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ABSTRACT 
Additive manufacturing (AM) provides design flexibility and 

allows rapid fabrications of parts with complex geometries. The 

presence of internal defects, however, can lead to deficit 

performance of the fabricated part. X-ray Computed 

Tomography (XCT) is a non-destructive inspection technique 

often used for AM parts. Although defects within AM specimens 

can be identified and segmented by manually thresholding the 

XCT images, the process can be tedious and inefficient, and the 

segmentation results can be ambiguous. The variation in the 

shapes and appearances of defects also poses difficulty in 

accurately segmenting defects. This paper describes an 

automatic defect segmentation method using U-Net based deep 

convolutional neural network (CNN) architectures. Several 

models of U-Net variants are trained and validated on an AM 

XCT image dataset containing pores and cracks, achieving a 

best mean intersection over union (IOU) value of 0.993. 

Performance of various U-Net models is compared and 

analyzed. Specific to AM porosity segmentation with XCT 

images, several techniques in data augmentation and model 

development are introduced. This work demonstrates that, using 

XCT images, U-Net can be effectively applied for automatic 

segmentation of AM porosity with high accuracy. The method 

can potentially help improve quality control of AM parts in an 

industry setting. 

Keywords: Smart Manufacturing, Defect Detection, 

Additive Manufacturing, Convolutional Neural Networks 

 

 

1. INTRODUCTION 
With years of development, additive manufacturing (AM), 

also known as 3D (three-dimensional) printing, has become an 

important technology in the manufacturing industry. The layer-

by-layer process provides design flexibility and allows 

manufacturing of parts with complex geometries [1,2]. The 

fabrication process, however, comes with increased possibility 

of internal defects which are often difficult to detect. Layer-wise 

quality control is therefore very important for AM, as the internal 

defects could lead to undesirable properties in the fabricated part, 

resulting in deficit performance [3]. The ability to automatically 

identify defects of parts fabricated using AM is essential.  

Current trends with non-destructive inspection (NDI) 

approaches often involve process monitoring through the 

installation of a large array of sensors and then analyzing and 

detecting failures using the collected sensor data [4,5,6]. These 

in-situ methods require the analyses of multiple signal types, and 

their correlations to final part quality are not yet well understood.  

Alternatively, ex-situ NDI techniques, such as X-ray computed 

tomography (XCT), are used to evaluate a completed build and 

offer a more reliable characterization of the AM part. XCT has 

emerged as perhaps the preferred technique for measuring 

properties of a completed AM build. It can be used to visualize 

internal structures and identify small pores and flaws in an AM 

part [7]. Obtaining useful images and segmentation labels from 

XCT scans, however, involves manual thresholding, making the 

process unscalable to a large number of samples. 

Although many conventional methods to identify small 

defects remain difficult to implement in a manufacturing setting, 

the segmentation of defects in XCT images can be automated 

using computer vision and deep learning techniques. Here, the 

segmentation of AM defects refers to the ability to characterize 

and differentiate between porosity-indicative volumes and a 

fully dense part. Effective segmentation of defects enables more 

efficient identification, labeling, and sorting of such volumes. 

Defect segmentation can be framed as an image segmentation 

problem, which assigns each 2D pixel or 3D voxel of an image 

to a class. For defect segmentation, each pixel or voxel can be 
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classified as either the fully dense background or porosity using 

a deep learning model.   

Convolutional neural networks (CNNs) have been 

commonly used for segmentation problems [8], and have been 

shown effective in many domains, including everyday objects 

[9], satellite imagery [10], and metal casting defects in 

manufacturing [11]. Most of these segmentation problems deal 

with 2D image data, but the biomedical domain, with its need to 

segment volumetric images such as computed tomography (CT) 

and magnetic resonance imaging (MRI) scans, poses the need for 

segmenting 3D images [12]. 3D CNNs have demonstrated 

potential in volumetric medical image segmentation [12,13,14]. 

Among existing 3D CNN methods, those with an encoder-

decoder based architecture, also known as U-Net variants, have 

achieved excellent performance in several medical image 

segmentation tasks with relatively small number of training 

samples [15] and are increasingly popular in medical image 

segmentation applications, such as brain tumor segmentation 

[16] and 3D chest CT image segmentation for COVID-19 

screening [17]. Images taken from metal AM parts, similar to 

their medical imaging counterparts, are volumetric and have 

comparable levels of contrast. Therefore, 3D CNNs that do well 

on medical image segmentation could possibly benefit AM 

image segmentation as well.  

