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Segmentation of Additive
Manufacturing Defects
Using U-Net
Additive manufacturing (AM) provides design flexibility and allows rapid fabrications of
parts with complex geometries. The presence of internal defects, however, can lead to the
deficit performance of the fabricated part. X-ray computed tomography (XCT) is a nonde-
structive inspection technique often used for AM parts. Although defects within AM speci-
mens can be identified and segmented by manually thresholding the XCT images, the
process can be tedious and inefficient, and the segmentation results can be ambiguous.
The variation in the shapes and appearances of defects also poses difficulty in accurately
segmenting defects. This article describes an automatic defect segmentation method
using U-Net-based deep convolutional neural network (CNN) architectures. Several
models of U-Net variants are trained and validated on an AM XCT image dataset contain-
ing pores and cracks, achieving a best mean intersection over union (IOU) value of 0.993.
The performance of various U-Net models is compared and analyzed. Specific to AM poros-
ity segmentation with XCT images, several techniques in data augmentation and model
development are introduced. This article demonstrates that U-Net can be effectively
applied for automatic segmentation of AM porosity from XCT images with high accuracy.
The method can potentially help improve the quality control of AM parts in an industry
setting. [DOI: 10.1115/1.4053078]
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1 Introduction
With years of development, additive manufacturing (AM), also

known as 3D (three-dimensional) printing, has become an impor-
tant technology in the manufacturing industry. The layer-by-layer
process provides design flexibility and allows the manufacturing
of parts with complex geometries [1,2] and multifunctional proper-
ties [3]. The fabrication process, however, comes with the possibil-
ity of internal defects, which are often difficult to detect. Layer-wise
quality control is therefore very important for AM, as the internal
defects could lead to undesirable properties in the fabricated part,
resulting in deficit performance [4]. An automated procedure that
can identify defects of parts fabricated using AM is essential.
Current trends with nondestructive inspection (NDI) approaches

often involve process monitoring through the installation of a large
array of sensors and then analyzing and detecting failures using the
collected sensor data [5–7]. These in situ methods require the anal-
yses of multiple signal types, and their correlations to final part
quality are not yet well understood. Alternatively, ex situ NDI
techniques, such as X-ray computed tomography (XCT), are used
to evaluate a completed build and offer a more reliable

characterization of the AM part. XCT has emerged as perhaps the
preferred technique for measuring the properties of a completed
AM build. It can be used to visualize internal structures and identify
small pores and flaws in an AM part [8]. Obtaining useful images
and segmentation labels from XCT scans, however, involves
manual thresholding, making the process unscalable to a large
number of samples.
Although many conventional methods to identify small defects

remain difficult to implement in a manufacturing setting, the seg-
mentation of defects in XCT images can be automated using com-
puter vision and deep learning techniques. Here, the segmentation
of AM defects refers to the ability to characterize and differentiate
between porosity-indicative volumes and a fully dense part. Effec-
tive segmentation of defects enables more efficient identification,
labeling, and sorting of such volumes. Defect segmentation can
be framed as an image segmentation problem, which assigns each
2D pixel or 3D voxel of an image to a class. For defect segmenta-
tion, each pixel or voxel can be classified as either the fully dense
background or porosity using a deep learning model.
Convolutional neural networks (CNNs) have been commonly

used for segmentation problems [9] and have been shown effective
in many domains, including everyday objects [10], satellite imagery
[11], surface crack detection [12], structural stresses [13], manufac-
turing defects in casting [14], and melt pools from welding [15].
Most of these segmentation problems deal with 2D image data,
but the biomedical domain, with its need to segment volumetric
images such as computed tomography (CT) and magnetic reso-
nance imaging (MRI) scans, poses the need for segmenting 3D
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images [16]. 3D CNNs have demonstrated potential in volumetric
medical image segmentation [16–18]. Among existing 3D CNN
methods, those with an U-shape architecture, also known as
U-Net variants, have achieved excellent performance in several
medical image segmentation tasks. The combination of encoder–
decoder architecture and skip connections allow U-Net to fuse
both high-resolution and low-resolution feature maps for learning,
which is very suitable for tasks with a relatively small number of
training samples [19]. U-Net variants have been used for images
from CT and MRI scans to X-ray, ultrasound, and microscope
images and have been successfully applied in a wide variety of
medical image segmentation applications, such as brain tumor seg-
mentation [20] and 3D chest CT image segmentation for COVID-19
screening [21]. Over the past 4 years from 2017 to 2020, the popu-
larity of U-Net has grown over 20 folds in publications [22]. Images
taken from metal AM parts, similar to their medical imaging coun-
terparts, are volumetric and have comparable levels of contrast.
Therefore, 3D CNNs that do well on medical image segmentation
could possibly benefit AM image segmentation as well.
Despite the similarities between AM and medical imaging, AM

