimization algorithm Adam Adam
Loss function MSE MSE
Learning rate 10Uò 10Uò
Maximum number of epochs 200 200

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

141

(a) Sensor 4

(b) Sensor 9

Figure 5.11 Simulation: sensor data reconstruction with the different methods

Table 5.3 Simulation: computing time and reconstruction error

 PCA MMSE FNN RNN BRNN
Training time per epoch (sec/epoch) - - » 0.51 » 34.19 » 86.21
Total training time (sec) » 0.053 » 0.026 » 102 » 6,838 » 17,242
Testing time (sec) » 2.155 » 0.006 » 0.049 » 7.445 » 8.3971
Testing RMSE for Sensor 4 0.0154 0.0151 0.0125 0.0034 0.0035
Testing RMSE for Sensor 9 0.0658 0.0432 0.0308 0.0105 0.0070

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

142

support has only one adjacent sensor, which means that there exists less spatial information

for estimating the sensor data. Nevertheless, BRNN models yield much smaller testing

error for Sensor 9 than all other methods, because BRNN takes both spatial and

bidirectional temporal correlation into account. One tradeoff of the BRNN models’

accuracy is the amount of training time required. But once the BRNN model is trained, the

reconstruction process can be executed very efficiently even though the computing time

remains higher than the other methods.

5.3.3 Sensor validation

This section demonstrates the utilization of the sensor data reconstruction method for

sensor validation, including fault detection and isolation. Among the widely used fault

detection and isolation (FDI) methods is the analytical redundancy approach that

determines anomalies by comparing system measurements with analytically estimated

information [139, 160, 161]. The basic idea of sensor validation is that the existence of a

faulty sensor will lead to some “measurable” difference between the measured data and the

reconstructed data.

For the demonstration, three types of datasets are defined: a training dataset, a set of

baseline datasets and a faulty dataset. The training dataset is a good quality (fault-free)

dataset for training the BRNN models. 80,000 data points (from the data points 1 to 80,000)

per sensor are used as the training dataset. The baseline datasets are also fault-free datasets

for obtaining statistical information of the testing error when no anomaly exists. Ten

baseline datasets, each with 40,000 data points selected from the data points 80,001 to

480,000, are defined. The faulty dataset is the dataset that contains some anomalies (i.e.,

faults). For testing purposes, the faulty dataset contains 40,000 data points (selected from

the data points from 480,001 to 520,000) per sensor. In the faulty dataset, the data of

Sensors 4 and 6 are manipulated to emulate faulty sensor data. Specifically, for the faulty

dataset, random noises H are introduced to the data, denoted by)0,, of Sensor 4 and 6 as:

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

143

)0
, ←)0

, × H, H ∈ =(1, ör) (5.11)

where ö is the level of noise which is set by varying ö = 0, 0.05, 0.1.

The goal of fault detection is to determine the existence of a faulty sensor in a system. The

experimental test for fault detection is conducted as follows:

(1) For each sensor, a BRNN model that has that sensor as the output and all other

sensors as input is created.

(2) All created BRNN models are trained using the training dataset.

(3) Sensor data reconstruction is performed for the 10 baseline datasets using the

trained BRNN models.

(4) For each sensor, the 95% confidence interval of the testing error is computed

based on the testing errors from the 10 baseline datasets. The 95% confidence

interval serves as the threshold for sensor validation.

(5) Sensor data reconstruction is performed for the faulty dataset using the trained

BRNN models.

(6) For each sensor, the testing error from the faulty dataset is computed and

compared with the threshold for sensor validation.

Figure 5.12(a) shows the difference between the testing error ï from the faulty dataset that

exceeds the threshold of the 95% confidence interval. As shown in Figure 5.12(a), the

testing errors exceed the thresholds when the noise level ö ≥ 0.05. As the noise level

increases, the discrepancy between the testing error from the faulty data and the thresholds

of the baseline model increases. It can also be seen that the discrepancies appear on all

sensors (1-8) along the same girder with Sensors 4 and 6. This result is probably due to

higher correlations among the sensor channels on the same girder. While the anomaly is

detected by comparing the testing errors and thresholds, further analysis is needed to

identify the location of the faulty sensor.

While anomaly detection focuses on determining if any faulty sensors exist in the sensor

network, the goal of anomaly identification is to localize the faulty sensor in a system. A

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

144

simple approach for anomaly identification would be to infer the sensors with testing errors

exceeding their thresholds as faulty sensors. However, this approach is prone to false

positives because a faulty sensor can affect the testing error not only for the faulty sensor

itself, but also on the other (input) sensors. Another approach is to consider the sensor with

the largest testing error in comparison to the threshold used for the anomaly detection as

the faulty sensor. However, this approach is prone to false negatives, in particular, when

there exist multiple faulty sensors. To avoid the likelihood for false positive and false

negative errors, this work employs an elimination approach. The basic idea is that the faulty

sensors do not affect the measurement of other sensors and, thus, the anomaly disappears

if all faulty sensors are removed from the sensor network.

To identify the faulty sensor, the dataset for Sensor 6, which has the highest discrepancy

between the testing errors from the faulty dataset and the threshold, is assumed to be faulty

and removed. For the remaining 17 sensors, the procedures of model construction, model

training, computing the thresholds and calculating the testing errors with the faulty dataset

are repeated. Figure 5.12(b) shows the results after removing the data of Sensor 6. The

(a) Anomaly detection with

all sensors

(b) Anomaly detection after

excluding Sensor 6

(c) Anomaly detection after

excluding Sensor 4 and 6

Figure 5.12 Simulation: anomaly detection and identification for the anomaly due to

noise at Sensor 4 and 6

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

145

results, however, still show detected anomalies, where Sensor 4 has the highest discrepancy

between the testing errors and its threshold. Therefore, the anomaly identification

procedure is continued by removing the datasets for Sensors 4 and 6. For the remaining 16

sensors, the procedures for model training, computing the threshold and calculating the

testing error is repeated. Figure 5.12(c) shows the results without the datasets from Sensors

4 and 6. As no anomaly is detected after removing the datasets for Sensors 4 and 6, this

implies that Sensors 4 and 6 are faulty. This example shows that the BRNN-based method

can potentially help detect and identify faulty sensors.

5.4 Data Analysis Pipeline based on
Cyberinfrastructure Platform

This section describes the pipeline for implementing the BRNN-based sensor data

reconstruction procedure with the cyberinfrastructure platform developed in the previous

chapter. Typically, it is time-consuming to train an artificial neural network. High-

performance computers can be used to speed up the training process. However, in general,

high performance computers are relatively expensive and may not be cost-effective for less

computationally demanding task. In this work, we train the BRNN model for sensor data

reconstruction on a high-performance computer and store and share the trained sensor data

reconstruction model on the cyberinfrastructure platform. During the sensor data

reconstruction phase, the BRNN model is imported to a local computer for execution. This

section describes in detail the overall data and computational flow for the data-driven

machine learning process.

Figure 5.13 describes the overall organization for utilization of the cyberinfrastructure

platform for long-term data analysis process. There are three main components involved in

the process: a high-performance computer (on the premise or on the cloud), the

cyberinfrastructure platform and a local computer. The high-performance computer,

typically equipped with one or more GPUs, is employed for the computationally

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

146

demanding task for training the sensor data reconstruction model. The cyberinfrastructure

platform serves as a data hub which manages the sensor data, as well as the trained models.

The local computer platform (such as a desktop or laptop computer, or a tablet) is employed

to perform sensor data reconstruction using the trained models. This section describes the

computational processes on each of components and their interactions.

5.4.1 Training of BRNN model on high-performance

computer

For the computationally intensive training of the BRNN-based sensor data reconstruction

model, high-performance computer, which can be an on-premise machine or a virtual

machine deployed on cloud platform, is desirable. For training the BRNN model, the

following assumptions are made:

• The time period during which the sensor data with good quality is collected is

known.

• The list of input and output sensors pairing for the BRNN predictive model are

selected.

• The hyperparameters (e.g., number of hidden units) of the BRNN-based sensor

data reconstruction model, as described in Section 5.2, are pre-defined.

Figure 5.13 Overview of data analysis process for sensor data reconstruction

Cyberinfrastructure platform

High-performance computer (HPC)

GET /sensordata

Preprocessing Prediction
model training

Retrieving
Training data

Local computer platform (LPC)

Preprocessing Performing
prediction

Retrieving
Testing data &
Trained model

POST /trainedmodel GET /sensordata; GET /trainedmodel

Data & trained model repository

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

147

Training a sensor data reconstruction model consists of three basic steps: retrieval of the

training data set, training of the model, and uploading and storing the trained model.