Despite the similarities between AM and medical imaging, 

AM presents many unique challenges. AM defects are pores and 

faults that are usually small (relative to the volumetric size of the 

part) and have highly irregular geometries. Furthermore, the 

sparsity of defects varies significantly between samples. In 

addition, because of the cost and manual effort needed to 

produce labeled AM datasets, very few AM datasets are publicly 

available. The lack of large public dataset poses a huge challenge 

to the adoption of machine-learning approaches, which require a 

large number of training data to converge on a reasonable model. 

Despite these challenges, the mainstream adoption of machine 

learning methods for defect detection of AM parts is essential to 

the developing of fast and reliable quality control procedures.  

Motivated by the need for a defect segmentation method for 

quality control and inspired by the success of 3D CNNs in 

medical image segmentation, we applied 3D U-Net model with 

existing defect labels to automatically segment defects in XCT 

images of unknown AM samples [18]. In this paper, we focus on 

AM defects such as pores and cracks, or any internal, possibly 

defect-indicative, volumetric voids in the part. We show that 2D 

U-Net model, trained using 2D planar images, performs well and 

achieves high accuracy in terms of the mean intersection over 

union (IOU) measure. Our results demonstrate that both 2D U-

Net and Residual 3D U-Net can reach high accuracy of 0.993 on 

the validation set. However, 2D U-Net may be better for some 

applications as it is easier to train and faster to evaluate. The 

contribution of this work is therefore not only to propose a 

method to automatically segment AM porosity with high 

accuracy, but also introduce techniques to augment the 3D U-Net 

models that can be used to directly perform porosity 

segmentation of a 3D volumetric part, which is particularly 

useful for AM parts that have complex geometries.  

The rest of the paper is organized as follows: Section 2 

provides an overview of related works. Section 3 describes the 

AM defect dataset that is used in this study. Section 4 describes 

background information on CNNs and the U-Net architecture, as 

well as the results in applying the U-Net models. Section 5 

presents the approach taken to improve the performance of 3D 

U-Net models, including data augmentation and model 

development techniques. Finally, the paper is concluded with a 

brief summary and discussion in Section 6.  

 

2. RELATED WORKS 
With processing, 3D images can be sliced into 2D and vice 

versa, thereby allowing 2D CNNs to segment volumetric images 

[12]. The most commonly used CNN architectures for 2D 

segmentation problem are region-based and fully-convolutional-

network-based (FCN-based) [8]. Region-based CNN (R-CNN), 

such as the Mask R-CNN, is an example of the former [8,9]. 

Since regions need to first be extracted, described, then 

classified, these methods are generally more computationally 

expensive [19].  On the other hand, FCN-based methods 

directly learn a mapping from input to output pixels, without 

proposing regions [20]. U-Net is a CNN model that extends the 

FCN architecture, achieving excellent performance, for example, 

in the segmentation of ventral nerve cord [21].  

Despite the success of 2D CNN models, it has been 

suggested that since many medical images are 3D in nature, 

slicing them into 2D images prior to training loses information 

on the correlation between slices [22]. To that end, 3D FCN-

based segmentation architectures, such as 3D U-Net [13] and V-

Net [12], that train on volumetric medical images have been 

developed. While 3D CNN models can leverage information 

between slices, several disadvantages exist in comparison to 2D 

CNNs. 3D CNNs lack pre-trained models, leading to less stable 

training [22]. The patch-wise predictions in 3D are also more 

time-consuming to generate, compared to predictions in 2D. 

Furthermore, it has been pointed out that 2D U-Net may 

outperform 3D U-Net when the data is anisotropic [23]. To that 

end, in this study we compare the performance of 2D U-Net and 

3D U-Net models on the same AM defect dataset.  

A few related works have been done to automatically detect 

AM porosity using CNN. 2D detection and classification on 

porosity using slices of camera images have been reported [24]. 

CNN has also been used to analyze acoustic emissions during 

AM processes [25]. More recently, 2D U-Net has been deployed 

to a dataset similar to that used in this work and achieved a mean 

IOU of 0.92 [26]. This paper not only presents the novel CNN 

techniques for porosity segmentation, but also their applicability 

for achieving accurate results in the domain of AM XCT image 

segmentation, particularly, for 3D volumetric parts. 