presents many unique challenges. AM defects are pores and faults
that are usually small (relative to the volumetric size of the part)
and have highly irregular geometries. Furthermore, the sparsity of
defects varies significantly among samples. In addition, because
of the cost and manual effort needed to produce labeled AM data-
sets, very few AM datasets are publicly available. The lack of
large dataset poses a huge challenge to the adoption of machine
learning approaches, which typically require a large number of
training data to converge on a reasonable model. Other challenges,
such as background noise, low porosity level, and image resolu-
tions, may require special attention to data preprocessing and
model developments. Despite these challenges, the mainstream
adoption of machine learning methods for defect detection of AM
parts is essential to the development of fast and reliable quality
control procedures.
Motivated by the need for a defect segmentation method for

quality control and inspired by the success of 3D CNNs in
medical image segmentation, we applied the 3D U-Net model
with existing defect labels to automatically segment defects in
XCT images of unknown AM samples [23]. In this article, we
focus on AM defects such as pores and cracks, or any internal, pos-
sibly defect-indicative, volumetric voids in the part. We show that
the 2D U-Net model, trained using 2D planar images, performs
well and achieves high accuracy in terms of the mean intersection
over union (IOU) measure. Our results demonstrate that both 2D
U-Net and residual 3D U-Net can reach high accuracy of 0.993
on the validation set. However, 2D U-Net may be better for some
applications as it is easier to train and faster to evaluate. The contri-
bution of this study is therefore not only to propose a method to
automatically segment AM porosity with high accuracy but also
introduce techniques to augment the 3D U-Net models that can
be used to directly perform porosity segmentation of a 3D volu-
metric part, which is particularly useful for AM parts that have
complex geometries.
The content of this article is based on a paper presented at the

International Design Engineering Technical Conferences & Com-
puters and Information in Engineering Conference (IDETC-CIE),

2021 [24]. The rest of this article is organized as follows: Sec. 2 pro-
vides an overview of related works. Section 3 describes the AM
defect dataset that is used in this study. Section 4 describes back-
ground information on CNNs and the U-Net architecture, as well
as the results in applying the U-Net models. Section 5 presents
the approach taken to improve the performance of 3D U-Net
models, including data augmentation and model development tech-
niques. Finally, this article is concluded with a brief summary and
discussion in Sec. 6.

2 Related Works
With processing, 3D images can be sliced into 2D and vice versa,

thereby allowing 2D CNNs to segment volumetric images [16]. The
most commonly used CNN architectures for 2D segmentation
problem are region-based and fully convolutional network based
(FCN based) [9]. Region-based CNN (R-CNN), such as the Mask
R-CNN, is an example of the former [9,10]. Since regions need
to first be extracted, described, and then classified, these methods
are generally more computationally expensive [25]. Conversely,
FCN-based methods directly learn a mapping from input to
output pixels, without proposing regions [26]. U-Net is a CNN
model that extends the FCN architecture, achieving excellent per-
formance, for example, in the segmentation of the ventral nerve
cord [27].
Despite the success of 2D CNN models, it has been suggested

that since many medical images are 3D in nature, slicing them
into 2D images before training loses information on the correlation
between slices [28]. To that end, 3D FCN-based segmentation
architectures, such as 3D U-Net [17] and V-Net [16], that train on
volumetric medical images have been developed. While 3D CNN
models can leverage information between slices, several disadvan-
tages exist in comparison to 2D CNNs. 3D CNNs lack pretrained
models, leading to less stable training [28]. The patch-wise predic-
tions in 3D are also more time consuming to generate, compared to
predictions in 2D. Furthermore, it has been pointed out that 2D
U-Net may outperform 3D U-Net when the data are anisotropic
[29]. To that end, in this study, we compare the performance of
2D U-Net and 3D U-Net models on the same AM defect dataset.
A few related works have been done to automatically detect AM

porosity using CNN. 2D detection and classification on porosity
using slices of camera images have been reported [30]. CNN has
also been used to analyze acoustic emissions during AM processes
[31]. More recently, 2D U-Net has been deployed to an AM XCT
dataset similar to that used in this study and achieved a mean
IOU of 0.92 [32]. In this article, we not only present the novel
CNN techniques for porosity segmentation but also present their
applicability for achieving accurate results in the domain of AM
XCT image segmentation, particularly, for 3D volumetric parts.