First, the training dataset is retrieved and loaded on the high-performance computer from

the cyberinfrastructure platform over the Internet as a web service. To retrieve the sensor

data of a specific sensor, the application service implemented on the high-performance

computer invokes the sensor data retrieval service on the cyberinfrastructure platform by

sending an HTTP request:

GET /sensordata/TRB_u07_ch0?

event_time_begin=2014-07-14T00:00:00.000z&

event_time_end=2014-07-14T23:59:59.000z HTTP/1.1

HOST: <cyberinfrastructure platform address>

The query includes parameters, such as sensor ID (TRB_u07_ch0) and the time period

(from 2014-07-14T00:00:00.000z to 2014-07-14T23:59:59.000z) when

the sensor data is collected. The cyberinfrastructure platform then returns corresponding

sensor data encoded in JSON format, as shown in Figure 5.14. The data retrieval request

is repeated for each of the input and output sensors. The retrieved sensor data is then

mapped to a matrix object (e.g., Numpy matrix object) that can be read by a machine

learning tool.

With the retrieved data, a high-performance computer is employed to train the sensor data

reconstruction model, following the forward and backward passes and the parameter

update procedure, as described in Section 5.2.3.

Once trained, the BRNN model and its metadata are uploaded and stored to the

cyberinfrastructure platform. The parameters (i.e., the weights and biases) and the metadata

of the trained model is mapped into a JSON format. For example, Figure 5.15 shows a

JSON object containing a BRNN model, which has an output sensor TRB_u191_ch0 and

11 input sensors (TRB_u07_ch0, TRB_u131_ch0, …), and its metadata. In the current

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

148

implementation, the metadata stored along with the BRNN model includes the following

information:

• Input and output: the ID of the target output sensor (output_sensor) and IDs

of the input sensors (input_sensor).

• Training dataset information: the time period when the training dataset is

collected (training_data_begin and training_data_end), the

number of data points per sensor (training_data_length) and scaling and

normalization factors (scaling_factor and normalization_factor).

• Hyper-parameters relevant to training procedure: the number of hidden units

(hidden_layer_size), size of the batch (batch_size), stopping criteria

(number_of_epoch and min_loss_change_threshold), learning rate

(learning_rate), loss function (loss_function) and optimization

procedure (optimization_algorithm).

Figure 5.14 Sensor data (JSON format) retrieved from the cyberinfrastructure platform

by invoking sensor data retrieval service

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

149

The parameters of the BRNN model are mapped into JSON format using double-precision

array data type. For example, the weights WX, WY,ZX,ZY, [O	and	[R of the BRNN model

are mapped into the arrays param_uf, param_ub, param_wf, param_wb,

param_vf and param_vb, respectively. The biases bO, bR and j of the BRNN model

are mapped into the arrays param_bf, param_bb and param_c, respectively.

Figure 5.15 Trained BRNN model and metadata encoded in JSON format

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

150

The JSON-encoded data is transmitted to the cyberinfrastructure platform by invoking a

model storing service via an HTTP request structured as:

POST /trainedmodel HTTP/1.1

HOST: <cyberinfrastructure platform address>

<A blank line separating header and body>

<Attachment: JSON data>

This request includes query the JSON-encoded data as an attachment. Once the data is

transmitted, the cyberinfrastructure platform parses the BRNN model and its metadata and

stores them in a model database, as discussed next in Section 5.4.2.

5.4.2 Storing the trained model on cyberinfrastructure

platform

The trained models and their metadata are managed on the cyberinfrastructure platform so

that the model can be shared and used by different machines and devices. Web services are

implemented on the cyberinfrastructure platform to facilitate storing and retrieving the

trained models. Receiving the HTTP request for storing trained model, the corresponding

web service is invoked and parses the JSON data attached in the request. Furthermore, a

database schema is defined for managing the trained models. The web service generates a

query statement to store the parsed data in the database (Cassandra database in current

implementation) on the cyberinfrastructure platform.

Figure 5.16 shows the database schema defined for storing trained model (i.e., trained

weights and biases) along with metadata needed for querying and utilization of the model.

In this schema, the list of input sensors and the output sensor are recorded to identify the

input-output sensors of the model. The normalization and scaling factors are stored for the

processing of sensor data in the sensor reconstruction phase. In addition, the BRNN

model’s hyper-parameters (e.g., hidden layer size, batch size, number of epochs, minimum

loss change threshold, learning rate, loss function and optimization algorithm) and

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

151

information on the training dataset (e.g., the period when the training dataset is collected

and the length of the training dataset) are stored to provide the information about the trained

model. For different versions of the models (for example using different time periods for

the same input and output sensors), the created time attribute is defined as a primary key

for the model version. Each of the parameters of BRNN model is stored in a column, as

shown in Figure 5.16. Two-dimensional double-precision array data type is employed to

store the weights, while one-dimensional double-precision array data type is used to store

the biases.

Once the trained model is stored in the database, the model stored can be retrieved and

used by different client devices by invoking the model retrieval service, which is discussed

in the next section.

5.4.3 Sensor data reconstruction on local computer

With the trained sensor data reconstruction model archived on the cyberinfrastructure

platform, the model can be retrieved as needed by any devices for reconstruction of the

data for the output sensors. Here, a desktop computer is employed to illustrate the sensor

data reconstruction process. For retrieving the trained model, the desktop computer first

invokes the model retrieval service by sending an HTTP request to the cyberinfrastructure

platform as follows:

Figure 5.16 Data schema for storing sensor data reconstruction model

output_sensor:
TRB_u131_ch0

created_time input_sensor
normalization

_factor
scaling_factor

hidden_layer

_size
batch_size

number_of_

epoch
…

2018-01-01

00:00:00

[TRB_u07_ch0,

TRB_u57_ch1]

{”TRB_u57_ch1

”: 1.9e-17, …}

{”TRB_u57_ch1

”: 26.743, …}
50 200 200 …

Hyper-parameters of BRNN modelPrimary keys

Training dataset information

training_

data_begin

training_

data_end

training_data

_length
param_uf param_ub param_wf param_wb param_bf …

2014-07-14

00:00:00

2014-07-14

23:59:59
72,000

Array:

50-by-11

Array:

50-by-11

Array:

50-by-50

Array:

50-by-50

Array:

50-by-1
…

Trained BRNN model parameters

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

152

GET /trained_model?output_sensor=TRB_u131_ch0?

input_sensor=TRB_u07_ch0&

input_sensor=TRB_u57_ch1&

input_sensor= ... <repeat for all input sensors>

HTTP/1.1

HOST: <cyberinfrastructure platform address>

This request includes query parameters, such as the list of the input sensors and the target

output sensor. The model retrieval service retrieves the trained model corresponding to the

query parameters from the database and returns the trained model with the metadata

encoded in the same JSON format used when the model is uploaded (see Figure 5.15). The

BRNN model parameters (i.e., weight and bias) stored in a double-precision array data type

are mapped into a BRNN model object that can be read by the scoring engine to be created

on the desktop for reconstructing the data of the output sensor. Figure 5.17, for example,

shows a snippet of Python script that maps the weight WX of the retrieved BRNN model

into the weight WX of a BRNN model object created on desktop computer using PyTorch

[159]. The first line of the script retrieves the trained model and the metadata from the

cyberinfrastructure platform by invoking the model retrieval service. The second line of

the script creates a BRNN model object based on the number of input sensors and the

number of hidden units. The third line of the script converts WX (i.e.,

Figure 5.17 Data mapping from the retrieved BRNN parameters to a BRNN model object

created using PyTorch [153]

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

153

data['trained_model']['param_uf']) of the retrieved BRNN model to a

PyTorch Parameter object and copies it to WX (i.e., new_model.i2hf.weight) of the

BRNN model object created on desktop computer. In this way, a BRNN model created on

a desktop computer can duplicate the weights and biases of the trained model retrieved

from the cyberinfrastructure platform.

To perform sensor data reconstruction using the retrieved model, the testing dataset

collected for the desired period needs to be downloaded from the cyberinfrastructure

platform. For each sensor, sensor data can be retrieved by invoking the sensor data retrieval

service of the cyberinfrastructure platform as follows:

GET /sensordata/TRB_u07_ch0?

event_time_begin=2014-07-15T00:00:00.000z&

event_time_end=2014-07-15T23:59:59.000z HTTP/1.1

HOST: <cyberinfrastructure platform address>

This web service request specifies the sensor ID and the desired time period. Once retrieved,

the testing dataset is scaled and normalized using the scaling and normalization factors

retrieved with the BRNN model. The testing dataset is then fed into the retrieved sensor

data reconstruction model, which returns the reconstructed sensor data of the output sensor.

In summary, with the cyberinfrastructure platform developed in this study, the BRNN-

based sensor data reconstruction can be flexibly conducted in a decentralized manner.

Computationally intensive training process is conducted on a high-performance (but more

expensive) computer, while less computationally demanding sensor data reconstruction

task is performed on any device by retrieving the trained model from the

cyberinfrastructure platform. Machine learning model management services are built to

store and to share the trained model via the cyberinfrastructure platform.