 
3. THE DATASET 

The AM defect dataset used in this study was introduced by 

Kim et al. [27] and is publicly available [28].  The dataset 

consists of XCT images of four cobalt-chrome alloy, cylindrical 

AM specimens, created in a laboratory setting to investigate pore 

structures. Table 1 details the image size and porosity of each 

specimen. The metallic cylinders were produced using laser-

based powder bed fusion (LPBF). Artificial pores and cracks 

were produced by changing AM scan speed and hatch spacing. 

By changing the process parameters, specimens were processed 
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to have varying porosity. Then, XCT images of the specimens 

are taken. Each specimen’s set of images consists of 8-bit 

grayscale images of 2D slices of XCT imagery. These images 

are 16-bit raw images obtained using XCT reconstruction 

processed by adding a 3 × 3 × 3 median 3D filter and a non-

local means filter [29,30]. To obtain ground truth labeling of the 

defects, Bernsen local thresholding [31] was used to process the 

8-bit images. The local contrast threshold parameters of the 

thresholding process are computed by relating average noise 

value to local contrast threshold as explained by Kim et al. [27]. 

Figure 1 shows examples of images and corresponding labels. 
The purpose of obtaining the XCT images and thresholding 

for the labeling of defects is to use them as inputs and ground 

truth reference for CNN models. CNN models use the images as 

inputs and produce predicted segmentation masks, classifying 

defect and background pixels or voxels, and compare the 

prediction results with the ground truth to obtain a loss function, 

which is then minimized through an iterative training process.   

In order to evaluate the applicability of 3D CNN model for 

volumetric images, the 2D XCT images are concatenated into a 

3D volumetric image, restoring the original cylindrical form of 

an AM sample, as shown in Figure 2. The AM defect dataset has 

the following characteristics to be noted:  

• The standard deviations of the pores on the z-axis of some 

samples are not the same as those of the x and y axes, 

meaning that the shape and distribution of pores may be 

anisotropic [27]. 

• The 3D structure of the defects gives limited information 

about the location according to the ground truth labels, as 

the labels are generated by thresholding 2D images.  

• As shown in Figure 1, the geometries of the defects can look 

highly irregular. 

• Percentage of porosity indicates that there is an imbalance 

in the number of porosity and background voxels. 

Altogether four specimens with images are available for the 

study.  Three specimens (samples 2, 3 and 4) are used for 

training and one specimen (sample 1) is used for validation of 

the trained models.  Since the samples range vastly in 

porosities, the validation sample is selected because its 

percentage of porosity is neither the minimum nor the maximum.  

 
4. CONVOLUTIONAL NEURAL NETWORKS (CNNS) 

AND U-NET 
Developments in CNNs in the past decade have significantly 

improved the ability to perform image classification, detection 

and segmentation in many domains. This section first gives a 

brief overview of deep CNNs. We then introduce the U-Net 

architecture, which is the architecture that inspires many of 

recent domain-specific works on image segmentation. 

 

4.1 Convolutional Neural Networks 
A CNN is a type of deep neural network that consists of 

several layers, where each layer uses mathematical operations, 

such as convolution, to convert the input to a feature map. CNNs 

have been commonly employed and operated on 2D images and 

have recently been extended to the study of 3D images.  The 

idea of training a 2D or a 3D CNN model is identical, but with 

the following distinctions: 

1) The convolving kernels in 3D CNNs are 3D with width, 

height and depth (𝑊 × 𝐻 × 𝐷), whereas the kernels in 2D 

CNNs are 2D with width and height (𝑊 × 𝐻) only.  

2) When convolving, a 3D kernel moves in 3 directions, along 

all 3 axes of the input image and its feature maps. A 2D 

kernel moves in 2 directions, along the axes corresponding 

to W and H dimensions.   

Figure 3 shows an example a 3D CNN architecture with 

multiple types of layers. A layer 𝑙 of a neural network can be 

written as a function parameterized by parameters 𝜽(𝑙): 
 

ℎ(𝑙) = 𝑓(𝑙)(ℎ(𝑙−1); 𝜽(𝑙))                         (1) 

 

where ℎ(𝑙) is the output feature map of layer 𝑙 and ℎ(0) is an 

TABLE 1: DETAILS OF THE AM DEFECT DATASETS 

Specimen Distance 

between 2D 

slices [pixel] 

Image volume after 

3D Reconstruction 

(𝐷 × 𝑊 × 𝐻) [pixel] 

Porosity 

(%) 

