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ABSTRACT 

 
The interrupting swap-allowed blocking job shop problem 

(ISBJSSP) is a complex scheduling problem that is able to model 
many manufacturing planning and logistics applications 
realistically by addressing both the lack of storage capacity and 
unforeseen production interruptions. Subjected to random 
disruptions due to machine malfunction or maintenance, 
industry production settings often choose to adopt dispatching 
rules to enable adaptive, real-time re-scheduling, rather than 
traditional methods that require costly re-computation on the 
new configuration every time the problem condition changes 
dynamically. To generate dispatching rules for the ISBJSSP 
problem, we introduce a dynamic disjunctive graph formulation 
characterized by nodes and edges subjected to continuous 
deletions and additions. This formulation enables the training of 
an adaptive scheduler utilizing graph neural networks and 
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reinforcement learning. Furthermore, a simulator is developed 
to simulate interruption, swapping, and blocking in the ISBJSSP 
setting. Employing a set of reported benchmark instances, we 
conduct a detailed experimental study on ISBJSSP instances 
with a range of machine shutdown probabilities to show that the 
scheduling policies generated can outperform or are at least as 
competitive as existing dispatching rules with predetermined 
priority. This study shows that the ISBJSSP, which requires real-
time adaptive solutions, can be scheduled efficiently with the 
proposed method when production interruptions occur with 
random machine shutdowns. 

 
Keywords: Smart Manufacturing, Job Shop Problems, 

Priority Dispatching Rule, Machine Learning, Reinforcement 
Learning, Graph Neural Networks 

 
1. INTRODUCTION  

Effective scheduling strategies to various production 
scheduling problems have been widely studied in academia and 
industry with the goal to streamline manufacturing systems and 
hence to improve production efficiency. For example, the 
classical job shop scheduling problem (JSSP), which aims to find 
optimal assignment of jobs composed of operations given some 
prescribed machine sharing and precedence constraints, is an 
NP-hard combinatorial optimization problem that finds many 
practical applications. Many manufacturing systems in the real 
settings, however, have more constraints to consider than the 
capacity of machines. For example, many components of 
vehicles and machines are often expensive items that are huge in 
size. It is therefore not desirable to have to invest in the storage 
of intermediate components and products [1]. The lack of storage 
capacity is therefore a constraint in this case. Variations of the 
job shop problem without storage, often referred to as the 
blocking job shop problem, have diverse applications, including 
aircraft production [2] and steel manufacturing [3]. Developing 
effective scheduling strategies for these scenarios can help 
manufacturers optimize their production processes, leading to 
increased efficiency. The blocking job shop also finds 
applications in many areas beyond manufacturing, where 
logistics planning does not allow intermediate buffers. For 
example, the railway scheduling problem, where a train blocks a 
segment of the track until the train can be moved elsewhere, can 
be effectively modeled as a blocking job shop [4]. Furthermore, 
unforeseen interruptions to production, such as machine 
shutdowns, could occur that changes the list of available 
machines. To model modern manufacturing systems more 
realistically by considering both the lack of storage capacities 
and production interruptions, this work studies a new class of 
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job scheduling problem, the interrupting swap-allowed blocking 
job shop scheduling problem (ISBJSSP).   

Many methods, such as mathematical optimization [5], 
branch-and-bound search [6] and meta-heuristic algorithms 
[7,8], have been developed to generate optimum or near-
optimum solutions to the JSSP problems. However, these 
solutions are not adaptive, requiring a completely new execution 
when encountering a new scenario or a new configuration. These 
non-adaptive solutions are therefore not suitable for the ISBJSSP 
setting, where the problem condition constantly changes, for 
example, due to machine interruptions. To cope with potential 
dynamic changes, priority dispatching rules (PDRs), which are 
simple rule-based heuristics, are the most common approach 
used in modern manufacturing systems, as they can be applied 
instantaneously to an unknown instance. PDRs, first-in-first-out 
(FIFO) as an example, simply loads jobs based on some 
predetermined priority [9]. Although PDRs are widely used in 
real world situations due to their simplicity and speed, their 
performance varies widely depending on the problem condition. 
For example, shortest processing time (SPT) is a common 
benchmarking PDR that performs well in heavily loaded or 
congested job shop problem instances but fails with low load 
levels [10]. These simple rules, although they can deal with 
dynamic changes, have poor generalizability, and need to be 
manually selected or combined based on the job shop condition. 
Furthermore, with the random interruptions in the ISBJSSP 
formulation, where problem conditions change often, it is not 
clear apriori whether any of the PDRs can be effective on an 
ISBJSSP problem. 

To improve the generalizability of dispatching rules, 
researchers have started to leverage artificial intelligence (AI) 
methods to solve job shop scheduling problems. To consider 
both the ability to adapt and to generalize, methods that are based 
on reinforcement learning (RL) are receiving increasing 
attention in the research community on planning problems. 
Much like PDRs, these methods output sequential decisions 
according to a dispatching policy. The difference is that rather 
than using predetermined priority rules, RL’s dispatching policy 
is learned by observing and accumulating experience from 
previous simulations.  

RL has been used to learn policies in various planning and 
scheduling problems. Traditional RL algorithms, such as Q-
learning and its variants, are often used to learn dispatching rules 
for small-scale job scheduling problems with discrete state space 
[11,12]. In contrast, large-scale job shop scheduling problems 
are relatively unexplored. For large-scale, continuous state space 
problems, it is necessary to consider deep RL methods that 
approximate the value function.  

Sparked by increased availability in computational power in 
recent years, deep RL methods combining deep neural networks 
with RL have received much attention due to its powerful ability 
to generate solutions for continuous state space. Examples of 
deep RL applications to planning and scheduling problems 
include task scheduling in computing [13], robotic scheduling 
for manufacturing [14], and semiconductor manufacturing 
scheduling [15]. However, the problem formulation of deep RL 
for job shop problems varies widely, for even the classical JSSP. 
Liu et al. [16] used process time matrices to represent the state 

space and trained a deep RL model to select from a list of 
existing PDRs. Park et al. [17] and Zhang et al. [18] use 
disjunctive graph and graph representation learning to obtain a 
vectorized state space, and directly learned new dispatching 
rules. For ISBJSSP, there lacks a formal Markov Decision 
Process formulation that enables the study of deep RL approach 
for this new class of job scheduling problem.  

This paper introduces the formulation of the ISBJSSP as a 
dynamic disjunctive graph, which serves as the state 
representation of the Markov Decision Process (MDP). To 
generate training data sets and experimental test scenarios, we 
implement an ISBJSSP simulator, building upon a Python-based 
JSSP simulator (pyjssp) previously developed by Park et al. [17]. 
The simulator is designed to simulate ISBJSSP instances to 
include blocking constraints, swapping conditions, and machine 
shutdown interruptions to mimic realistic concerns in practical 
applications. Using the simulator, GNN-RL scheduler models, 
combining graph neural network (GNN) and deep RL learning, 
are trained with randomly generated ISBJSSP instances. In this 
study, the performance of the trained models is evaluated on two 
sets of benchmark scenarios. The first test set is a set of 10	 × 10 
benchmark instances that are commonly used in job shop 
scheduling studies [19]. To demonstrate the scalability and 
generalization of the GNN-RL models, the second test set 
includes job shop instances with varying sizes [20]. The 
experimental results show that GNN-RL schedulers can be used 
to schedule unknown ISBJSSP instances robustly and efficiently 
and can potentially be applied in a real manufacturing 
environment without shutting down the entire job shop when 
interruption occurs. 