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

154

5.5 Application on a Bridge in Service

This section demonstrates the BRNN-based sensor data reconstruction method using the

sensor data collected on the Telegraph Road Bridge (Monroe, Michigan) [156, 157]. For

this study, the vibration response datasets collected during the month of July 2014, which

includes 700,000 data points per sensor, is downloaded from the cyberinfrastructure

platform and used (as shown in Figure 5.18). It should be noted that Sensors A4 and A12

are down most of the time on that month.

The BRNN models are created with the same hyperparameters (i.e., number of forward

hidden units and backward hidden units, the activation functions, loss function, learning

rate and the maximum number of epochs) and optimization schema as described in Section

5.3. In addition to the evaluation of BRNN-based sensor data reconstruction, this section

describes the faulty data recovery process for the missing data of Sensors A4 and A12.

Furthermore, this section investigates environmental effects (e.g., temperature change) to

the BRNN-based sensor data reconstruction. For the training of BRNN models, a computer

Figure 5.18 Vertical acceleration measurement of the Telegraph Road Bridge (July 2014)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

155

with high-performance CPU (Intel Core i7-7820X 3.60GHz) and a high-performance GPU

(GTX 1080 Ti) is used. For reconstructing sensor data, a laptop computer with Intel Core

i7-4870HQ 2.5 GHz is employed.

5.5.1 Comparison of BRNN-based sensor data

reconstruction with other methods

For testing purpose, two BRNN models are created to reconstruct data of Sensor A1

(located near the support of the leftmost girder) and Sensor A11 (located at the middle of

the rightmost girder), respectively, using all other sensors as input sensors. In addition,

other data-driven models (including PCA, MMSE, FNN and RNN) corresponding to the

BRNN models are created for comparison. All the models are trained with a training dataset

containing 100,000 data points (from the data points 1 to 100,000) per sensor. The trained

models are evaluated with a testing dataset, which contains 40,000 data points (from the

data points 100,001 to 140,000) per sensor.

Figure 5.19 shows the results of data reconstruction using the different methods. As shown

in Figure 5.19(a), the BRNN model reconstructs the data for Sensor A1 most accurately

among the tested methods. For Sensor A11, all methods work well, but the BRNN- and

RNN-based method show slightly better fit comparing to the other methods. Table 5.4

shows the testing errors of different sensor data reconstruction methods. Similar to the

numerical simulation results presented earlier, the testing error for the sensor (i.e., Sensor

A1) located near the support of the bridge is generally higher than the sensor (i.e., Sensor

A11) located at the center of the bridge because the spatial correlation is weak for the

sensor at the end of the bridge span. Generally, the results show that the BRNN-based

method outperforms other methods in terms of data reconstruction accuracy.

Table 5.4 Bridge structure: testing error

 PCA MMSE FNN RNN BRNN
Testing RMSE for Sensor A1 0.085 0.052 0.053 0.035 0.029
Testing RMSE for Sensor A11 0.030 0.028 0.030 0.018 0.014

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

156

5.5.2 Effects of using different set of input sensors

So far, the sensor data reconstruction is demonstrated using all available sensors as input

sensors, which assumes that all sensors can contribute to the reconstruction of output

sensor’s data. However, in reality, only some subset of sensors would contribute on the

(a) Sensor A1

(b) Sensor A11

Figure 5.19 Bridge structure: sensor data reconstruction with the different methods

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

157

reconstruction. Therefore, it would be more practical to use the subset of sensors with high

contribution because this can reduce the size of the BRNN model, particularly, when there

are many sensors in the sensor network. Furthermore, by using a subset of sensors as input

sensors, sensor data reconstruction model can still be used even when some of non-input

sensors in the network are faulty. To use a subset of sensors as input sensors, it is very

important to choose an appropriate subset that can reconstruct sensor data as accurate as

when using all sensors as input sensors. Since the BRNN-based sensor data reconstruction

is based on the spatiotemporal correlation, one plausible approach is to choose sensors that

have high correlation with the output sensors as the input sensors.

Figure 5.20 shows the covariance matrix among sensor data collected from twelve sensors

at the Telegraph Road Bridge. Here, the covariance matrix is computed using 100,000 data

points (from the data points 1 to 100,000) per sensor. From the covariance matrix, it can

be seen that the data from sensors along the same girder are highly correlated, while the

data from the sensors on different girder are not correlated well. The matrix also shows that

Figure 5.20 Covariance matrix of sensor data collected from the Telegraph Road Bridge

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

158

the data from adjacent sensors (e.g., Sensors A1 and A2) on the same girder have higher

correlations than the data from distant sensors (e.g., between Sensors A1 and A7) even on

the same girder.

To study the effect of using only the highly correlated sensors, sensor data reconstruction

for sensor A1 is performed with two BRNN models. The first model has all available

sensors (i.e., Sensors A2, …, A14) as inputs, while the second model has only the highly

correlated sensors (i.e., Sensors A2, …, A7) as inputs. Both models are trained using

100,000 data points (from the data points 1 to 100,000) per sensor. The testing data is

selected from the data points 100,001 to 140,000. Figure 5.21 shows data reconstructed for

sensor A1 by each model.

Table 5.5 shows the reconstruction error of the two models. The results show that the model

constructed using the data from the highly correlated subset of sensors reconstructs the data

as accurate as the model constructed using all the sensors. This result shows that it is

appropriate to select the input sensors by examining their correlation with the output

sensors.

Figure 5.21 Sensor data reconstruction with different inputs

Table 5.5 Testing error for different input combinations

 Model 1 Model 2

Input Sensors All sensors
(A2, …, A14)

Highly correlated sensors
(A2, …, A7)

Testing RMSE for Sensor A1 0.0288 0.0292

Model 1

Model 2

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

159

5.5.3 Environmental effect

For bridges which are in service, environmental condition (e.g., temperature) varies

throughout the year [162]. A sensor data reconstruction method needs to be robust against

the environmental effects. In this section, a study is conducted to see whether the BRNN

models trained with data of a certain month can be used to reconstruct the data for other

months. For the study, a BRNN model with Sensors A7, A9 and A10 as input sensors and

Sensor A8 as the output sensor is constructed using the hyperparameters defined in Section

5.3.

Figure 5.22 shows the temperature change measured by a thermistor on the Telegraph Road

Bridge from October 2014 to May 2015. Ten BRNN models are created for each selected

month as highlighted in Figure 5.22. Each BRNN model is trained with 100,000 data points

per sensor collected from the corresponding month. In addition, a yearly model is created

and trained using the training data containing 100,000 data points per sensor by

concatenating the five datasets collected from five different months, including April, July,

October and December of 2014 and February of 2015. Using the 11 BRNN models (i.e.,

Figure 5.22 Temperature change measured on the Telegraph Road Bridge from October

2014 to May 2015 (Months selected for analysis are highlighted with boxes)

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

160

10 monthly models and one yearly model), sensor data reconstructions are performed for

the 10 testing datasets, each of which has 40,000 data points per sensor collected from one

of the 10 selected months. Figure 5.23 shows the testing errors of the 11 BRNN models for

the 10 testing datasets. It can be seen that the testing errors of all 11 BRNN models are

similar for each month. This result shows that, for the data considered at this bridge site,

the BRNN-based method is robust against the change of environmental conditions.

5.5.4 Reconstruction of missing sensor data

Sensor data reconstruction can be used for recovering missing data when some sensors are

faulty. As shown in Figure 5.18, Sensors A4 and A12 were not working properly in the

month of July 2014 and the data is severely erroneous. The missing data can be recovered

using BRNN-based sensor data reconstruction method. The basic idea is to train a BRNN

model using good quality datasets collected from other dates.

Figure 5.24 depicts the sensor data reconstruction process for recovering the missing data

of July 2014 by creating and training two BRNN models corresponding to the two target

sensors A4 and A12, respectively. The first BRNN model is constructed with input sensors

A2, A3, A5, A6 and A7, which are located on the same girder as the output sensor, and an

output Sensor A4. The trained model is constructed using 60,000 data points per sensor,

collected in October 2014 when all of input and output sensors are operating properly.

Figure 5.23 Reconstruction errors for testing sets collected from different months: 10

BRNN models trained with monthly data and one BRNN model trained with yearly data

are used

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

161

Once the first BRNN model is trained, the data (700,000 data points per sensor) collected

by Sensors A2, A3, A5, A6 and A7 collected in July 2014 is inputted to the first model to

reconstruct the data of Sensor A4 in July 2014. The recovered dataset of Sensor A4 is

shown in Figure 5.24. Similarly, the second BRNN model is constructed with input sensors

A8, A9, A10, A11, A13 and A14 and an output Sensor A12. The second BRNN model is

trained using 60,000 data points per sensor, collected in July 2012 when the input and

output sensors are operating properly. The data (700,000 data points per sensor) collected

by Sensors A8, A9, A10, A11, A13 and A14 collected in July 2014 is then inputted to the

second model to recover the data of Sensor A12 in July 2014. The recovered dataset of

Sensor A12 is also shown in Figure 5.24.