Sample 1 0.00245 900 × 980 × 1010 1.00 

Sample 2 0.00277 900 × 988 × 1013 19.03 

Sample 3 0.00243 900 × 984 × 1010 0.42 

Sample 4 0.00252 749 × 984 × 1010 10.90 

 

 
 

 
 

 
 

 
FIGURE 1: EXAMPLES OF IMAGES FROM AM DEFECT 

DATASETS: PROCESSED XCT IMAGES ARE ON THE LEFT 

AND SEGMENTATION MASKS ARE ON THE RIGHT 
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image tensor. A layer can be a convolutional layer, which uses a 

parameterized kernel to convolve with the layer’s input. In a 

convolution layer, the dot product of the kernel and the input at 

each spatial location is taken. The stacked layers approximate a 

complex function of the image input and the output ℎ(𝐿) at the 

final layer 𝐿  representing the model’s prediction. With the 

stacking of multiple layers, a parameterized function mapping 

the input image to the prediction can be created. To introduce 

nonlinearity in the function approximator, a nonlinear activation 

function is commonly applied to the output of a layer: 

 

ℎ(𝑙) = 𝜎 (𝑓(𝑙)(ℎ(𝑙−1); 𝜽(𝑙)))                      (2) 

 

where 𝜎 is a nonlinear function. Common choices for 𝜎 are 

the sigmoid function and the rectified linear unit (ReLU) 

function.  

Another type of layer is a normalization layer, such as batch 

normalization (BN) or group normalization (GN) layer. A 

normalization layer normalizes its input in order to improve the 

speed and stability of training neural networks [32]. BN 

performs the normalization along the batch and spatial locations. 

On the other hand, GN, which is more robust than BN, divides 

the input’s channels into groups and performs normalization for 

each group. GN alleviates the limitation of BN that smaller batch 

size leads to larger errors [33]. Instance normalization (IN) is 

another technique that normalizes across spatial locations [34]. 

Max pool and transposed convolution layers can also be 

used in CNN models to respectively downsample or upsample 

the input tensor spatially. A max pool kernel draws the maximum 

at each of the input’s spatial locations. A transposed convolution 

multiplies the input at each spatial location with the kernel and 

adds the result to the layer’s output at the same location.  

A deep neural network is trained by minimizing a loss 

function. The loss function measures the amount to which the 

prediction differs from the ground truth. During training, the 

model’s parameters, 𝜽 = {𝜽1, … , 𝜽𝐿},  are updated using the 

gradient of the loss function, which, thereby, must be 

differentiable. This method of calculating gradients with respect 

to the parameters is generally known as backpropagation [35].  

 

4.2 2D AND 3D U-NET MODELS 
Due to its excellent performance, U-Net is a popular CNN 

architecture not only in the medical [16,17,21] and but also in 

non-medical domains such as satellite imagery [36].  The 

design of U-Net is characterized by two properties: The U-

shaped structure formed by an encoder and a decoder network, 

as well as the skip connections that connect the corresponding 

 
FIGURE 2: RECONSTRUCTION OF A 3D AM IMAGE FROM 2D XCT IMAGES.  

…

Reconstructed 3D Image2D XCT Images

3D XCT Image Close-up Visualization Close-up Visualization Defects Visualization – redder color 
showing darker defect areas in raw images

 
FIGURE 3: EXAMPLE OF A 3D CNN BUILT BY COMBINING VARIOUS TYPES OF LAYERS  
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encoders and decoders. Figure 4 shows the overall structure of a 

U-Net architecture. Implementation in this work closely follows 

this general structure, but with changes in design details of the 

encoders, decoders, upsampling and downsampling.   

The U-Net architecture consists of two main parts. The 

contracting path on the left consists of encoder modules and 

downsampling operations that increase the number of feature 

maps produced as the number of layers increases. The expansive 

path on the right consists of decoder modules and upsampling 

operations that decrease the number of feature maps as the 

number of layers increases. Although other variations (such as  

normalization) exist, the encoder and decoder modules are 

normally convolutions with activation functions. The encoder 

and decoder modules that have the same resolution are connected 

with a skip connection, combining their outputs to produce the 

input for the next decoder module. 

The U-Net architecture’s modular design allows for 

flexibility in altering its modules. The classical 2D U-Net’s 

encoder and decoder modules are double convolutions using 2D 

kernels and a ReLU activation [21]. On the other hand, 3D U-

Net, described in [13], deploys 3D convolutions and adds batch 

normalization to its encoder and decoder modules.  