The paper is organized as follows: Section 2 introduces the 
ISBJSSP formulation and how the problem can be modeled as a 
dynamic disjunctive graph and a Markov Decision Process. 
Section 3 describes the methodology employed to learn ISBJSSP 
scheduling models. Section 4 describes the experimental results 
obtained with benchmark ISBJSSP instances of different sizes. 
Section 5 concludes this paper with a brief summary and 
discussion. 

 

 
Fig. 1 Example of a static disjunctive graph for an 
instance containing three jobs, each with three operations. 
Directed conjunctive edges represent precedence 
constraints. Bidirectional disjunctive edges represent 
machine constraints, where the nodes in a cycle are 
operations that require to be processed on the same 
machine. Nodes with dashed perimeters indicate completed 
operations. Nodes with solid perimeters indicate operations 
that have not been started. The double-outlined node 
indicates the operation currently being processed. 
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2. PROBLEM FORMULATION 
This section briefly introduces the background for the job 

shop problem and the various constraints that exist. The 
modeling of ISBJSSP as a dynamic disjunctive graph and a 
Markov Decision Process (MDP) is then described. 

 
2.1 Job Shop Scheduling 

For the classical JSSP of size 𝑚× 𝑛, there exists a set of 
𝑛	 jobs, 𝑂: {𝑂!, 𝑂", … , 𝑂#} , to be optimally allocated and 
executed on a set of 𝑚 machines, 𝑀: {𝑀!, 𝑀", … ,𝑀$}. Each job 
has a series of tasks or operations that must be processed 
according to the problem's precedence and machine-sharing 
constraints. In this study, without loss of generality, we assume 
each job, 𝑂%: {𝑜!% , 𝑜"% , … , 𝑜&%} , has the same number of 𝑝 
operations. Each operation 𝑜'% has a pre-defined processing time 
for completion. The precedence constraint implies that for all 
consecutive operations 𝑜'%  and 𝑜'(!,%  of job 𝑂% , 𝑜'%  must be 
completed before starting 𝑜'(!,% . Furthermore, the machine-
sharing constraint indicates that each operation 𝑜'%  must be 
processed uninterrupted on a dedicated machine. Additionally, 
each operation of a job is assigned on a different machine, and 
each machine that is in process of an operation is only freed when 
that operation finishes. Therefore, given the above constraints, 
the number of machines 𝑚 = 𝑝, the number of operations for 
each job. The objective of the classical JSSP is to find a schedule 
that minimizes the makespan, the total time to finish all jobs [21]. 

The classical job shop problem assumes that there is 
sufficient storage or buffer space available to store each job in 
between consecutive operations. However, buffers are 
undesirable in practical applications. Therefore, many real 
manufacturing applications are better modeled as the Blocking 
JSSP (BJSSP) [22]. BJSSP introduces the blocking constraint in 
that no buffers are available for storing a job as the job moves 
between machines; the job must wait on the machine until it can 
be processed on the next machine. That is, for any job 𝑂%, its 
operation 𝑜'%  is a blocking operation until 𝑜'% 's succeeding 
operation, 𝑜'(!,%, starts.  

In practical job shops without buffers, the issue of deadlock 
is often mitigated through the implementation of blocking job 
swaps.  The swapping mechanism is the repositioning of 
processed components across machines. Swapping cannot 
interrupt started but unfinished operations, and do not require the 
allocation of additional storage buffer. A deadlock situation 
occurs when no unprocessed operations could be processed, 
because each unprocessed operation is waiting for a blocked 
machine to become “unblocked” and available. Thus, BJSSP 
often allows swapping to avoid deadlocks, referred to as the 
swap-allowed blocking job shop problem (SBJSSP) [19]. A 
swap can be done if there exists a set of blocking operations, each 
one waiting for a machine blocked by another operation in the 
set. A swap resolves the deadlock and ensures that the 
manufacturing process can proceed and that there exists at least 
one solution to a randomly generated SBJSSP instance.  

 
2.2 ISBJSSP  

Although the SBJSSP models can be applied to many 
manufacturing production lines, there is an additional factor that 

exists in a real production line but is often overlooked - the 
possibility of production interruption, for example, caused by 
machine failures. While solution methods such as mathematical 
programming, branch and bound search and meta-heuristic 
methods (such as tabu search, genetic algorithm, simulated 
annealing, etc.) can generate optimal solution to static 
(uninterrupted) job shop scenarios, the dynamic scenarios with 
real time machine interruptions would require recomputing a 
new solution for each scenario change by the methods. The 
possibility of such interruption also results in priority 
dispatching rules [23] being generally favored in practice, as 
dispatching rules can easily adapt to dynamic changes in 
availability of machines in real time. Our work therefore 
includes this additional constraint where machine availability 
can be interrupted in the formulation: At any given time step, an 
idling machine in 𝑀  has a probability 𝑃'#*+,,-&*  that the 
machine is unavailable to process any job for a period of 
𝑇'#*+,,-&* time steps. If a job's next operation is waiting on an 
unavailable machine, the job will block the machine used by the 
precedent operation due to the lack of buffer. When the machine 
previously shut down becomes available again after 𝑇'#*+,,-&* 
time steps, the machine will then process one of the waiting jobs, 
determined by the job shop scheduler. We refer the job shop 
problem with the interruption constraint as the interrupting 
swap-allowed blocking job shop problem (ISBJSSP).  

 
2.3 Dynamic Disjunctive Graph Formulation  
2.3.1. Static Disjunctive Graph Representation of Job Shop 

In previous research focusing on uninterrupted problems like 
the JSSP and SBJSSP, it is a standard practice to employ a 
disjunctive graph, denoted as 𝐺 = (𝑉, 𝐶 ∪ 𝐷) , as a 
representation for job shop problems [24]. Here, 𝑉 is the node 
set, with each node corresponding to an operation 𝑜'% 	of job 𝑂%. 
𝐶 is the set of conjunctive edges, where each edge connects two 
consecutive operations 𝑜'% and 𝑜'(!,% of job 𝑂%. The conjunctive 
edges represent the set of processing order constraints. 𝐷 
denotes the set of disjunctive edges, which connect two vertices 
if the two corresponding operations need to be processed on the 
same machine. The disjunctive edges represent the machine-
sharing constraints. For uninterrupted job shop problems, the 
connectivity between nodes and edges remains static, resulting 
in a disjunctive graph that maintains the same topology 
throughout the entire duration of a given problem instance.  