3 The Dataset
The AM defect dataset used in this study was introduced by Kim

et al. [33] and is publicly available [34]. The dataset consists of
XCT images of four cobalt-chrome alloy, cylindrical AM speci-
mens, created in a laboratory setting to investigate pore structures.
Table 1 details the image size and porosity of each specimen. The
metallic cylinders were produced using laser-based powder bed
fusion. Artificial pores and cracks were produced by changing
AM scan speed and hatch spacing. By changing the process param-
eters, specimens were processed to have varying porosity. Then,
XCT images of the specimens are taken. Each specimen’s set of
images consists of 8-bit grayscale images of 2D slices of XCT
imagery. These images are 16-bit raw images obtained using
XCT reconstruction processed by adding a 3 × 3 × 3 median 3D
filter and a nonlocal means filter [35,36]. To obtain ground truth
labeling of the defects, Bernsen local thresholding [37] was used
to process the 8-bit images. The local contrast threshold parameters
of the thresholding process are computed by relating average noise

Table 1 Details of the AM defect datasets

Specimen
Distance between
2D slices (pixel)

Image volume after 3D
reconstruction (D×W×H )

(pixel)
Porosity
(%)

Sample 1 0.00245 900 × 980 × 1010 1.00
Sample 2 0.00277 900 × 988 × 1013 19.03
Sample 3 0.00243 900 × 984 × 1010 0.42
Sample 4 0.00252 749 × 984 × 1010 10.90
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value to local contrast threshold as explained by Kim et al. [33].
Figure 1 shows examples of the images and the corresponding
labels.
The purpose of obtaining the XCT images and thresholding for

the labeling of defects is to use them as inputs and ground truth
reference for CNN models. CNN models use the images as inputs
and produce predicted segmentation masks, classifying defect and

background pixels or voxels, and compare the prediction results
with the ground truth to obtain a loss function, which is then min-
imized through an iterative training process.
To evaluate the applicability of 3D CNN model for volumetric

images, the 2D XCT images are concatenated into a 3D volumetric
image, restoring the original cylindrical form of an AM sample, as
shown in Fig. 2. The AM defect dataset has the following character-
istics to be noted:

• The standard deviations of the pores on the z-axis of some
samples are not the same as those of the x and y axes,
meaning that the shape and the distribution of pores may be
anisotropic [33].

• The 3D structure of the defects gives limited information about
the location according to the ground truth labels, as the labels
are generated by thresholding 2D images.

• As shown in Fig. 1, the geometries of the defects can look
highly irregular.

• Percentage of porosity indicates that there is an imbalance in
the number of porosity and background voxels.

Altogether four specimens with 2D XCT images are available for
the study. Three specimens (samples 2–4) are used for training and
one specimen (sample 1) is used for validation of the trained
models. Since the samples range vastly in porosities, the validation
sample is selected because its percentage of porosity is neither the
minimum nor the maximum.

4 Convolutional Neural Networks and U-NET
Developments in CNNs in the past decade have significantly

improved the ability to perform image classification, detection,
and segmentation in many domains. This section first gives a
brief overview of deep CNNs. We then introduce the U-Net archi-
tecture, which is the architecture that inspires many of recent
domain-specific works on image segmentation [22].

4.1 Convolutional Neural Networks. A CNN is a type of
deep neural network that consists of several layers, where each
layer uses mathematical operations, such as convolution, to
convert the input to a feature map. CNNs have been commonly
employed and operated on 2D images and have recently been

Fig. 1 Examples of images from AM defect datasets: left, pro-
cessed XCT images; right, segmentation masks are on the right

Fig. 2 Reconstruction of a 3D AM image from 2D XCT images

Journal of Computing and Information Science in Engineering JUNE 2022, Vol. 22 / 031005-3



extended to the study of 3D images. The idea of training a 2D or a
3D CNN model is identical, but with the following distinctions:

(1) The convolving kernels in 3D CNNs are 3D with width,
height, and depth (W×H×D), whereas the kernels in 2D
CNNs are 2D with width and height (W×H ) only.

(2) When convolving, a 3D kernel moves in three directions,
along all three axes of the input image and its feature
maps. A 2D kernel moves in two directions, along the axes
corresponding to W and H dimensions.