Furthermore, the ResUNet-a presented in [37] discovered that 

residual connections could improve the performance of U-Net 

and can help reduce the vanishing gradient problem [38]. 

Therefore, in ResUNet-a, residual connections were added to the 

encoder and decoder modules of the U-Net architecture. 

Combining residual connections and 3D U-Net has been shown 

to perform well in several medical imagery segmentation tasks 

[14,38].  

 

4.3 IMPLEMENTATION 
To assess the performance of 2D and 3D U-Net on AM 

porosity segmentation, we train and evaluate several U-Net 

configurations, namely, the 2D U-Net, vanilla 3D U-Net, 3D U-

Net with GN (instead of BN in the vanilla configuration) and 3D 

U-Net with residual connections, as summarized in Table 2.  

The 2D U-Net follows the same implementation as 

described in [21]. The model’s encoder and decoder modules are 

each a double convolution: twice stacking a 2D convolutional 

layer, followed by a ReLU activation. 3×3 kernels are employed 

for the convolutional layers, and 2×2 max pooling is used for 

downsampling. Some minor modifications from the standard 

implementation are made:  First, bilinear upsamplings are used 

instead of transposed convolution to save memory.  

Furthermore, the 2D convolutions are zero padded with a one-

pixel border to preserve the features of the edges. Lastly, a BN 

layer is added after each 2D convolutional layer and before the 

ReLU to improve stability. Inputs to the 2D U-Net are the raw 

2D images and masks as given in the dataset. The training 

minimizes cross- entropy loss with a RMSprop optimizer [39], 

and a learning rate of 0.0001 is used. The 2D U-Net 

implementation is adapted from a publicly available PyTorch 

implementation [40]. 

The vanilla 3D U-Net, on the other hand, follows the 

implementation by Cicek et al.  [13]. The model follows a 

similar architecture as the 2D U-Net, but with 3D convolutions. 

The double convolutional layers consist of a 3D convolutional 

layer, followed by a BN layer and a ReLU nonlinearity layer, all 

stacked twice to form the double convolution. The second 3D U-

Net model is a variant that uses GN as the normalization layer 

and places the GN layer after the ReLU activation layer. The 

third model, Residual Symmetric 3D U-Net, follows the 

implementation by Lee et al. [14], which introduces residual skip 

connections in the modules and modifies the upsampling and 

downsampling techniques. Inputs to the 3D U-Net models are 

3D images, constructed by stacking the 2D slices as described in 

Section 3. Due to memory constraint, each training sample is a 

128×128×128 patch randomly sampled from the 3D image. 

Stride sizes are 32×32×32 to overlap the patches and ensure that 

information is not lost. The input patches are normalized, 

randomly flipped and rotated prior to training. Network outputs 

and targets are compared using the cross-entropy loss. Each 

model is trained with an initial learning rate of 0.0002 that decays 

at a rate of a half at the 600th, 1000th, and 1400th iterations. The 

networks are trained via the Adam optimizer [41]. A weight 

decay factor of 0.0001 is used. The batch size and the group size 

are set to one for BN and GN layers, respectively. All 

TABLE 2: DETAILS OF U-NET BASE CONFIGURATION 

Model Encoder/Decoder Downsampling Upsampling 

2D U-Net (3 × 3 convolution +BN + ReLU) × 2 2 × 2 max pool Bilinear with a scale of 2 

Vanilla 3D U-Net (3 × 3 × 3 convolution +BN + ReLU) × 2 

2 × 2 × 2 max pool 

 

2 × 2 × 2 transposed convolution 

 

3D U-Net with GN (3 × 3 × 3 convolution +ReLU+ GN) × 2 

Residual 3D U-Net (3 × 3 × 3 convolution +GN+ ReLU) × 3 

 
 

 
FIGURE 4: SCHEMATIC OF A GENERAL U-NET ARCHITECTURE  

Encoder/Decoder Module

Activation Function

Downsampling

Upsampling

Skip Connection

Probability maps of

background and defect

Encoder Decoder

Expansive PathContracting Path

… …

Legend:
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modifications to the models are conducted using a publicly 

available implementation of the 3D U-Net architecture [42]. All 

models are trained on NVIDIA Tesla T4 GPUs with 100 GB 

RAM and 4 Intel virtual CPU on Google Cloud Platform.  