To illustrate how a static disjunctive graph represents an 
uninterrupted job shop problem, we provide a step-by-step 
example of a problem instance where swapping and blocking 
constraints exist, but interruptions do not yet occur. Figure 1 
shows a static disjunctive graph of a small example instance. The 
instance contains three machines, on which three jobs, each with 
three operations, are to be processed. As an example, the first job 
contains the operations labeled with node numbers 0, 1, 2, which 
must be processed in this specified order due to the existence of 
precedence constraints. The precedence constraint is shown as 
directed edges in the disjunctive graph. Similarly, the second job 
must be processed in the order of 3, 4, 5, and the third job in the 
order of 6, 7, 8. The bi-directional disjunctive edges specify 
machine constraints. In our example, operations 1, 5, 6 need to 
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be processed on a dedicated machine. Similarly, operations 0, 3, 
8 share a machine, and operations 2, 4, 7 share a machine. At the 
time where this disjunctive graph was plotted as shown in Figure 
1, operations 0, 1, 3, 6 are completed, and operation 7 is being 
processed. Furthermore, there is swap-allowed blocking to 
consider. For example, even when operation 7 is completed, it 
will block its machine, preventing operations 2 and 4 to be 
processed, until the part moves to the next machine to commence 
operation 8. At the current time step, all three machines are either 
blocked by an unstarted operation or busy processing an 
operation and are therefore not idle. As defined earlier, the 
machine shutdown interruption of probability 𝑃'#*+,,-&*  only 
occurs to idling machines.  

To incorporate the time-dependent job shop information into 
the disjunctive graph with static topology, a node feature vector 
𝑥.  is assigned to each node 𝑣 = 𝑜'% ∈ 𝑉. We utilize the same 
node features as presented by Park et al. [17], which are stacked 
vectors with the following components:  

 
• Node status: a one-hot index vector of size 3, indicating 

whether the operation 𝑣 is not yet started, being processed, or 
is completed.  

• Processing time: the total time required to finish operation 𝑣. 
• Degree of completion: the ratio of the accumulated 

processing time of 𝑣's job to the total processing time of 𝑣's 
job (i.e., the job that contains the operation).  

• Number of succeeding operations: the number of operations 
including both 𝑣 and the operations after 𝑣 in 𝑣's job. 

• Waiting time: the time for which 𝑣 must wait for processing 
after it is ready to be processed. 

• Remaining time: the remaining processing time needed to 
complete the operation 𝑣 once it has started.  
 

2.3.2. Dynamic Disjunctive Graph Representation of Job Shop 
In contrast to uninterrupted job shop problems, the ISBJSSP 

incorporates additional machine availability constraints in the 
form of random idling machine interruptions or failures. While 
we initialize all job shop instances (prior to any interruption) 
using the above-mentioned static disjunctive graph formulation, 
we model the randomly occuring interruptions using a dynamic 
disjunctive graph representation.  

In the dynamic formulation, nodes and edges of the 
disjunctive graph are subjected to deletions and additions due to 
the machine availability constraint, making the graph 
connectivity constantly changing. More specifically, when a 
machine is shut down under probability 𝑃'#*+,,-&* , the nodes 
(i.e., the operations) that require the interrupted machine and 
their connected edges are temporarily removed from the graph, 
indicating that the machine is no longer observed at that time 
instance. When the machine recovers from its failure after 
𝑇'#*+,,-&* time steps, the previously removed nodes and edges 
are added back to the graph. Given the dynamic nature of the 
graph topology, we use 𝐺* to denote the disjunctive graph of an 
ISBJSSP instance at time 𝑡. The topology change is described 
here in more formal notations. Let 𝐺*/! be a dynamic disjunctive 
graph at time 𝑡 − 1 and 𝑣 a single node to be removed in the 
subsequent time step, time 𝑡. Concurrently, we denote an edge 

𝑐 ∼ 𝑣 as a conjunctive edge incident to the node 𝑣, and 𝑑 ∼ 𝑣 as 
a disjunctive edge incident to the same node 𝑣. Upon the removal 
of node 𝑣 , all conjunctive edges 𝑐  such that 𝑐 ∼ 𝑣  and 
disjunctive edges 𝑑 such that 𝑑 ∼ 𝑣 are simultaneously removed 
from graph, thus resulting in a distinct graph topology for 𝐺* 
compared to 𝐺*/!.  Likewise, upon the recovery of the machine 
associated with node 𝑣 at 𝐺*(0!"#$%%&'#, we reinstate the node 𝑣 
and the incident edges, reshaping the graph’s topology once 
again.  

We show the dynamic removal and addition of nodes and 
edges in an example in Figure 2. In this example, in the initial 
disjunctive graph snapshot of the ISBJSSP instance (Figure 
2(a)), the dedicated machine for operation 1,5,6 is shut down 
before any operation could be processed. As a result, node 1,5,6 
and all conjunctive and disjunctive edges incident to these nodes 
are removed from the graph (Figure 2(b)). After 𝑇'#*+,,-&* time 
steps, we reinstate the removed nodes and edges, as shown in 
Figure 2(c).  We note that this is a simplified illustration in which 
only one machine encounters shutdown and subsequent 
recovery. Consequently, the graph's topology is same as the 
initial graph upon recovery. In more complex scenarios, it is 
possible for multiple machines to undergo shutdown, either 
simultaneously or intermittently across the duration of the 
simulation, resulting in more complex changes in the dynamic 
graph’s topology. 

 
2.4 Markov Decision Process Formulation 

The scheduling process of an ISBJSSP instance can be 
viewed as a sequential decision-making process. Specifically, 
ISBJSSP can be formulated as an MDP, denoted as a 
(𝑆, 𝐴, 𝑃, 𝑅, 𝛾) tuple, whose elements represent the set of Markov 
states (𝑆) , set of actions (𝐴) , transition model (𝑃) , reward 
function (𝑅) and discount factor (𝛾), respectively. 

 
• State: A disjunctive graph 𝐺* representing a snapshot of state 

𝑠*   ∈  𝑆  of the ISBJSSP instance at time 𝑡 . 𝐺*  here is the 
dynamic graph subjected to topology changes due to 
interruptions.  

• Action: A scheduling action 𝑎* ∈ 𝐴 of loading an operation 
to an available machine at time 𝑡. The action space of the 
ISBJSSP differs from that of the classical JSSP, wherein any 
machine not actively processing an operation is available. On 
contrary, in the case of SBJSSP and ISBJSSP, the inclusion 
of swapping and blocking necessitates an additional 
evaluation of machine availability status, explained later in 
Section 3.1.2. 

• Transition model: The transition between states, which, in 
this study, is handled and generated by the ISBJSSP 
simulator developed in this study. 

• Reward function: A function defined to stipulate the behavior 
of an action. The reward function used in this study mimics 
the utilization of a machine and is defined as 
  

𝑟* = −𝑛1# 			 (1)	
 
where 𝑛1# is the number of jobs waiting at time 𝑡. 



 

5 
 

• Discount factor: The discount factor for “caring” of future 
reward by an action. In the ISBJSSP setting, the presence of 
random interruptions introduces greater uncertainty into 
future outcomes. Consequently, fine-tuning the discount 
factor is essential during model training to effectively adapt 
to these interruptions. We therefore compare two different 
values of the discount factor in our experimental results, 
presented later in Section 4.  
 

3. METHODOLOGY 
This section describes the workflow for deriving a policy to 

solve the ISBJSSP. The method consists of two main 
components: 1) the ISBJSSP simulator, which manages the 
dynamic graph generation and machine availability complexity, 
which are existent in the ISBJSSP setting but absent in the JSSP 
one, and 2) GNN-RL (graph neural network - reinforcement 
learning), a machine learning technique employed to learn the 
scheduling policy by observing the dynamic graphs. Figure 3 
depicts the overarching framework of the proposed workflow.  