The recovered data, which now includes the data for all 14 sensors, can be further analyzed

to check the integrity of the target system. For example, the bridge’s operational mode

shapes can now be computed using the recovered dataset from July 2014 by system

identification, for example, using the frequency domain decomposition (FDD) method

Figure 5.24 Reconstruction of missing data using BRNN models

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14

A8
A9

A10
A11
A12
A13
A14

A2
A3
A4
A5
A6
A7

Data of Oct. 2014

Data of Jul. 2012

Training BRNN model
• Input: {A8, A9, A10,

A11, A13, A14}
• Output: A12

Training BRNN model
• Input: {A2, A3, A5,

A6, A7}
• Output: A4

Sensor data reconstructions

Data of Jul. 2014
(A4, A12 are faulty)

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14

Data of Jul. 2014
(A4, A12 are recovered)

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

162

[163]. Figure 5.25 shows the first five modal frequencies and operational mode shapes

computed with the recovered sensor data along with the corresponding modal frequencies

and operational mode shapes experimentally measured and reported in [164]. As shown in

Figure 5.25, the modal frequencies and operational mode shapes computed using the

recovered datasets match very well with the bridge’s original mode shape and frequencies

obtained experimentally.

5.6 Summary

This chapter describes a data-driven sensor data reconstruction method and its

implementation using the cyberinfrastructure platform. Sensor data reconstruction is an

important task for the operation of sensor network to recover missing or faulty sensor data

and detect anomalies. For the precise sensor data reconstruction, this study presents a data-

driven sensor data reconstruction approach based on bidirectional recurrent neural network

(BRNN). The BRNN-based sensor data reconstruction method is a supervised regression

(a) Modal frequency and operational mode shapes computed from the reconstructed

dataset

(b) Modal frequency and operational mode shapes obtained from experiments [161]

Figure 5.25 First five modal frequencies and operational mode shapes of the Telegraph

Road Bridge

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

163

problem that reads input sensors’ data and reconstructs the target output sensor’s data.

Specifically, the BRNN-based method reconstructs sensor data based on the

spatiotemporal correlation among the sensor data collected by a distributed network of

sensors. The BRNN-based sensor data reconstruction procedure consists of two phases:

training phase and reconstruction phase. In the training phase, a BRNN model is trained

using a training dataset by adjusting the weights and biases of the model to minimize the

difference between the reconstructed data and the measured data of the target output sensor.

In the reconstruction phase, the target output sensor’s data is reconstructed by feeding the

input sensors data to the trained BRNN model. To validate the BRNN-based sensor data

reconstruction approach, demonstrations are conducted using the bridge vibration response

data collected from numerical simulations. The demonstration results show that the BRNN-

based sensor data reconstruction yields more accurate estimation than other existing data

reconstruction methods (e.g., PCA, MMSE, FNN and RNN). Furthermore, the BRNN-

based sensor validation can capture and localize anomalies due to faulty sensors.

While the use of an artificial neural network is likely to improve the data reconstruction

accuracy, the training of the artificial neural network is typically computationally

demanding. For the effective data-driven sensor data reconstruction, this study presents a

data analysis pipeline that automates data and computational flow over high-performance

computer and client devices via the cyberinfrastructure platform. In the training phase, the

high-performance computer retrieves a training dataset from the cyberinfrastructure

platform and trains the sensor data reconstruction models. The trained models are uploaded

and stored using the cyberinfrastructure platform. In the reconstruction phase, client

devices (e.g., desktop computer) downloads a testing dataset, as well as the trained data

reconstruction model from the cyberinfrastructure platform, and performs data

reconstruction. In this way, a computationally demanding model training task can be

performed on a high-performance computer for fast learning process, whereas client

devices can perform only a less computationally demanding reconstruction task. The data

analysis pipeline is demonstrated with the sensor data collected from the Telegraph Road

Bridge.

CHAPTER 5. DATA-DRIVEN SENSOR DATA RECONSTRUCTION

164

While the validation results are promising, there is still much room for research for the

sensor data reconstruction problem. The demonstrations in this work are conducted using

only vibration data. The use of BRNN-based method for reconstructing different types of

data (e.g., wind data collected from anemometer) should be investigated. In addition, the

demonstrations in this work mainly focus on bridge monitoring application. The proposed

method can be potentially useful to different sensing applications wherein sensors have

spatial and temporal correlations.

Chapter 6

Conclusions

6.1 Summary of Results and Contributions

As microelectromechanical systems (MEMS), semiconductor and network communication

technologies have greatly enhanced the developments of sensors and sensor networks that

are now being deployed widely in engineering systems, advanced data management and

software technologies can further extend the functionalities of engineering systems.

Engineering applications are typically data-intensive and computationally demanding

services that require not only continuing advances in engineering modeling and sensor

development but also data and software frameworks to facilitate workflow and resource

management. This thesis presents a cyberinfrastructure platform tailored to civil

infrastructure monitoring applications. The cyberinfrastructure platform is designed to

meet the data management requirements, which are scalability, data integration,

interoperability, standardized interfaces and flexibility.

CHAPTER 6. CONCLUSIONS

166

In Chapter 2, an information modeling framework for bridge monitoring application is

described. Bridge monitoring involves a wide variety of information from different data

sources, including geometric modeling and engineering analysis tools, bridge management

system (BMS) and structural health monitoring (SHM) system. In current practice, the

different types of information are typically managed by isolated systems, which ends up

with inefficient data utilization and integration. In order to address the data sharing issue

and guarantees data interoperability, this chapter presents a bridge information modeling

framework for supporting bridge monitoring applications. The framework employs the

OpenBrIM data model [81] as the base model, and enrich the base model by defining data

entities for the representation of engineering model and sensor description. Specifically,

the framework draws on the data entities of CSiBridge [79] for the representation of

engineering model and SensorML [80] for the representation of sensor information. The

demonstration shows that the proposed BrIM data schema can capture bridge information,

including geometry, engineering model and sensor description, about a bridge structure

instrumented with structural monitoring system.

In Chapter 3, a NoSQL-based data management system for the scalable management of

sensor data and relevant information is presented. Since engineering applications will

potentially involve a large volume of data with various data types, an appropriate database

system that can guarantee scalability and flexibility is important. Based on the data

management requirements defined for civil infrastructure monitoring, Apache Cassandra

database and MongoDB are selected as the backend database systems of the cyber bridge

monitoring framework. Apache Cassandra is a column family database that is suitable for

large-scale distributed database, while MongoDB is a document-oriented database that has

advantages on the schema-less data structure and fast performance. Data schemas for

Cassandra database and MongoDB are defined following the bridge and sensor information

models. The demonstration results show that the NoSQL-based data management platform

enables effective data management for a large amount of bridge monitoring data and

supports query capability for retrieving various types of data residing in the data

management system.

CHAPTER 6. CONCLUSIONS

167

In Chapter 4, a prototype cyberinfrastructure platform is designed and implemented on a

cloud computing environment. The cyberinfrastructure platform handles data store and

retrieval through three layers: communication layer, mapping layer and storage layer. The

communication layer offers standardized, interoperable web-based interfaces to allow

various devices can access the platform to store and retrieve different types of data.

Specifically, RESTful web services are implemented to support store and retrieval of

sensor data and bridge information. The mapping layer handles data mapping processes

involved in the management of information models. The storage layer offers scalable data

storage by employing a highly scalable distributed database system. The prototype

platform leverages the Infrastructure as a Service (IaaS) cloud service model for scalability,

reliability and portability. In addition, the platform is implemented on hybrid cloud

computing environment to enable decentralized data management where sensitive data is

managed by private data center. The demonstration results show that the proposed platform

facilitates the data utilization and integration by providing platform-neutral interfaces

which can be accessed by various applications on different types of devices.

In Chapter 5, a data-driven sensor data reconstruction method and its implementation using

the cyberinfrastructure platform are described. For the accurate sensor data reconstruction,

a data-driven method based on the bidirectional recurrent neural network (BRNN) is

proposed to reconstruct sensor data based on the spatiotemporal correlation among sensors.

The BRNN-based sensor data reconstruction method is tested with vibration response data

collected from numerical simulations. The results show that the BRNN-based method

reconstructs sensor data more accurately than other existing data-driven sensor data

reconstruction methods. For effective learning process, the BRNN-based sensor data

reconstruction method is implemented based on a data analysis pipeline that can automate

data and computational flow over high-performance computer and client devices through

the cyberinfrastructure platform. In this data analysis pipeline, a high-performance

computer retrieves training dataset from the cyberinfrastructure platform, trains the

BRNN-based model and uploads the trained model to the cyberinfrastructure platform.