 

4.4 EXPERIMENTAL RESULTS 
The prediction accuracy of each of the above-mentioned 

models is evaluated using the mean IOU metric, comparing the 

accuracy of a predicted segmentation with the ground truth or 

labeled mask.  Table 3 shows the mean IOU and the training 

time to achieve the accuracy for the AM datasets. The 2D U-Net 

outperforms the 3D U-Net models, which could be due to the fact 

that our dataset is anisotropic and thus, as suggested in [20], 

favors the performance of 2D U-Net. Among the 3D models, the 

Residual 3D U-Net model requires the longest training time but 

performs slightly better than the other 3D U-Net models.  

We observe several limitations posed by the 3D models. 

Figure 5 shows an example patch sampled by the Residual 3D 

U-Net from the validation data. It can be seen that due to the 

large size of the images, the 128 × 128 × 128 patches only 

capture the shape of defects partially. This could limit the 

model’s ability to predict based on the defect’s relative spatial 

location. Sharp edges of the irregular defects are often 

misclassified, which could be an indication that the additional 

axis of information that 3D CNNs leverage does not compensate 

for the loss of global information in the 𝑊 − 𝐻 plane. We also 

provide a 2D image segmented by the 2D U-Net in Figure 5, 

showing that the 2D U-Net’s predictions are mostly accurate.  

Some drawbacks can also be observed on both the 2D and 

3D models. The challenges observed from the predictions using 

the AM defect dataset are as follows:  

1) Variation in sizes:  AM defects can range from hardly 

visible, very small voids to large voids, as shown in Figure 

1. Small defects are challenging for segmentation using 

CNN because there are inherently less voxels of these 

smaller defects for training, and they are difficult to 

distinguish from background noises.  

2) Lack of training voxels:  Following the previous point, 

there are much fewer defect voxels than the background 

voxels, which can cause complications. The background 

voxels located outside the rim of the cylinder are considered 

trivial.  However, because they are naturally dark, they are 

always thresholded as defects. As shown in Table 1, the 

specimen with the highest porosity has less than 20% 

porosity, meaning that there is a significant class imbalance 

in the training examples.  

3) Highly irregular geometry:  It can be viewed in Figure 1 

that the shapes of defects are highly irregular, often 

consisting of sharp edges and light color rims. This poses 

difficulties for a CNN model to infer the correct geometry 

from surrounding voxels, and the boundaries of such 

irregular shapes are difficult to identify. 

4) High resolution:  The resolution size of the input images 

in the referenced AM dataset is very large. Table 1 shows 

the number of voxels and the array shape of each specimen 

image. This not only leads to a high memory consumption 

during preprocessing and training, but also discards the 

possibility to conduct downsampling prior to training, as 

downsampling would lose valuable information on the 

already rare small defects.  

In the next section, we propose a number of enhancements on the 

dataset to improve the performance of the U-Net models.   

 

5. DATA AUGMENTATION AND MODEL 
DEVELOPMENTS 
Although the results in Table 3 show that 2D U-Net 

outperforms 3D U-Net on the dataset used in this study. A 3D U-

Net model could be useful to directly make predictions on AM 

volumetric parts with complex geometries. This section 

describes an approach that can enhance the performance of 3D 

U-Net models on segmenting AM defects based on the nnU-Net, 

which is a framework that performs preprocessing, U-Net 

configuration, training and post-processing for image 

segmentation [43]. Figure 6 shows how choices of data 

enhancement techniques can help address the four identified 

challenges of AM defect segmentation. We also perform the 

same techniques on the 2D U-Net to observe their effects. The 

five techniques as shown in Figure 6 are as follows: 

• Nonzero Cropping: The images are cropped into regions 

where voxel values are nonzero.  Each AM specimen 

image consists of a large number of voxels. Such large 

arrays of voxels induce a heavy computational cost. 

Cropping the images can reduce the size of arrays while 

keeping the data containing valuable information for 

training. However, since convolution is done on rectangular 

images, some voxels outside of the cylinders are preserved 

after cropping. 

     INPUT        PRED. PROB. MAP        TARGET 

     
(a) EXAMPLE 2D IMAGE OUTPUTTED BY 2D U-NET 

 

     
(b) EXAMPLE PATCH OF A DEFECT OUPUTTED BY RESIDUE 

3D U-NET 

FIGURE 5: EXAMPLES OF SEGMENTATION RESULTS 

OUTPUTTED BY 2D U-NET AND RESIDUE 3D U-NET 

TABLE 3: VALIDATION MEAN IOU AND AVERAGE 

TRAINING TIME PER EPOCH ON THE BASE U-NET MODELS 

Model Training Time 

(hours) 

Validation mean 

IOU 

2D U-Net 0.70 0.993 

Vanilla 3D U-Net  6.58 0.863 

3D U-Net with GN  14.00 0.881 

Residual 3D U-Net 19.97 0.884 
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• Dice + Cross-Entropy (CE) Loss: A loss function that 

sums the Dice loss and cross-entropy (CE) loss is used [44]. 