A dynamic disjunctive graph 𝐺*  (Figure 3(e)) is observed 
from the ISBJSSP simulator environment (Figure 3(d)) and is 
used as the input to a GNN model (Figure 3(f)) for representation 
learning. Differing from uninterrupted job shop problems, 
interruptions are additionally modeled by the previously 
discussed dynamic removal and addition of nodes and edges. 
The learned embedded graph 𝐺*2 (Figure 3(a)), which captures 

 
Fig. 2 Example of a dynamic disjunctive graph. Nodes and 
edges are deleted when a machine is shut down, and are 
reinstated when the machine recovers.  

 
Fig. 3 Proposed GNN-RL framework. 
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such structural changes, is then used as the input to the RL 
algorithm, learning a parameterized policy, or a probability 
distribution of feasible actions, using an actor-critic model with 
proximal policy optimization (Figure 3(b,c)). Finally, an action 
to process a specific operation is sampled from the parameterized 
policy π(⋅ |𝐺*) and executed via the ISBJSSP simulator (Figure 
3(d)). 

 In this section, we first discuss the building of the 
simulator, which must incorporate dynamic changes caused by 
interruptions, as well as swapping and blocking absent in 
classical JSSP simulators. Then, we present the GNN-RL 
procedure presented by Park et al. [17] for completeness of the 
methodology. 

  
3.1 ISBJSSP Simulator 

The primary objective of a simulator is to collect transition 
samples, (𝐺*/!, 𝑎*/!, 𝑟*/!, 𝐺*) . The generation of such 
transitions is problem specific, as different problem settings 
inevitably result in varying state and action spaces. Leveraging 
the JSSP simulator built by Park et al. [17], our modified 
simulator encompasses new features to facilitate the handling of 
machine interruptions, swapping, and blocking operations. 
These augmentations enable the simulator to generate transition 
samples following the ISBJSSP setting. 

  
3.1.1 Queue System to Manage Interruptions 

While interruptions of idling machines are modeled as the 
dynamic change in the disjunctive graph structure, there needs to 

be a system that manages and tracks the statuses of interrupted 
machines. In this subsection, we describe the use of queues in 
the simulator implementation to manage machine failures and 
recoveries.  

Figure 4 illustrates an example of how a queue system is 
implemented to keep track of ongoing interruptions. To 
effectively manage the introduced machine interruptions, we 
uphold two queues. The first queue stores operations, each 
represented by a node, associated with the interrupted machines, 

 
Fig. 4 Queueing system for managing machine 
interruptions. Queue 𝑸 stores removed nodes and Queue 
𝑸′ tracks shutdown times. 

 
Fig. 5 Schematic outline for assessing machine’s availability status in ISBJSSP simulator. 
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denoted as 𝑄 . The second queue, labeled as  𝑄′ , tracks all 
interruption time counters. As the simulation proceeds and time 
step 𝑡 increases, operations associated to idling machines that 
encounter failures at time 𝑡 are stored in a node set 𝑄*, which is 
subsequently enqueued into queue 𝑄 . Additionally, an 
interruption time counter, 𝜏*,  that tallies the accumulated failure 
time since time step 𝑡 is also enqueued into the queue 𝑄′. Upon 
the enqueueing of a node 𝑣 ∈ 𝑄* into queue	𝑄, all conjunctive 
edges 𝑐 such that 𝑐 ∼ 𝑣 and disjunctive edges 𝑑 such that 𝑑 ∼ 𝑣 
are removed from the dynamic graph 𝐺*. 

 As machines recover from failure, indicated by the 
respective time counters reaching 𝑇'#*+,,-&*, the first elements 
within the respective queues are dequeued. Nodes from the 
dequeued node set and their corresponding conjunctive and 
disjunctive edges are then reinstated into the graph.  

 
3.1.2 Machine Availability Considering Interruption, Swapping 
and Blocking  

In our preceding discussion, we described the dynamic nature 
of the disjunctive graph states, namely the possible topology 
changes between subsequent graph snapshots, for example 
𝐺*/!	 and 	𝐺* , due to machine interruptions. In addition to 
interruptions, the complexities of swapping and blocking 
operations also need to be addressed when building a simulator 
for the ISBJSSP. In JSSP simulators, 𝑎*/! is selected by loading 
operations from a list of available machines, which is simply 
identified as those not currently processing an operation. Yet, the 
ISBJSSP presents distinct considerations. Interrupted and 
blocked machines are rendered unavailable, and the introduction 
of swapping operations can unblock machines. Figure 5 outlines 
the algorithm to determine the availability status of a machine 
within the adapted ISBJSSP simulator framework. 

Given a machine 𝑚, the objective of the algorithm presented 
in Figure 5 is to determine the status of 𝑚. The availability of 𝑚 
is determined by:  

 
• Case 1 – Unavailable (failed): The algorithm first checks 

whether the machine has been interrupted under the 
𝑃'#*+,,-&*  shutdown probabilities. If the machine has been 
affected by the interruption, it is unavailable to process any 
operation.  

• Case 2 – Unavailable (busy): If 𝑚 is currently processing an 
operation, say 𝑜'% , then 𝑚  is unavailable to process any 
additional operation. Alternatively, if 𝑚  has finished 
processing 𝑜'%  but 𝑜'(!,%  is swappable with other unstarted 
operations, a swapped operation will immediately transfer to 
𝑚, leaving 𝑚 unavailable to process any operation except the 
newly arrived operation.  

• Case 3 – Available: If 𝑚  is not currently processing an 
operation and has never processed an operation at all, then 𝑚 
is idle as it has not been put into work since initialization. 
Alternatively, if 𝑚 is not currently processing an operation 
and the succeeding operation ( 𝑜'(!,% ) of the previously 
processed operation (𝑜'%) has been started, job 𝑂%  has been 
transferred to another machine, rendering 𝑚 idle.  

• Case 4 – Unavailable (blocked): If 𝑚 has processed 𝑜'%, but 
𝑜'(!,%  is unable to start (due to its required machine being 
unavailable), the job 𝑂%  cannot be transferred to another 
machine. 𝑚 is therefore deemed unavailable and blocked.  
 

3.2 Generating Scheduling Policy with GNN-RL  
In this section, the GNN-RL method (graph neural network 

– reinforcement learning) is presented below for completeness 
of the methodology. The discussion follows closely the notation 
of [17] and [27], and the GNN-RL procedure, which was 
designed for classical JSSP [17]. It should be emphasized, 
however, that the ISBJSSP requires the incorporation of the 
dynamic disjunctive graph, which is used as the state 
representation of the MDP and simulated by the modified 
ISBJSSP simulator.  
3.2.1 Representation Learning with GNN 

The goal of a GNN is to effectively capture and represent the 
structural information of the dynamic disjunctive graph, 𝐺* , 
which serves as a snapshot of the dynamic job shop environment. 
While it is difficult to represent graph structures in the Euclidean 
space, GNN can be used to learn an embedded graph from 𝐺*. 
The embedded graph contains an embedding vector for each 
node 𝑣 that represents the neighborhood connectivity and node 
feature information around the node. Note that the neighborhood 
connectivity here changes constantly as random interruptions 
occur, as shown previously in Figure 2. A GNN is a neural 
network that consists of layers of differentiable functions with 
learnable parameters and computes an embedding vector for 
each node in the graph. A GNN layer needs to be designed such 
that for each target node, the embedding of the target node is 
updated not only using the previous layer's target node 
embedding, but also node embedding aggregated from the 
neighboring nodes in order to learn embeddings that encode 
essential characteristics of 𝐺* = (𝑉, 𝐶 ∪ 𝐷), such as the nodal 
features and the dynamic connectivity between jobs and 
machines. The learned embeddings serve as rich representations 
of the dynamic graph snapshot and is used as the input to the RL 
agent’s decision-making process.  