Figure 3 shows an example a 3D CNN architecture with multiple
types of layers. A layer l of a neural network can be written as a
function parameterized by parameters θ (l ):

h(l) = f (l)(h(l−1); θ(l)) (1)

where h(l ) is the output feature map of layer l and h(0) is an image
tensor. A layer can be a convolutional layer, which uses a parame-
terized kernel to convolve with the layer’s input. In a convolution
layer, the dot product of the kernel and the input at each spatial loca-
tion is taken. The stacked layers approximate a complex function of
the image input and the output h(L) at the final layer L, representing
the model’s prediction. With the stacking of multiple layers, a
parameterized function mapping the input image to the prediction
can be created. To introduce nonlinearity in the function approxima-
tor, a nonlinear activation function is commonly applied to the
output of a layer:

h(l) = σ( f (l)(h(l−1); θ(l))) (2)

where σ is a nonlinear function. Common choices for σ are the
sigmoid function and the rectified linear unit (ReLU) function.
Another type of layer is a normalization layer, such as batch nor-

malization (BN) or group normalization (GN) layer. A normaliza-
tion layer normalizes its input to improve the speed and stability
of training neural networks [38]. BN performs the normalization
along the batch and spatial locations. On the other hand, GN,
which is more robust than BN, divides the input’s channels into
groups and performs normalization for each group. GN alleviates
the limitation of BN that smaller batch size leads to larger errors
[39]. Instance normalization (IN) is another technique that normal-
izes across spatial locations [40].

Max pool and transposed convolution layers can also be used in
CNN models to, respectively, downsample or upsample the input
tensor spatially. A max pool kernel draws the maximum at each
of the input’s spatial locations. A transposed convolution multiplies
the input at each spatial location with the kernel and adds the result
to the layer’s output at the same location.
A deep neural network is trained by minimizing a loss function.

The loss function measures the amount to which the prediction
differs from the ground truth. During training, the model’s param-
eters, θ= {θ1, …, θL}, are updated using the gradient of the loss
function, which, thereby, must be differentiable. This method of
calculating gradients with respect to the parameters is generally
known as backpropagation [41].

4.2 2D and 3D U-Net Models. Due to its excellent per-
formance, U-Net is a popular CNN architecture not only in
the medical [20–22,27] but also in nonmedical domains such as
satellite imagery [42]. The design of U-Net is characterized by
two properties: The U-shaped structure formed by an encoder and
a decoder network, as well as the skip connections that connect
the corresponding encoders and decoders. Figure 4 shows the
overall structure of a U-Net architecture. Implementation in this
study closely follows this general structure, but with changes in
design details of the encoders, decoders, upsampling, and
downsampling.
The U-Net architecture consists of two main parts. The contract-

ing path on the left consists of encoder modules and downsampling
operations that increase the number of feature maps produced as the
number of layers increases. The expansive path on the right consists
of decoder modules and upsampling operations that decrease the
number of feature maps as the number of layers increases. Although
other variations (such as normalization) exist, the encoder and
decoder modules are normally convolutions with activation func-
tions. The encoder and decoder modules that have the same resolu-
tion are connected with a skip connection, combining their outputs
to produce the input for the next decoder module.
The U-Net architecture’s modular design allows for flexibility in

altering its modules. The classical 2D U-Net’s encoder and decoder
modules are double convolutions using 2D kernels and a ReLU acti-
vation [27]. Conversely, 3D U-Net, described in Ref. [17], deploys

Fig. 3 Example of a 3D CNN built by combining various types of layers

Fig. 4 Schematic of a general U-Net architecture
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3D convolutions and adds batch normalization to its encoder and
decoder modules. Furthermore, the ResUNet-a presented in
Ref. [43] discovered that residual connections could improve the
performance of U-Net and can help reduce the vanishing gradient
problem [44]. Therefore, in ResUNet-a, residual connections were
added to the encoder and decoder modules of the U-Net architec-
ture. Combining residual connections and 3D U-Net has been
shown to perform well in several medical imagery segmentation
tasks [18,44].

4.3 Implementation. To assess the performance of 2D and
3D U-Net on AM porosity segmentation, we train and evaluate
several U-Net configurations, namely, the 2D U-Net, vanilla 3D
U-Net, 3D U-Net with GN (instead of BN in the vanilla configura-
tion), and 3D U-Net with residual connections, as summarized in
Table 2. The training and inference of the models are conducted
on NVIDIA Tesla T4 GPUs with 100 GB RAM and 4 Intel
virtual CPU on Google Cloud Platform.
The 2D U-Net follows the same implementation as described in