Dice loss is a commonly used loss function for 

segmentation.  Here, the objective function is set as the 

Dice score, an evaluation metric for accuracy that considers 

class imbalance. However, since training is done in patches, 

we cannot calculate the Dice score of the entire image based 

on any single patch. An estimated Dice score, derived from 

combined patches, could be an inaccurate estimate of the 

true Dice score and lead to unstable training. On the other 

hand, cross-entropy (CE) loss, another commonly used loss 

function, measures the degree at which the prediction differs 

from the true label. It is found empirically that combining 

CE loss and Dice loss improves segmentation quality [45]. 

Therefore, to address both training stability and the 

imbalanced number of defects and background voxels, the 

loss function is selected to be the sum of the Dice loss and 

the cross-entropy (CE) loss functions as follows:  

 

𝐿𝑑𝑐 = 1 − 
∑ ℎ𝑖𝑦𝑖𝑖∈𝐼

∑ ℎ𝑖𝑖∈𝐼 +∑ 𝑦𝑖𝑖∈𝐼
                        (3) 

 

𝐿𝑐𝑒 = −(𝑦 log(ℎ) + (1 − 𝑦) log(1 − ℎ))            (4) 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑑𝑐 + 𝐿𝑐𝑒                          (5) 

 

where 𝐿𝑑𝑐 is the Dice loss averaged over all batches, 𝐿𝑐𝑒 

is the cross-entropy loss, 𝐿𝑡𝑜𝑡𝑎𝑙  is the total loss, ℎ is the 

model prediction and 𝑦 is the ground truth. 

• Batch and patch size: Classification of voxels at 

boundaries of irregular defects is a difficult task for the 

network. Typically, a larger training patch size means that 

more contextual information from surrounding voxels are 

incorporated when computing the weights. Capturing the 

full shape of a defect could also lead to less confusion over 

the boundaries. A larger patch size is therefore desirable in 

training but results in a reduction of the batch size. For this 

reason, the batch size is selected to be small. While batch 

normalization [32] is often used in CNN training to improve 

robustness and convergence, but, because of the smaller 

batch size, instance normalization [34] is used. Lastly, the 

size of kernels is calculated by limiting the total size of 

feature maps to the GPU memory budget.   

• Oversampling: Since we have less voxels of defects than 

voxels of background, the imbalance in training data leads 

to the lack of training data, thereby impacting the accuracy 

of segmentation. Oversampling resolves the issue by 

sampling examples containing the rarer class, in this case 

the defects, more often than the more dominant class. When 

sampling patches for training, we ensure that the rarer class 

is sampled more frequently: Patches are sampled such that 

at least one of the patches or one third of the patches in a 

batch, whichever is greater, is guaranteed to contain a 

randomly selected defect voxel, with the rest of the batch 

being randomly sampled. 

• Image Augmentation: Multiple data augmentation 

techniques are used during training. Images used as inputs 

to the network are normalized to ensure that each voxel has 

a similar distribution. This adds robustness and improves 

convergence during training. In our approach, each image is 

normalized by subtracting the mean and dividing by the 

standard deviation of voxels in that image. Images are 

randomly rotated and scaled. Furthermore, we add 

additional noise into the dataset to improve robustness. With 

a certain probability controlled by a random number 

generator, Gaussian noise, Gaussian blur, brightness, 

contrast, simulation of low resolution, Gamma 

augmentation and mirroring are applied. These 

augmentation techniques help the network to generalize 

defects with various aspect ratios, colors, and shapes. 

Details and specifics of these augmentation techniques have 

been described by Isensee et al. on nnU-Net [43].  

In addition to the data enhancements made above, several minor 

modifications to the original U-Net architecture are made. The 

ReLU activation functions are replaced with Leaky ReLU, and 

downsampling is implemented as strided convolution. Deep 

supervision is used in training, which adds an additional term for 

loss in some larger feature maps of the decoder. These 

modifications are useful design choices to facilitate training [43].    