Client devices (e.g., desktop computers) can download the trained model and the testing

CHAPTER 6. CONCLUSIONS

168

dataset from the cyberinfrastructure platform to perform sensor data reconstruction. In this

way, computationally demanding training tasks can be handled by high-performance

computer, whereas less computationally demanding data reconstruction task can be

performed by affordable client devices.

6.2 Future Research Recommendation

The importance of effective data management is growing for facilitating data integration,

sharing and utilization. While the proposed cyberinfrastructure platform is designed to

handle a large amount of heterogeneous data involved in engineering applications, the

platform can be further enhanced. The following discusses several future research

directions:

• While the cyberinfrastructure platform is design for the applications of civil

infrastructure monitoring, the platform can be easily modified and extended to

support data management of other engineering domains. For example, the data

management services offered by the platform can be used for the management of

factory monitoring data by enriching data schema to represent domain-specific

information (e.g., machine information). Therefore, future research may extend

the proposed cyberinfrastructure platform for efficient data management for a

broad range of different engineering domains.

• As a research prototype, the bridge information model, in its current state,

considers only a few standards and applications. Many data entities, which are

necessary to fully support other bridge monitoring and management applications,

are lacking. Therefore, the information model schema needs to be enhanced to

meet the data requirement of other applications and domains.

• Data security is another important topic that was not discussed in this thesis. For

secure data management, the proper use of security schemes is indispensable.

CHAPTER 6. CONCLUSIONS

169

Therefore, the proposed cyberinfrastructure platform needs to be enhanced by

adopting authentication, authorization and cryptography methodologies.

• While the validation results are promising, there is still much room for research

for the sensor data reconstruction problem. The demonstrations in this work are

conducted using only vibration data. The use of BRNN-based method for

reconstructing different types of data (e.g., wind data collected from anemometer)

should be investigated. In addition, the demonstrations in this work mainly focus

on bridge monitoring application. The proposed method can be potentially applied

to different sensing applications wherein sensors have spatial and temporal

correlations.

Bibliography

[1] J. Lynch and K. Loh, "A summary review of wireless sensors and sensor networks

for structural health monitoring,," Shock and Vibration Digest, vol. 38, no. 2, pp.

91-130, 2006.

[2] G. Zhou and T. Yi, "Recent developments on wireless sensor networks

technology for bridge health monitoring," Mathematical Problems in

Engineering, vol. 2013, pp. 33, 2013.

[3] H. Lim, H. Sohn and P. Liu, "Binding conditions for nonlinear ultrasonic

generation unifying wave propagation and vibration," Applied Physics Letters,

vol. 104, no. 21, pp. 214103, 2014.

[4] E. Cross, K. Koo, J. Brownjohn and K. Worden, "Long-term monitoring and data

analysis of the Tamar Bridge," Mechanical Systems and Signal Processing, vol.

35, no. 1, pp. 16-34, 2013.

[5] N. Dervilis, K. Worden and E. Cross, "On robust regression analysis as a means

of exploring environmental and operational conditions for SHM data," Journal of

Sound and Vibration, vol. 347, pp. 279-296, 2015.

[6] K. Law, K. Smarsly and Y. Wang, "Sensor data management technologies for

infrastructure asset management," in Sensor Technologies for Civil

Infrastructures: Applications in Structural Health Monitoring, vol. 2, M. Wang, J.

P. Lynch and H. Sohn, Eds., Cambridge, Woodhead Publishing, pp. 3-32, 2014.

BIBLIOGRAPHY

171

[7] A. Zaslavsky, C. Perera and D. Georgakopoulos, "Sensing as a service and big

data," in International Conference on Advances in Cloud Computing (ACC-2012),

Bangalore, 2013.

[8] D. Agrawal, S. Das and A. Abbadi, "Big data and cloud computing: current state

and future opportunities," in The 14th International Conference on Extending

Database Technology (EDBT/ICDT '11), New York, NY, 2011.

[9] K. Grolinger, W. A. Higashino, A. Tiwari and M. A. Capretz, "Data management

in cloud environments: NoSQL and NewSQL data stores," Journal of Cloud

Computing: Advances, Systems and Applications, vol. 2, no. 22, 2013.

[10] P. Ray, "A survey of IoT cloud platforms," Future Computing and Informatics

Journal, vol. 1, no. 1-2, pp. 35-46, 2016.

[11] F. Wortmann and K. Flüchter, "Internet of things," Business & Information

Systems Engineering, vol. 57, no. 3, pp. 221-224, 2015.

[12] S. Kim, C. Kim and J. Lee, "Monitoring results of a self-anchored suspension

bridge," in Sensing Issues in Civil Structural Health Monitoring, Dordrecht,

Springer, pp. 475-484, 2005.

[13] R. Hou, S. Jeong, Y. Wang, K. Law and J. Lynch, "Camera-based triggering of

bridge structural health monitoring systems using a cyber-physical system

framework," in International Workshop on Structural Health Monitoring,

Stanford, CA, 2017.

[14] C. Eastman, P. Teicholz, R. Sacks and K. Liston, BIM handbook: a guide to

building information modeling for owners, managers, designers, engineers, and

contractors, Hoboken, NJ: John Wiley & Sons, Inc., 2011.

[15] S. Chen and A. Shirolé, "Integration of information and automation technologies

in bridge engineering and management: Extending the state of the art,"

Transportation Research Record, vol. 1976, no. 1, pp. 3-12, 2006.

BIBLIOGRAPHY

172

[16] M. Beyer, "Gartner says solving 'Big Data' challenge involves more than just

managing volumes of data," 27 June 2011. [Online]. Available:

https://www.gartner.com/newsroom/id/1731916. [Accessed 1 June 2018].

[17] M. Chen, S. Mao and Y. Liu, "Big data: A survey," Mobile Networks and

Applications, vol. 19, no. 2, pp. 171-209, 2014.

[18] K. Wong, "Instrumentation and health monitoring of cable-supported bridges,"

Structural Control and Health Monitoring, vol. 11, no. 2, pp. 91-124, 2004.

[19] New Civil Engineer, "Project profile | Queensferry Crossing," 13 September 2017.

[Online]. Available: https://www.newcivilengineer. com/tech-excellence/project-

profile-queensferry-crossing/10023399.article. [Accessed 11 December 2017].

[20] U. Lieske, A. Dietrich, L. Schubert and B. Frankenstein, "Wireless system for

structural health monitoring based on Lamb waves," in SPIE Smart Structures and

Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA,

2012.

[21] B. Lin and V. Giurgiutiu, "Development of optical equipment for ultrasonic

guided wave structural health monitoring," in SPIE Smart Structures and

Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA,

2014.

[22] S. Chen and A. Shirolé, "Implementation roadmap for bridge information

modeling (BrIM) data exchange protocols," University at Buffalo, State

University of New York, Buffalo, NY, 2013.

[23] C. Eastman, "Building product models: computer environments, supporting

design and construction," CRC press, 1999.

[24] M. Lenzerini, "Data integration: A theoretical perspective," in The Twenty-First

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

2002.

BIBLIOGRAPHY

173

[25] Amazon Web Services, Inc., "AWS IoT services overview - Amazon Web

Services," [Online]. Available: https://aws.amazon.com/iot/. [Accessed 1

February 2018].

[26] Microsoft, "Azure IoT Hub | Microsoft Azure," [Online]. Available:

https://azure.microsoft.com/. [Accessed 1 February 2018].

[27] Google Cloud, "Cloud IoT Core," [Online]. Available:

https://cloud.google.com/iot-core/.

[28] IBM, "IoT Platform - IBM Watson IoT," [Online]. Available:

https://www.ibm.com/internet-of-things/spotlight/watson-iot-platform. [Accessed

1 February 2018].

[29] AT&T, "AT&T IoT Platform - Build solutions for the Internet of Things,"

[Online]. Available: https://iotplatform.att.com/. [Accessed 1 February 2018].

[30] PTC, "ThingWorx industrial innovation platform | PTC," [Online]. Available:

https://www.ptc.com/en/products/iot/thingworx-platform. [Accessed 1 February

2018].

[31] Autodesk, Inc., "Autodesk Fusion Connect. Enterprise IoT software platform,"

[Online]. Available: https://autodeskfusionconnect.com/. [Accessed 1 February

2018].

[32] G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. Xu, S. Kao-Walter, Q. Chen

and L. Zheng, "A health-IoT platform based on the integration of intelligent

packaging, unobtrusive bio-sensor, and intelligent medicine box," IEEE

Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2180-2191, 2014.

[33] C. Doukas and I. Maglogiannis, "Bringing IoT and cloud computing towards

pervasive healthcare," in 2012 Sixth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing, 2012.