As shown in Figure 2(f), the computation process of a GNN 
layer implemented in this study can be separated into three steps. 
Firstly, a different multi-layer perceptron (MLP) network [25] 
with ReLU activation [26] is applied to each of the following 
three sets of nodes neighboring the target node 𝑣: the set of all 
precedent nodes 𝑁&(𝑣)  connected through the conjunctive 
(precedence constraint) edges, succeeding nodes 𝑁3(𝑣) 
connected also through the conjunctive edges and disjunctive 
nodes 𝑁4(𝑣) connected through the (bidirectional) disjunctive 
(machine-sharing constraint) edges. Unlike uninterrupted 
problems with static graph connectivities, 𝑁&(𝑣), 𝑁3(𝑣) , 𝑁4(𝑣) 
and the node set 𝑉  are time-variant, since interruptions could 
lead to deletion and addition of nodes within these 
neighborhoods. Secondly, the vector outputs of the three MLP 
networks, an aggregated representation of the overall graph, the 
node embedding updated in the previous layer, and the initial 
node feature of the target node are stacked in a vector, which, as 
the last step, is passed through another MLP network without 
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activation. Mathematically, the operations of the 𝑘*5 layer of a 
GNN can be written as:  

 
ℎ.
(7) = 𝑓#

(7)( ReLU(𝑓&
(7)( U ℎ'

(7/!)

'∈:'(.)

))	||	

																								ReLU(𝑓3
(7)( U ℎ'

(7/!)

'∈:((.)

))	||

																							ReLU(𝑓4
(7)( U ℎ'

(7/!)

'∈:)(.)

))	||

                                         ReLU(Uℎ'
(7/!)

'∈;

)	||

																																																														ℎ.
(7/!)	||

																																																																				ℎ.
(<))

						 (2) 

 
where ReLU(∙) = max(0,∙) is a non-linear activation function. 
The previously mentioned MLP networks are denoted by 
𝑓&, 𝑓3, 	and 𝑓4, each computes a vector from node embeddings in 
the neighborhood of 𝑣  (i.e., 𝑁&(𝑣), 𝑁3(𝑣),	and 𝑁4(𝑣) , 
respectively). 𝑉  is the set of all nodes of the graph 𝐺* =
(𝑉, 𝐶 ∪ 𝐷) . ℎ.

(<)  is the feature vector 𝑥.  of node 𝑣 . ||  is the 
vector concatenation operator. 

After 𝐾 GNN layers, we have computed an embedded graph 
𝐺*
(=), as shown in Figure 2(a), whose node features are now the 

updated embedding vectors ℎ*
(,)	∀	𝑣 ∈ 𝑉 , from the input 

disjunctive graph 𝐺*  in Figure 2(e) with initial node features 
ℎ.
(<). 

 
3.2.2 Dispatching Policy Learning with RL 

Outputted by GNN described in the previous section, the 
graph embedding 𝐺*

(=) , a rich representation of both dynamic 
changes in neighborhood connectivity due to the presence of 
interruptions and time-dependent nodal features, is used as the 
input for the RL algorithm. More specifically, an actor-critic 
method is used [27]. As the name suggests, there are two neural 
networks in the RL process: an actor and a critic. As shown in 
Figure 2(b), the actor πZ𝑎*.[𝐺*

(=)\  maps the embedded graph 
𝐺*
(=) to the probability distribution over the set of all available 

actions, or the set of processible nodes. The actor model, used to 
compute the parameterized policy, is structured like a softmax 
function computing the probability of performing action 𝑎*. for 
the current state 𝐺*

(=) as follows:  
 

πZ𝑎*.[𝐺*
(=)\ =

exp`𝑓>Zℎ.
(=)\a

∑ exp `𝑓>Zℎ-
(=)\a-∈?.#

	 (3) 

 
where 𝑎*. denotes the action of selecting operation (node) 𝑣 to 
process and 𝑣 is a processible node in the disjunctive graph's 
node set 𝑉. Following the same notation in the previous section, 
ℎ.
(=)  is the embedded vector of node 𝑣 , and 𝑓>	(𝑙 = 𝑝, 𝑠, 𝑑) 

denotes a MLP network. 𝐴@#  represents the set of available 
actions for the disjunctive graph 𝐺*. 𝐴@# is obtained by querying 

a list of available machines, as discussed by the algorithm 
previously shown in Figure 5, due to the additional problem 
constraints imposed by the ISBJSSP.  

The critic model, as depicted in Figure 2(c), is another 
network that learns the value function to reliably optimize the 
policy. The current study approximates the critic function as 

 

𝑉AZ𝐺*
(=)\ ≈ 𝑓. fUℎ'

(=)

'∈;

g	 (4) 

 
where 𝑓. is an MLP network, and ∑ ℎ'

(=)
'∈;  returns a summation 

of all node embeddings.  
It can be observed that the policy πZ𝑎*.[𝐺*

(=)\ learned by the 
actor is now parameterized by a set of parameters 	Θ =
{θ&, θ3, θ4 , θ#, θ> , θ.} , corresponding to the MLP networks 
𝑓&, 𝑓3, 𝑓4 , 𝑓#, 𝑓> and	𝑓.. The parameters can be iteratively updated 
via gradient ascent. In each training iteration, we use the policy 
πB/0) with the current “old” parameters ΘC>4 to interact with the 
job shop simulator (Figure 2(d)) and collect transition samples. 
The parameters Θ are updated to optimize the policy:  

 
Θ = ΘC>4 + η∇B𝐿(Θ)	 (5) 

 
where η  is the learning rate and 𝐿(Θ)  denotes an objective 
function to be optimized for an optimal policy.  

In this work, proximal policy optimization (PPO) is 
employed to optimize the policy. To prevent unstable training 
due to substantial policy changes and encourage exploration 
during training, Schulman et.al. [27] proposes an objective 
function 𝐿(Θ) to be optimized at each time step 𝑡 as follows: 

 
𝐿*(Θ) = 𝔼[𝐿*DEFG(Θ) − α𝐿*;H(Θ) + 𝛽𝐸*(πB)]	 (6) 

 
where 𝛼  and 𝛽  are parameters for the objective function. 
𝐿*DEFG(Θ), 𝐿*;H(Θ) , and 𝐸*(𝜋B)  are, respectively, a clipped-
surrogate function, square-error value function loss, and an 
entropy bonus, which are given as follows [23]: 
 
1. The clipped-surrogate function is defined as: 

 
										𝐿*DEFG(Θ) = 𝔼	[min(𝜌*𝒜𝓉 , 𝑐𝑙𝑖𝑝(𝜌* , 1 − 𝜖, 1 + 𝜖)𝒜𝓉)]				(7)	

 
where 𝜌*  denotes a probability ratio of the current and old 
policies as 
 

ρ* =
πBZ𝑎*[𝐺*

(=)\
πB/0)Z𝑎*[𝐺*

(=)\
	 (8) 

 
and the estimator of the advantage function 𝒜𝓉 at time step 𝑡 
is computed as: 
 

𝒜𝓉 = δ* + (γλ)δ*(! +⋯+ (γλ)0/*(!δ0/!		 (9) 
	

and	δ* = ρ* + γ𝑉BZ𝐺*(!
(=)\ − 𝑉BZ𝐺*

(=)\	 (10)	
 



 

9 
 

The coefficients γ and λ are, respectively, the discount factor 
and the parameter for the advantage function estimator. The 
clip operation ensures that ρ*  does not move outside the 
interval [1 − ϵ, 1 + ϵ] , thereby preventing substantial 
changes in policy.  