In the last step of the approach, we train a CNN model that 

utilizes the five data enhancement techniques and the 

architectural design choices mentioned previously. To train a 

model, we sample minibatches and train iteratively to optimize 

the layer parameters over the Dice + CE loss function.  

 

5.1 IMPLEMENTATION 
The models implemented with data enhancement techniques 

are shown in Table 4.  All models are trained end-to-end and 

without pretraining, with weights initialized using the 

initialization procedure described by He et al. [46]. Stochastic 

gradient descent with Nesterov momentum [47] is used to 

optimize the learning. The initial learning rate is selected at 0.01, 

and decays throughout training at a rate of 9 × 10−6 per epoch. 

Each epoch is defined as 250 training iterations on the 

minibatches. The total number of epochs is determined based on 

the convergence of losses. The training loss is calculated by 

summing cross-entropy loss and batch Dice loss. Since trade-off 
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exists between runtime and loss reduction, training is terminated 

at 56 epochs, when all models have reached a plateau in losses.  

Given the goal of a small batch size, and constrained by the 

GPU’s capacity, the 3D U-Net and the Residual 3D U-Net use a 

batch size of 2, with each patch size being 128 × 128 × 128. 

The 2D U-Net uses a batch size of 3, with the patch size of 

1024 × 1024. Input images are augmented using the previously 

mentioned image augmentation techniques conducted on the fly 

during the training process. The inference procedure is patch-

based and uses the same patch size used during training. 

 

5.2 Experimental Results 
The performances of the three enhanced U-Net models are 

shown in Table 5 where the mean IOU evaluation scores and the 

amount of time taken for training are reported. As shown in the 

table, the Residual 3D U-Net model, with a mean IOU of 0.993, 

achieves the highest accuracy, and is comparable to the non-

patched 2D U-Net as shown in Table 3. The training of the 3D 

models requires, as expected, much more time than the 2D 

counterpart, which, with patch-based sampling, also takes longer 

time than the original 2D U-Net model.  

Figure 7 shows a slice of the segmentation mask outputted 

by the Residual 3D U-Net model. It can be observed that most 

defects have been segmented by the model. The prediction 

resembles well with the labeled mask and is able to segment the 

complex geometries of most identified defects. However, it 

should be noticed that defects with very light colors in the input 

have more ambiguous labels, and therefore those voxels may not 

necessarily be classified correctly by the model. 

 

6. SUMMARY AND DISCUSSION 
This paper presents the use of U-Net models for automatic 

detection of AM defects using XCT images.  Using the dataset 

available in this study, the 2D U-Net achieves accurate 

segmentation with the shortest training time. Although the 2D U-

Net seems to be the best fit for this AM defect dataset, one must 

note that the dataset contains several characteristics as described 

in Section 3, which could lead to the 2D U-Net outperforming 

the 3D U-Net models. 3D U-Net models may become more 

effective with other datasets and scenarios, for example, when 

the geometry of the AM fabricated part is complex, or when the 

CT images are much noisier. In practice, AM parts have more 

complex geometry than the cylindrical specimens employed in 

this study. 3D model would allow better differentiation between 

intended and un-intended porosity, for example, for parts that 

have internal features such as holes and channels inside.   

With minor modifications in network architectures, the 

mean IOU increased substantially for the 3D U-Net models. We 

attribute the improved accuracy to the various data enhancement 

techniques used, including additional preprocessing, 

oversampling, image augmentation, as well as the change in the 

design of the loss function. These techniques are purposely 

tailored towards improving prediction given the domain-specific 

challenges.  We argue that these techniques take on a more 

significant role than minor changes in network architecture 

design when deploying 3D U-Net models on the same dataset 

and suggest that these techniques should be considered in future 

related works to improve model performance. Furthermore, for 

situations that deem necessary, attention modules can be 

introduced to potentially further improve model accuracy [48]. 

In summary, while conventional manual or thresholding 

methods for AM defect segmentation remain tedious and 

unscalable, this paper has presented a method for automatic 

volumetric segmentation of AM specimens -- a challenging task 

given: the complex geometries of the specimens, the poor 

contrast and lighting resulting from measuring metal specimens, 

and the imbalance of defect and background classes associated 

with the images. A high predictive accuracy with a mean IOU of 

0.993 is achieved by the 2D U-Net model and the Residual 3D 

U-Net model with data enhancements. The high accuracy of the 

method demonstrates the potential of deep learning models to be 

applied to aid the quality control of AM parts in practice. 
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