[34] A. Krylovskiy, M. Jahn and E. Patti, "Designing a smart city Internet of Things

platform with microservice architecture," in 2015 3rd International Conference

on Future Internet of Things and Cloud, Rome, 2015.

BIBLIOGRAPHY

174

[35] R. Lea and M. Blackstock, "City hub: A cloud-based IoT platform for smart

cities," in 2014 IEEE 6th International Conference on Cloud Computing

Technology and Science, Singapore, 2014.

[36] G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran and V. Suciu, "Smart cities

built on resilient cloud computing and secure Internet of Things," in 2013 19th

International Conference on Control Systems and Computer Science, Bucharest,

2013.

[37] P. Jayaraman, D. Palmer, A. Zaslavsky and D. Georgakopoulos, "Do-it-Yourself

digital agriculture applications with semantically enhanced IoT platform," in 2015

IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP), Singapore, 2015.

[38] J. Brownjohn, A. Zasso, G. Stephen and R. Severn, "Analysis of experimental

data from wind-induced response of a long span bridge," Journal of Wind

Engineering and Industrial Aerodynamics, vol. 54, pp. 13-24, 1995.

[39] C. Farrar, P. Cornwell, S. Doebling and M. Prime, "Structural health monitoring

studies of the Alamosa Canyon and I-40 bridges," No. LA-13635-MS, Los

Alamos National Lab., NM (US), 2000.

[40] K. Wong, C. Lau and A. Flint, "Planning and implementation of the structural

health monitoring system for cable-supported bridges in Hong Kong," in

Nondestructive Evaluation of Highways, Utilities, and Pipelines, 2000.

[41] H. Li, J. Ou, X. Zhao, W. Zhou, H. Li, Z. Zhou and Y. Yang, "Structural health

monitoring system for the Shandong Binzhou Yellow River highway bridge,"

Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 4, pp. 306-317,

2006.

[42] M. Fraser, A. Elgamal, X. He and J. Conte, "Sensor network for structural health

monitoring of a highway bridge," Journal of Computing in Civil Engineering, vol.

24, no. 1, pp. 11-24, 2009.

BIBLIOGRAPHY

175

[43] K. Y. Koo, N. Battista, D. and J. Brownjohn, "SHM data management system

using MySQL database with MATLAB and web interfaces," in 5th International

Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-

5), Cancún, 2011.

[44] K. Smarsly, K. Law and D. Hartmann, "Multiagent-based collaborative

framework for a self-managing structural health monitoring system," Journal of

Computing in Civil Engineering, vol. 26, no. 1, pp. 76-89, 2012.

[45] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem and P.

Helland, "The end of an architectural era (it's time for a complete rewrite)," in The

33rd International Conference on Very Large Data Bases, 2007.

[46] R. Hecht and S. Jablonski, "NoSQL evaluation: A use case oriented survey," in

2011 International Conference on Cloud and Service Computing (CSC), 2011.

[47] J. Han, E. Haihong, G. Le and J. Du, "Survey on NoSQL database," in The 6th

International Conference on Pervasive Computing and Applications, 2011.

[48] R. Padhy, M. Patra and S. Satapathy, "RDBMS to NoSQL: Reviewing some next-

generation non-relational databases," International Journal of Advanced

Engineering Science and Technologies, vol. 11, no. 1, pp. 15-30, 2011.

[49] R. Nagel, W. Braithwaite and P. Kennicott, "Initial graphics exchange

specification IGES version 1.0," National Bureau of Standards, Washington DC,

1980.

[50] ISO, "ISO 10303:1994 – Industrial automation systems and integration – Product

data representation and exchange," International Organization for Standardization

(ISO), Geneva, Switzerland, 1994.

[51] buildingSMART, "Industry foundation classes version 4 - Addendum 1,"

[Online]. Available: http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/.

[Accessed 20 May 2016].

BIBLIOGRAPHY

176

[52] V. Samec, J. Stamper, H. Sorsky and T. W. Gilmore, "Long span suspension

bridges – bridge information modeling," in 7th International Conference of

Bridge Maintenance, Safety and Management, 2014.

[53] M. Marzouk and M. Hisham, "Bridge information modeling in sustainable bridge

management," in International Conference on Sustainable Design and

Construction 2011: Integrating Sustainability Practices in the Construction

Industry, 2011.

[54] N. Yabuki, E. Lebegue, J. Gual and T. Shitani, "International collaboration for

developing the bridge product model IFC-Bridge," in 11th International

Conference on Computing in Civil and Building Engineering, 2006.

[55] FHWA, "Open BrIM standards," [Online]. Available:

https://collaboration.fhwa.dot.gov/dot/fhwa/ascbt/brim/default.aspx. [Accessed 23

April 2018].

[56] P. Mell and T. Grance, The NIST definition of cloud computing, 2011.

[57] Q. Zhang, L. Cheng and R. Boutaba, "Cloud computing: state-of-the-art and

research challenges," Journal of Internet Services and Applications, vol. 1, no. 1,

pp. 7-18, 2010.

[58] T. Gillis, "Cost wars: Data center vs. public cloud," 2015. [Online]. Available:

https://www.forbes.com/sites/tomgillis/2015/09/02/cost-wars-data-center-vs-

public-cloud/#60c91b11923f. [Accessed December 5 2017].

[59] G. Deckler, "Cloud vs. on-Premises – Hard dollar costs," 2016. [Online].

Available: https://www.linkedin.com/pulse/cloud-vs-on-premises-hard-dollar-

costs-greg-deckler/?trk=pulse_spock-articles. [Accessed 5 December 2017].

[60] T. Le, S. Kim, M. Nguyen, D. Kim, S. Shin, K. E. Lee and R. da Rosa Righi,

"EPC information services with No-SQL datastore for the Internet of Things," in

2014 IEEE International Conference on RFID (IEEE RFID), 2014.

BIBLIOGRAPHY

177

[61] T. Li, Y. Liu, Y. Tian, S. Shen and W. Mao, "A storage solution for massive IoT

data based on NoSQL," in 2012 IEEE International Conference on Green

Computing and Communications, 2012.

[62] T. Thantriwatte and C. Keppetiyagama, "NoSQL query processing system for

wireless ad-hoc and sensor networks," in International Conference on Advances

in ICT for Emerging Regions, 2011.

[63] K. Law, J. Cheng, R. Fruchter and R. Sriram, "Engineering applications of the

cloud," in Encyclopedia of Cloud Computing, S. Murugesan and I. Bojanova,

Eds., Chichester, John Wiley & Sons, Ltd, 2016.

[64] C. Cheng, SC Collaborator: A service oriented framework for construction supply

chain collaboration and monitoring, Ph.D. Thesis, Stanford University, 2009.

[65] C. Pautasso, O. Zimmermann and F. Leymann, "Restful web services vs. “Big”

web services: making the right architectural decision," in The 17th International

Conference on World Wide Web, Beijing, China, 2008.

[66] R. Fielding, Architectural styles and the design of network-based software

architectures, Ph.D. Thesis, University of California, Irvine., 2000.

[67] H. Zhao and P. Doshi, "Towards automated restful web service composition," in

2009 IEEE International Conference on Web Services, Los Angeles, CA, 2009.

[68] G. Mulligan and D. Gracanin, "A comparison of SOAP and REST

implementations of a service based interaction independence middleware

framework," in 2009 Winter Simulation Conference (WSC), Austin, TX, 2009.

[69] F. Belqasmi, J. Singh, S. Melhem and R. Glitho, "Soap-based vs. restful web

services: A case study for multimedia conferencing," IEEE Internet Computing,

vol. 16, no. 4, pp. 54-63, 2012.

[70] S. Jeong, R. Hou, J. Lynch, H. Sohn and K. Law, "An information modeling

framework for bridge monitoring," Advances in Engineering Software, vol. 114,

pp. 11-31, 2017.

BIBLIOGRAPHY

178

[71] S. Jeong, Y. Zhang, S. O'Connor, J. Lynch, H. Sohn and K. Law, "A NoSQL data

management infrastructure for bridge monitoring," Smart Structures and Systems,

vol. 17, no. 4, pp. 669-690, 2016.

[72] S. Jeong, J. Byun, D. Kim, H. Sohn, I. H. Bae and K. H. Law, "A data

management infrastructure for bridge monitoring," in SPIE Smart Structures and

Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA,

2015.

[73] S. Jeong, R. Hou, J. Lynch, H. Sohn and K. Law, "A scalable cloud-based

cyberinfrastructure platform for bridge monitoring," Structure and Infrastructure

Engineering, vol. 15, no. 1, pp. 82-102, 2019.

[74] S. Jeong and K. Law, "An IoT platform for civil infrastructure monitoring," in

The 42nd IEEE Computer Society Signature Conference on Computers, Software

& Applications (COMPSAC 2018), Tokyo, 2018.