2. The square-error value function loss is given as: 
 

𝐿*;H(Θ) = Z𝑉BZ𝐺*
(=)\ − 𝑉*

*J,K+*\
"
	 (11)	

\ 
where 𝑉*

*J,K+* = ∑ 𝑟'0
'L*  denotes the sum of rewards. 

 
3. The entropy bonus term for the current policy πB(𝑎)  is 

introduced to ensure sufficient exploration and is defined as: 
  

𝐸*(πB) = −UlogZπB(𝑎)\ πB(𝑎)
J

		 (12)	

where 𝑎 is an action performed given the current embedded 
graph 𝐺*

(=).  
 
The PPO procedure maximizes the objective function 𝐿(Θ) 

by updating the parameters Θ following the gradient direction 
∇B𝐿(Θ). Further discussion of the PPO algorithms can be found 
in References [27] and [17].   It should be emphasized here that 
𝐺*
(=) is learned from 𝐺*, which is subjected to dynamic node and 

edge removal and addition due to the interruptive nature inherent 
to the ISBJSSP. The graph topology therefore could 
stochastically change during training, leading to variations 
between iterations even when trained on the same problem 
instance.  

 

4. EXPERIMENTAL RESULTS 
This section describes the results of the experiments on a 

number of benchmark instances to evaluate the schedulers 
trained using GNN-RL. We will first describe the benchmark 
instances and details of the schedulers used in the experiments. 
We then report the experimental results, including: (1) a 
performance comparison of the GNN-RL method with other 
dispatching rules for the standard SBJSSP (a special case of the 
ISBJSSP with 𝑃'#*+,,-&* = 0); (2) a performance comparison 
demonstrating the practicability of the above methods for the 
ISBJSSP, which is subjected to random machine interruptions 
with probability 𝑃'#*+,,-&* > 0; and (3) a demonstration of the 
GNN-RL method’s ability to generalize a model trained with 
instances of a specific size to handle ISBJSSP instances of 
different sizes. 

 
4.1 The Baseline Benchmark Problem Instances 

As a baseline to evaluate and compare the GNN-RL 
methodology with the PDR methods, a set of 18 job shop 
scheduling problem instances, each being 10 × 10  in size 
(consisting of 10 machines and 10 jobs), are employed. Each job 
involves 10 operations and, depending on the benchmark 
instance, the operations may have different machine processing 
time. The 18 instances are commonly used as benchmarks for 
job shop scheduling [19]. Even though this study focuses on the 
ISBJSSP where machine interruptions may occur, the 

benchmark instances serve as a fair metric for evaluating 
scheduling efficacy between the GNN-RL method and the PDR 
methods.  

 
4.2 Scheduler Models and Configurations 
4.2.1 Priority Dispatching Rules (PDRs) 

As mentioned before, PDRs [23] are the most common 
approaches employed in practice for generating immediate 
solutions for scheduling job shops with unseen instances. We 
therefore compare the makespans obtained by the GNN-RL 
schedulers with those obtained using the following PDRs for 
prioritizing the preference for job execution: 

 
• Most Total Work Remaining (MTWR): the job that has the 

greatest number of remaining operations 
• Least Total Work Remaining (LTWR): the job that has the 

fewest number of remaining operations 
• Shortest Processing Time (SPT): the job whose next 

operation has the shortest processing time  
• Longest Processing Time (LPT): the job whose next 

operation has the longest processing time 
• First In First Out (FIFO): the first job that arrives 
• Last In First Out (LIFO): the last job that arrives  
• Shortest Queue Next Operation (SQNO): the job whose next 

operation requires a machine that has the fewest number of 
jobs waiting 

• Longest Queue Next Operation (LQNO): the job whose next 
operation requires a machine that has the most number of jobs 
waiting 

• Shortest Total Processing Time (STPT): the job with the 
shortest total processing time 

• Longest Total Processing Time (LTPT): the job with the 
longest total processing time 

• Random: the job that is randomly selected from the set of all 
doable jobs 
The PDRs can be applied irrespective of whether machine 

interruptions occur during the job operations.  
 

4.2.2 GNN-RL Schedulers 
Initially targeted for the baseline benchmark instances of 

10 × 10  in size, a random ISBJSSP instance of size 𝑚 ∼
𝒰(5,9) × 𝑛 ∼ 𝒰(𝑚, 9)	 and operation processing times from 
𝒰(1,99), where 𝒰 denotes a uniform distribution, is generated 
using the ISBJSSP simulator for training the GNN-RL models. 
The order of machines that each job visits is randomly permuted. 
After 20 episodes of training on the instance, a new ISBJSSP 
instance, once again with size 𝑚 ∼ 𝒰(5,9) × 𝑛 ∼ 𝒰(𝑚, 9) , 
processing times from 𝒰(1,99)  and randomly permuted 
machine order, is generated every 100 iterations. Note that, as 
discussed in a latter section, even though training is conducted 
on small-size instances to limit computational time and demand, 
the scheduling strategy that the model learns can be transferred 
to solve instances of other sizes effectively. Algorithm 1 outlines 
the procedure to train a GNN-RL scheduler. In each training 
iteration, we collect transition samples (𝐺*/!, 𝑎*/!, 𝑟*/!, 𝐺*) 
spanning 𝑇  timesteps, equivalent to a full simulation of the 
initialized ISBJSSP instance. Throughout the simulation, 
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machine failures, with a probability of 𝑃'#*+,,-&*, and downtimes 
of 𝑇'#*+,,-&* occur. These interruptions are effectively managed 
using the modified ISBJSSP simulator using the queue system 
and the machine availability determining algorithm. 
Subsequently, the collected transition samples are utilized to 
optimize the objective function 𝐿*(Θ) through the PPO method.  

An Adam optimizer [28] with a learning rate ( η ) of 
2.5 × 10/M is used. Two different discount factors (γ) are used 
in training, which are 0.9 and 1.0 (no discount) respectively. We 
use a GNN with 𝐾 = 3 layers to obtain the graph embeddings. 
The MLP networks, namely 𝑓&, 	𝑓3, 𝑓4 , 𝑓#, 𝑓> and 𝑓., each consists 
of two hidden layers with 256 ReLU activation units. 𝑓&, 𝑓3 and 
𝑓4  have 8-dimensional inputs and outputs. 𝑓#  has 48-
dimensional input and 8-dimensional output. 𝑓>  and 𝑓.  have 8-
dimensional inputs and scalar outputs. For the PPO 
hyperparameters, we set λ = 0.95, ϵ = 0.2, α = 0.5, and β =
0.01, which are the same as proposed in [17].  

For comparison purpose, models are trained without 
interruptions and with the possibility of machine interruptions. 
When trained on SBJSSP (without interruptions), we set the 
probability of interruption 𝑃'#*+,,-&* = 0. The trained GNN_RL 
models are used for a baseline comparison with the PDR 
methods. For models that are trained on ISBJSSP instances, we 
train a different model for each 𝑃'#*+,,-&* value, ranging from 
1% to 20%. The trained GNN-RL models for the ISBJSSP are 
then used to compare with the SPT (shortest process time) 
priority rule (which achieves the shortest makespan among the 
PDRs for the non-interrupting SBJSSP) for the cases with 
machine interruptions. All experiments are conducted on a 
machine equipped with an Intel Core i7-7820X processor. 

 
4.3 Results on Non-interrupting SBJSSP 

The goal of the job shop problem is to minimize the 
makespan, which is employed here as the evaluation criterion for 
comparing the performances of the different SBJSSP schedulers. 
We perform hyperparameter tuning on the discount factor, an 
important hyperparameter dictating the importance of future 
rewards, which could be affected by the new problem constraints 
posed by the ISBJSSP. We report two GNN-RL models with 
different discount factor values, namely GNN-RL (1) with γ =
0.9 and GNN-RL (2) with γ = 1.0. Figure 6 shows the results of 
the two GNN-RL schedulers and the makespans obtained using 
the PDR schedulers for the 18 benchmark instances. Among the 
PDRs, the best scheduler appears to be problem dependent. As 
shown in Figure 6, on most of the benchmark instances, at least 
one of the GNN-RL schedulers is able to outperform or as 
competitive as the PDR schedulers, assuming no machine 
interruptions occur. 

Table 1 reports the sum of the makespans of all problem 
instances. As shown, on average over all the benchmark 
instances, the GNN-RL schedulers produce shorter makespans 
than those by the PDRs schedulers. The GNN-RL (2) scheduler 
with γ = 1.0 has the best average performance. Among the PDR 
schedulers, the SPT strategy, which prioritizes the jobs 
according to the next operation having the shortest processing 
time, appears to perform the best on the average.  

 
Fig. 7 Status of 10 machines for an interrupted 
scenario. In this example, each machine, when idling, has 
a 𝑷𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕 = 5% probability of shutting down for 
𝑻𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕 =50 time steps. 

 
Fig. 6 Makespans obtained using the two trained GNN-
RL schedulers and the PDRs on the 18 benchmark instances 
without machine interruptions.  



 

11 
 

Table 1 also summarizes the total validation times over all 18 
benchmark instances for each scheduler. Note that unlike most 
batch-based deep learning tasks, the speed on the validation 
results depends heavily on the central processing unit (CPU)’s 
speed, which drives the simulation speed of our ISBJSSP 
simulator. As expected, the GNN-RL schedulers take slightly 
longer to compute solutions compared to PDR schedulers due to 
the fact that the scheduling action is computed from a policy, 
rather than derived a simple handcrafted rule like the PDR 
schedulers.  The choice of scheduler will ultimately depend on 
the specific requirements of the task and the available 
computational resources. 

 
4.4 Real-time Adaptive Scheduling of the ISBJSSP for the 
Baseline Benchmark 

In practice, unforeseen interruptions could occur during 

production. For example, machines in a production line can 
misbehave unexpectedly at times that require a shutdown. To 
assess whether the GNN-RL method can cope with real-time 
changes, we simulate the scenarios where at any given time step, 
each idling machine, excluding those in the middle of processing 
a job, has a certain probability of failing or shutdown, denoted 
as 𝑃'#*+,,-&*, for a duration of 𝑇'#*+,,-&* =	50 time steps. During 
a simulated machine failure, no further job can be assigned to the 
machine. More specifically, a machine being shutdown is 
equivalent to removing the associated nodes and edges from the 
disjunctive graph representation for 50 time steps according to 
our problem formulation. The schedulers have no prior 
knowledge on the probability and the down time of the machines. 
As an example of the machine shutdown schedule given 
interruptions, Figure 7 shows a single simulation of 10 machines 
operating with a probability of interruption 𝑃'#*+,,-&* of 5% and 
a 𝑇'#*+,,-&* of 50 time steps.  

Three GNN-RL models are trained. They include the same 
two models, namely GNN-RL (1) and GNN-RL (2) trained 
without machine interruptions, as described in Section 4.3. The 
third model, GNN-RL (3), has the same hyperparameters as 
GNN-RL (2), but is trained with the same probability of 
interruption, 𝑃'#*+,,-&*, as assigned to the simulation scenario. 

We perform 50 simulations for each of the benchmark 
instances for a number of 𝑃'#*+,,-&* values, ranging from 1% to 
20%. Among the PDR schedulers, SPT shows the best average 
performance for almost all the cases and is therefore employed 
here to compare with the GNN-RL schedulers. Figure 8 shows a 
comparison of the average results between the GNN-RL and the 
SPT schedulers. It can be seen that for most instances, the GNN-
RL schedulers outperform or are as competitive as the SPT 
scheduler for 𝑃'#*+,,-&* < 10%. Furthermore, the GNN-RL (2) 
model and the GNN-RL (3) model trained with interruptions 
perform consistently better than the GNN-RL (1) model. 
Moreover, Figure 5 plots the performance, averaged over the 18 
benchmark instances, of each scheduler with respect to 
𝑃'#*+,,-&*. Also shown in Figure 9 are the means and standard 
deviations (Std) of the scheduling results for 50 randomly 

Algorithm 1 Training procedure for GNN-RL scheduler 
Generate a random ISBJSSP instance as starting state 𝐺< =
(𝑉, 𝐶 ∪ 𝐷);  
Initialize parameters Θ and the parameterized policy 𝜋U;  
Initialize iteration = 0; 
repeat 
    iteration += 	1; 
    for step 𝑡 = 1,2, … , 𝑇 do 
       for each node 𝑣 = 𝑜'% ∈ 𝑉 do 
           if 𝑜'%’s machine is idle then 
               Add 𝑣 to 𝐵* with probability 𝑃'#*+,,-&* ; 
               Remove each node 𝑣, edges 𝑐 ∼ 𝑣 and 𝑑 ∼ 𝑣 from 
the graph 𝐺*; 
               Initialize interruption time counter 𝑞*= 0; 
               Enqueue 𝐵* into a queue of node sets 𝐵; 
               Enqueue 𝑞* into a queue of counters 𝑄; 
           end if 
       end for    
       Denote 𝓉 = 𝑡 − 𝑇'#*+,,-&*; 
       if the oldest element of 𝑄 is 𝑞𝓉 = 𝑇'#*+,,-&* then 
           Dequeue 	𝑞𝓉 from queue 𝑄;  
           Reinstate all nodes 𝑣 such that 𝑣 ∈ 𝐵𝓉 back into the 
graph 𝐺*; 
           Reinstate all edges 𝑐	such that 𝑐 ∼ 𝑣 and 𝑑 such that 
𝑑 ∼ 𝑣 back into the graph 𝐺*; 
       end if 
       Add 1 to all elements 𝑞 ∈ 𝑄; 
       Observe and collect transition sample 
(𝐺*/!, 𝑎*/!, 𝑟*/!, 𝐺*);  
       Query list of available machines (see Figure 5); 

    Execute action 𝑎*~𝜋BZ⋅ [𝐺*
(=)\ to assign operations to 

queried list of available machines; 
    end for 

Update parameters Θ with gradient ascent to maximize 
𝐿*(Θ), calculated from the collected transition samples;  

    if iteration = 100  then 
        Generate a new random ISBJSSP as starting state 𝐺<;  
        Reset iteration = 0;  
    end if 
until validation performance has converged. 
 