[75] S. Jeong, Y. Zhang, R. Hou, J. Lynch, H. Sohn and K. Law, "A cloud-based

information repository for bridge monitoring applications," in SPIE Smart

Structures and Materials + Nondestructive Evaluation and Health Monitoring,

Las Vegas, NV, 2016.

[76] S. Jeong, R. Hou, J. Lynch, H. Sohn and K. Law, "A distributed cloud-based

cyberinfrastructure framework for integrated bridge monitoring," in SPIE Smart

Structures and Materials + Nondestructive Evaluation and Health Monitoring,

Portland, OR, 2017.

[77] S. Jeong, M. Ferguson and K. Law, "Sensor data reconstruction and anomaly

detection using bidirectional recurrent neural network," in SPIE Smart Structures

and Materials + Nondestructive Evaluation and Health Monitoring, Denver, CO,

2019.

[78] M. Bartholomew, B. Blasen and A. Koc, "Bridge information modeling (BrIM)

using open parametric objects," No. FHWA-HI F -16-010, Federal Highway

Administration, 2015.

BIBLIOGRAPHY

179

[79] Computers & Structures, Inc. , "Structural bridge design software | CSiBridge,"

[Online]. Available: https://www.csiamerica.com/products/csibridge. [Accessed

20 April 2016].

[80] Open Geospatial Consortium, "OGC® SensorML: Model and XML encoding

standard," 2014. [Online]. Available:

http://www.opengeospatial.org/standards/sensorml. [Accessed 20 April 2016].

[81] OpenBrIM, "OpenBrIM V3," [Online]. Available:

https://openbrim.appspot.com/schema.xsd?for=openbrim&v=3&format=xsd&vers

ion=1.1. [Accessed 10 November 2016].

[82] ParamML, "ParamML author's guide," [Online]. Available:

https://sites.google.com/a/redeqn.com/paramml-author-s-guide/home. [Accessed

20 April 2016].

[83] W3C, "XML schema," 15 October 2014. [Online]. Available:

http://www.w3.org/2001/XMLSchema. [Accessed 23 April 2018].

[84] W3Schools, "XML schema reference," [Online]. Available:

https://www.w3schools.com/xml/schema_elements_ref.asp. [Accessed 23 April

2018].

[85] "Liquid Studio," Liquid Technologies, [Online]. Available: https://www.liquid-

technologies.com/xml-studio. [Accessed 13 January 2017].

[86] "XML Editor: XML Spy," Altova, [Online]. Available:

https://www.altova.com/xmlspy.html. [Accessed 13 January 2017].

[87] ISO, "ISO 10303-104:2000 – Industrial automation systems and integration –

Product data representation and exchange -- Part 104: Integrated application

resource: finite element analysis," International Organization for Standardization

(ISO), Geneva, Switzerland, 2000.

[88] K. Lee, "IEEE 1451: A standard in support of smart transducer networking," in

IEEE Instrumentation and Measurement Technology Conference, 2000.

BIBLIOGRAPHY

180

[89] J. Pschorr, C. Henson, H. Patni and A. Sheth, "Sensor discovery on linked data,"

2010. [Online]. Available: http://corescholar.libraries.wright.edu/knoesis/780.

[Accessed 2 March 2016].

[90] S. O'Connor, J. Lynch, M. Ettouney, G. vander Linden and S. Alampalli, "Cyber-

enabled decision making system for bridge management using wireless

monitoring systems: Telegraph Road Bridge demonstration project," in Structural

Materials Technology 2012, 2012.

[91] S. O'Connor, Y. Zhang, J. Lynch, M. Ettouney and P. Jansson, "Long-term

performance assessment of the Telegraph Road Bridge using a permanent wireless

monitoring system and automated statistical process control analytics," Structure

and Infrastructure Engineering, vol. 13, no. 5, pp. 604-624, 2017.

[92] H. Koh, W. Park and H. Kim, "Recent activities on operational monitoring of

long-span bridges in Korea," in The 6th International Conference on Structural

Health Monitoring of Intelligent Infrastructure, 2013.

[93] S. O'Connor, Y. Zhang, J. Lynch, M. Ettouney and G. van der Linden,

"Automated analysis of long-term bridge behavior and health using a cyber-

enabled wireless monitoring system," in SPIE Smart Structures and Materials +

Nondestructive Evaluation and Health Monitoring, San Diego, CA, 2014.

[94] H. Sohn, H. Lim and S. Yang, "A fatigue crack detection methodology," in Smart

Sensors for Health and Environment Monitoring, Dordrecht, Springer, pp. 233-

253, 2015.

[95] Y. Li and S. Manoharan, "A performance comparison of SQL and NoSQL

databases," in IEEE Pacific RIM Conference on Communications, Computers,

and Signal Processing, 2013.

[96] A. Moniruzzaman and H. S.A., "NoSQL database: New era of databases for big

data analytics - classification, characteristics and comparison," International

Journal of Database Theory and Application, vol. 6, no. 4, pp. 1-14, 2013.

BIBLIOGRAPHY

181

[97] D. McNeill, "Data management and signal processing for structural health

monitoring of civil infrastructure systems," in Structural Health Monitoring of

Civil Infrastructure Systems, V. Karbhari and F. Ansari, Eds., Boca Raton, FL:

CRC Press, pp. 283-304, 2009.

[98] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,

A. Fikes and R. Gruber, "Bigtable: A distributed storage system for structured

data," ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, pp. 4,

2008.

[99] The Apache Software Foundation, "Apache Cassandra," [Online]. Available:

http://cassandra.apache.org/. [Accessed 1 February 2018].

[100] MongoDB, Inc., "MongoDB for giant ideas | MongoDB," [Online]. Available:

http://www.mongodb.com/. [Accessed 28 May 2018].

[101] A. Lakshman and P. Malik, "Cassandra: a decentralized structured storage

system," Operating Systems Review (ACM), vol. 44, no. 2, pp. 35-40, 2010.

[102] K. Chodorow, MongoDB: The definitive guide: Powerful and scalable data

storage., O'Reilly Media, Inc., 2013.

[103] D. Hows, P. Membrey and E. Plugge, MongoDB basics, Berkely, CA: Apress,

2014.

[104] DataStax, "Introduction to Cassandra Query Language," [Online]. Available:

http://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html. [Accessed 20 April

2016].

[105] DataStax, "Python Cassandra Driver," [Online]. Available:

https://datastax.github.io/python-driver/. [Accessed 20 April 2016].

[106] "Python Imaging Library (PIL)," [Online]. Available:

http://www.pythonware.com/products/pil/. [Accessed 7 December 2017].

[107] E. Hewitt, Cassandra: the definitive guide, O'Reilly Media, Inc., 2010.

[108] Python Software Foundation, "19.7. xml.etree.ElementTree — The ElementTree

XML API," [Online]. Available:

BIBLIOGRAPHY

182

https://docs.python.org/2/library/xml.etree.elementtree.html. [Accessed 1

February 2018].

[109] MongoDB, "PyMongo 3.6.1 documentation," [Online]. Available:

https://api.mongodb.com/python/current/. [Accessed 1 June 2018].

[110] MathWorks, Inc., "MATLAB API for Python," [Online]. Available:

https://www.mathworks.com/help/matlab/matlab-engine-for-python.html.

[Accessed 24 June 2018].

[111] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg and J. Vanderplas, "Scikit-learn:

Machine learning in Python," The Journal of Machine Learning Research, vol.

12, pp. 2825-2830, 2011.

[112] L. Gautier, "Documentation for rpy2," [Online]. Available:

https://rpy2.readthedocs.io/en/version_2.8.x/. [Accessed 24 June 2018].

[113] S. O'Connor, Y. Zhang and J. Lynch, "Automated outlier detection framework for

identifying damage states in multi-girder steel bridges using long-term wireless

monitoring data," in SPIE Smart Structures and Materials + Nondestructive

Evaluation and Health Monitoring, 2015.

[114] State of Michigan, "MDOT - Mi Drive interactive map," [Online]. Available:

https://mdotnetpublic.state.mi.us/drive/. [Accessed 1 February 2018].

[115] R. Hou, Y. Zhang, S. O’Connor, Y. Hong and J. P. Lynch, "Monitoring and

identification of vehicle-bridge interaction using mobile truck-based wireless

sensors," in 11th International Workshop on Advanced Smart Materials and

Smart Structures Technology, Urbana-Champaign, IL, 2015.

[116] G. E. and C. C., "openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm

files," 2016. [Online]. Available: http://openpyxl.readthedocs.org/en/default/ .

[Accessed 20 April 2016].

[117] Python Software Foundation, "pywin32 214 : Python package index," [Online].

Available: https://pypi.python.org/pypi/pywin32. [Accessed 7 October 2016].

BIBLIOGRAPHY

183

[118] Python Software Foundation, "7.5. StringIO — Read and write strings as files,"

[Online]. Available: https://docs.python.org/2/library/stringio.html. [Accessed 7

October 2016].

[119] R. Baheti and H. Gill, "Cyber-physical systems," The Impact of Control

Technology, vol. 12, pp. 161-166, 2011.

[120] Node.js Foundation, "Node.js," [Online]. Available: https://nodejs.org/. [Accessed

1 February 2018].

[121] H. Haas and A. Brown, "Web services glossary," 2004. [Online]. Available:

https://www.w3.org/TR/ws-gloss/. [Accessed 30 January 2017].

[122] D. Guinard, V. Trifa and E. Wilde, "A resource oriented architecture for the Web

of Things," in 2010 Internet of Things (IoT), Tokyo, 2010.

[123] Q. Z. Sheng, X. Qiao, A. Vasilakos, C. Szabo, S. Bourne and X. Xu, "Web

services composition: A decade’s overview," Information Sciences, vol. 280, pp.

218-238, 2014.

[124] C. Pautasso, "BPEL for REST," in International Conference on Business Process

Management, 2008.

[125] F. Rosenberg, F. Curbera, M. Duftler and R. Khalaf, "Composing RESTful

services and collaborative workflows: A lightweight approach," IEEE Internet

Computing, vol. 12, no. 5, pp. 24–31, 2008.

[126] C. Pautasso, "Composing RESTful services with JOpera," in International

Conference on Software, Zurich, Switzerland, 2009.

[127] "JOpera for Eclipse," JOpera.org, 2013. [Online]. Available:

http://www.jopera.org/. [Accessed 7 December 2017].

[128] C. Pautasso and G. Alonso, "The JOpera visual composition language," Journal of

Visual Languages and Computing, vol. 16, no. 1-2, pp. 119–152, 2005.

[129] "Maps JavaScript API," Google Developers, [Online]. Available:

https://developers.google.com/maps/documentation/javascript/. [Accessed 7

December 2017].

BIBLIOGRAPHY

184

[130] J. Smith and R. Nair, "The architecture of virtual machines," Computer, vol. 38,

no. 5, pp. 32-38, 2005.

[131] "Microsoft Azure," Microsoft, [Online]. Available: https://azure.microsoft.com/.

[Accessed 7 December 2017].

[132] X. Huang and X. Du, "Efficiently secure data privacy on hybrid cloud," in 2013

IEEE International Conference on Communications (ICC), Budapest, 2013.

[133] T. Dillon, C. Wu and E. Chang, "Cloud computing: issues and challenges," in

24th IEEE International Conference on Advanced Information Networking and

Applications (AINA), 2010.

[134] P. Overschee, "Subspace Identification for Linear Systems," 2002. [Online].

Available: http://www.mathworks.com/matlabcentral/fileexchange/2290-

subspace-identification-for-linear-systems. [Accessed 27 June 2017].

[135] S. Qin and W. Li, "Detection, identification, and reconstruction of faulty sensors

with maximized sensitivity," AIChE Journal, vol. 45, no. 9, pp. 1963-1976, 1999.

[136] S. Wang and Y. Chen, "Sensor validation and reconstruction for building central

chilling systems based on principal component analysis," Energy Conversion and

Management, vol. 45, no. 5, pp. 673-695, 2004.

[137] G. Kerschen, P. De Boe, J. Golinval and K. Worden, "Sensor validation using

principal component analysis," Smart Materials and Structures, vol. 14, no. 1, pp.

36-42, 2005.

[138] J. Kullaa, "Sensor validation using minimum mean square error estimation,"

Mechanical Systems and Signal Processing, vol. 24, no. 5, pp. 1444-1457, 2010.

[139] X. Dai and Z. Gao, "From model, signal to knowledge: A data-driven perspective

of fault detection and diagnosis," IEEE Transactions on Industrial Informatics,

vol. 9, no. 4, pp. 2226–2238, 2013.

[140] X. Xu, J. Hines and R. Uhrig, "Sensor validation and fault detection using neural

networks," in Maintenance and Reliability Conference (MARCON 99), 1999.

BIBLIOGRAPHY

185

[141] I. Eski, S. Erkaya, S. Savas and S. Yildirim, "Fault detection on robot

manipulators using artificial neural networks," Robotics and Computer-Integrated

Manufacturing, vol. 27, no. 1, pp. 115–123, 2011.

[142] K. Smarsly and K. Law, "Decentralized fault detection and isolation in wireless

structural health monitoring systems using analytical redundancy," Advances in

Engineering Software, vol. 73, pp. 1–10, 2014.

[143] K. Dragos and K. Smarsly, "Distributed adaptive diagnosis of sensor faults using

structural response data," Smart Materials and Structures, vol. 25, no. 10, pp.

105019–15, 2016.

[144] K. Law, S. Jeong and M. Ferguson, "A data-driven approach for sensor data

reconstruction for bridge monitoring," in 2017 World Congress on Advances in

Structural Engineering and Mechanics, 2017.

[145] J. Kullaa, "Distinguishing between sensor fault, structural damage, and

environmental or operational effects in structural health monitoring," Mechanical

Systems and Signal Processing, vol. 25, no. 8, pp. 2976–2989, 2011.

[146] A. I. Moustapha and R. R. Selmic, "Wireless sensor network modeling using

modified recurrent neural networks: Application to fault detection," IEEE

Transactions on Instrumentation and Measurement, vol. 57, no. 5, pp. 981–988,

2008.

[147] M. Schuster and K. Paliwal, "Bidirectional recurrent neural networks," IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.

[148] Y. LeCun, L. Bottou, G. Orr and K. Müller, "Efficient backprop," in Neural

networks: Tricks of the trade, Berlin, Heidelberg., Springer, pp. 9-50, 1998.

[149] A. Ng, J. Ngiam, C. Foo, Y. Mai, C. Suen, A. Coates, A. Maas, A. Hannun, B.

Huval, T. Wang and S. Tandon, "UFLDL tutorial," [Online]. Available:

http://deeplearning.stanford.edu/tutorial/. [Accessed 15 January 2018].

BIBLIOGRAPHY

186

[150] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep

feedforward neural networks," in The Thirteenth International Conference on

Artificial Intelligence and Statistics, 2010.

[151] P. Werbos, "Backpropagation through time: what it does and how to do it,"

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[152] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," in The 3rd

International Conference for Learning Representations, 2015.

[153] M. Hagan, H. Demuth, M. Beale and O. De Jess, Neural network design, 2014.

[154] R. Williams and J. Peng, "An efficient gradient-based algorithm for on-line

training of recurrent network trajectories," Neural Computation, vol. 2, no. 4, pp.

490-501, 1990.

[155] I. Sutskever, Training recurrent neural networks., Ph.D. Thesis, Department of

Computer Science, University of Toronto, 2013.

[156] Y. Zhang, S. O’Connor, G. van der Linden, A. Prakash and J. Lynch, "SenStore: a

scalable cyberinfrastructure platform for implementation of data-to-decision

frameworks for infrastructure health management," Journal of Computing in Civil

Engineering, vol. 30, no. 5, pp. 04016012, 2016.

[157] S. O’Connor, Y. Zhang, J. Lynch, M. Ettouney and P. O. Jansson, "Long-term

performance assessment of the Telegraph Road Bridge using a permanent wireless

monitoring system and automated statistical process control analytics," Structure

and Infrastructure Engineering,, vol. 13, no. 5, pp. 604-624., 2017.

[158] American Association of State Highway and Transpor, Standard specifications for

highway bridges, 17th ed., Washington D.C.: American Association of State

Highway and Transportation Officials, 2002.

[159] PyTorch, "PyTorch," [Online]. Available: http://pytorch.org/. [Accessed 1

February 2018].

[160] A. Pouliezos and G. Stavrakakis, "Analytical redundancy methods," in Real Time

Fault Monitoring of Industrial Processes, Dordrecht, Springer, 1994.

BIBLIOGRAPHY

187

[161] A. Trunov and M. Polycarpou, "Automated fault diagnosis in nonlinear

multivariable systems using a learning methodology," IEEE Transactions on

Neural Networks, vol. 11, no. 1, pp. 91–101, 2000.

[162] H. Sohn, "Effects of environmental and operational variability on structural health

monitoring," Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, vol. 365, no. 1851, pp. 539-

560, 2007.

[163] R. Brincker, L. Zhang and P. Andersen, "Modal identification of output-only

systems using frequency domain decomposition," Smart Materials and Structures,

vol. 10, no. 3, pp. 441-445, 2001.

[164] A. Mosavi, H. Sedarat, S. O'Connor, A. Emami-Naeini, V. Jacob, A. Krimotat and

J. Lynch, "Finite element model updating of a skewed highway bridge using a

multi-variable sensitivity-based optimization approach," in SPIE Smart Structures

and Materials + Nondestructive Evaluation and Health Monitoring, San Diego,

CA, 2012.