 
 

Table 1 Total makespan computed by GNN-RL and 
PDR schedulers for 18 benchmark instances, without 

machine interruptions. 
Scheduler 

name 
Discount 

factor 
Total 

makespan 
Time to validate 18 

benchmark instances (s) 
GNN-RL (1) 0.9 27337 7.76 
GNN-RL (2) 1.0 26856 7.52 

MTWR - 28687 5.24 
LTWR - 27996 5.53 

SPT - 27827 5.40 
LPT - 29009 5.52 
FIFO - 28169 5.29 
LIFO - 28497 5.57 
SQNO - 28563 5.39 
LQNO - 28818 5.43 
STPT - 28439 5.42 
LTPT - 28845 5.42 

RANDOM - 28988 5.38 
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generated instances. Based on the results shown in Figures 8 and 
9, the following can be observed: 

 
1. As expected, when the probability of interruption for the 

machines increases, the makespans produced by the 
schedulers for completing all the jobs increase. This is likely 
due to the fact that machine interruptions reduce machine 
availability, as shown in Figure 5.  

2. All GNN-RL models produce more efficient makespans than 
the SPT scheduler when the probability of machine 
interruption is lower than 5%. It can be seen from Figure 9 
that, with interpolation, the GNN-RL models trained without 
machine interruptions can potentially be effective up to 8-
10% probability of machine interruptions. Beyond 
𝑃'#*+,,-&* = 10% , the SPT scheduler produces more 
efficient makespans in this case study. 

3. It is interesting to observe that, for the set of benchmark 
instances tested, the GNN-RL (3) model trained with the 
same probability of interruption assigned to the simulator 
performs quite competitively for almost all cases. 

4. As can be seen in Figure 9, when the probability of 
interruption becomes high (𝑃'#*+,,-&* > 10%), the standard 
deviations for the GNN-RL schedulers are higher than the 
SPT scheduler. The higher standard deviation is probably due 
to the increase in uncertainties on machine interruptions that 
affect the predictability of the trained GNN-RL models. 
In summary, based on the experimentation on the 18 

benchmark instances, the GNN-RL schedulers are shown to be 
robust for the scenarios where the probability of interruptions for 
each machine is less than 10%, even when the GNN-RL model 
is trained based on the scenarios with no machine interruptions. 
 
4.5 Scheduling ISBJSSP Instances of Difference Sizes 

To assess the scalability and generalization of GNN-RL 
models to instances of different sizes, we apply the same GNN-
RL models trained previously with job shop instances of size 
𝑚 ∼ 𝒰(5,9) × 𝑛 ∼ 𝒰(𝑚, 9) to the 40 LA benchmark instances, 
with a range of sizes from 10×5 to 30×10 and 15×15  [20]. 
Makespans are obtained for 50 simulations on each of 
benchmark instances. Figure 10 shows the makespans computed 
with the SPT scheduler, the GNN-RL (1) and (2) models trained 
without interruptions and the GNN-RL (3) models trained with 
interruptions. In general, especially for cases with 𝑃'#*+,,-&* <
10%, on average, the GNN-RL schedulers perform better or at a 
similar level comparable to the SPT scheduler.  

In summary, this experimental study with benchmark 
instances of different sizes shows that the GNN-RL methods 
remain robust for production scenarios with different job shop 
sizes even though the models are trained originally with the 
baseline benchmark of different size. More detailed tables of 
results on selected LA benchmarks of various sizes under a range 
of 𝑃'#*+,,-&* values are reported in Supplemental Material. 
 

 
Fig. 8 Mean of makespans using GNN-RL and SPT 
schedulers on the 18 baseline benchmark instances.  

 
Fig. 9 Total makespans of GNN-RL and SPT schedulers 
for different probabilities of interruption. 
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5. SUMMARY AND DISCUSSION 
The ability to assign jobs to machines under possible changes 

of operational conditions is important in practice. This study 
shows that GNN and RL can be a viable approach for solving the 
ISBJSSP, a complex and computational demanding problem 
subjected to unforeseen changes to the problem condition. In this 
work, we proposed a dynamic disjunctive graph formulation 
where nodes and edges are removed and reinstated during 
machine shutdowns and recoveries, respectively. Furthermore, 
we implemented a simulator to generate ISBJSSP instances for 
training and to validate the GNN-RL models for real-time 
scheduling of the ISBJSSP. The simulator accounts for 
interruption, swapping and blocking, which altogether adds 
complexity to the machine availability status and therefore 
affects the state and action space of the MDP formulation. For 
the simulations with no machine interruptions, the dispatching 
rule generated by the best trained GNN-RL scheduler achieves 
the best overall makespan exceeding that of the PDRs. (It should 
be noted that under perfect job shop conditions, mathematical 
optimization can produce more superior schedules [19].)  
 

As the key objective of this study, we simulate scenarios 
where machines in the job shop can possibly be interrupted and 
shut down temporarily. The results show that the GNN-RL 
trained schedulers are robust under interruptions and outperform 
the PDRs approaches when the probability of machine 
interruption is low (less than 10% in the examples). In practice, 
it is very unlikely that the job shop would remain operational 
when the machines are deemed to have a high probability for 
being shut down. Furthermore, with an emphasis on robustness 
and practicality, our experimental study shows that the GNN-RL 
method is able to observe constantly changing disjunctive graph 
states and furthermore, to generalize to different job shop sizes 
subjected to a range of interruption probabilities. Given the 
speed of outputting actions and its decent performance, the 
GNN-RL method represents a viable approach applicable to real 
manufacturing problems that can be closely modeled as an 
ISBJSSP. While our research utilizes random simulations, 
domain-specific knowledge should be strategically incorporated 
in the real production environment to, for example, build 
specialized reward functions and fine-tune hyperparameters. 

Future work could focus on developing methodologies for 
fine-tuning the parameters of the GNN and RL models in order 
to further improve the scheduling results. Empirical studies of 
other learning, adaptive algorithms could be explored. Due to the 
dynamic nature of the ISBJSSP problem, where the machine 
availability pattern changes and uncertainties are introduced, 
experimental studies are needed to further validate the simulator 
and the accompanying GNN-RL algorithm to demonstrate on 
machine interruptions in real world job shop environments. For 
instance, machine failures during less ideal timings, such as 
during an active operation, could significantly impact the overall 
job quality. Such type of interruption could therefore be 
investigated by future studies developing new simulators and 
scheduling strategies. Finally, further investigation on the 
proposed workflow may include other domain-specific 
constraints, such as limited buffer capacity, queue time 

constraints and multi-line scheduling that are commonly 
encountered in semiconductor manufacturing. 
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