Ref. [27]. The model’s encoder and decoder modules are each a
double convolution: twice stacking a 2D convolutional layer, fol-
lowed by a ReLU activation. 3 × 3 kernels are employed for the con-
volutional layers, and 2 × 2 max pooling is used for downsampling.
Some minor modifications from the standard implementation are
made: First, to save memory consumption, bilinear upsamplings
are used instead of transposed convolution. Furthermore, the 2D
convolutions are zero padded with a one-pixel border to preserve
the features of the edges. Finally, a BN layer is added after each
2D convolutional layer and before the ReLU to improve stability.
Inputs to the 2D U-Net are the raw 2D images and masks as
given in the dataset. The training minimizes cross- entropy loss
with an RMSprop optimizer [45], and a learning rate of 0.0001 is
used. The 2D U-Net implementation is adapted from a publicly
available PyTorch implementation [46].
The vanilla 3D U-Net, on the other hand, follows the implemen-

tation by Cicek et al. [17]. The model follows a similar architecture
as the 2D U-Net, but with 3D convolutions. The double convolu-
tional layers consist of a 3D convolutional layer, followed by a
BN layer and a ReLU nonlinearity layer, all stacked twice to
form the double convolution. The second 3D U-Net model is a
variant that uses GN as the normalization layer and places the
GN layer after the ReLU activation layer. The third model, residual
symmetric 3D U-Net, follows the implementation by Lee et al. [18],
which introduces residual skip connections in the modules and
modifies the upsampling and downsampling techniques. Inputs to
the 3D U-Net models are 3D images, constructed by stacking the
2D slices as described in Sec. 3. Due to memory constraint, each
training sample is a 128 × 128 × 128 patch randomly sampled
from the 3D image. Stride sizes are 32 × 32 × 32 to overlap the
patches and ensure that information is not lost. The input patches
are normalized, randomly flipped, and rotated before training.
Network outputs and targets are compared using the cross-entropy
(CE) loss. Each model is trained with an initial learning rate of
0.0002 that decays at a rate of a half at the 600th, 1000th, and
1400th iterations. The networks are trained via the Adam optimizer
[47]. A weight decay factor of 0.0001 is used. The batch size and the
group size are set to one for BN and GN layers, respectively. All
modifications to the models are conducted using a publicly avail-
able implementation of the 3D U-Net architecture [48].

4.4 Experimental Results. The prediction accuracy of each of
the aforementioned models is evaluated using the mean IOU metric,
comparing the accuracy of a predicted segmentation with the
ground truth or labeled mask. Table 3 presents the mean IOU and
the training time to achieve the accuracy for the AM datasets.
The 2D U-Net outperforms the 3D U-Net models, which could be
due to the fact that our dataset is anisotropic and thus, as suggested
in Ref. [26], favors the performance of 2D U-Net. Among the 3D
models, the residual 3D U-Net model requires the longest training
time but performs slightly better than the other 3D U-Net models.
We observe several limitations posed by the 3D models. Figure 5

shows an example patch sampled by the residual 3D U-Net from the
validation data. It can be seen that due to the large size of the
images, the 128 × 128 × 128 patches only capture the shape of
defects partially. This could limit the model’s ability to predict
based on the defect’s relative spatial location. Sharp edges of the
irregular defects are often misclassified, which could be an indica-
tion that the additional axis of information that 3D CNNs leverage
does not compensate for the loss of global information in theW−H
plane. We also provide a 2D image segmented by the 2D U-Net in
Fig. 5, showing that the 2D U-Net’s predictions are mostly accurate.
Some drawbacks can also be observed on both the 2D and 3D

models. The challenges observed from the predictions using the
AM defect dataset are as follows:

(1) Variation in sizes: AM defects can range from hardly visible,
very small voids to large voids, as shown in Fig. 1. Small
defects are challenging for segmentation using CNN
because there are inherently less voxels of these smaller
defects for training, and they are difficult to distinguish
from background noises.

(2) Lack of training voxels: Following the previous point, there
are much fewer defect voxels than the background voxels,
which can cause complications. The background voxels
located outside the rim of the cylinder are considered
trivial. However, because they are naturally dark, they are
always thresholded as defects. As shown in Table 1, the spe-
cimen with the highest porosity has less than 20% porosity,
meaning that there is a significant class imbalance in the
training examples.

(3) Highly irregular geometry: It can be viewed in Fig. 1 that the
shapes of defects are highly irregular, often consisting of
sharp edges and light color rims. This poses difficulties for
a CNN model to infer the correct geometry from surrounding
voxels, and the boundaries of such irregular shapes are diffi-
cult to identify.

Table 3 Validation mean IOU and average training time per
epoch on the base U-Net models

Model Training time (h) Validation mean IOU

2D U-Net 0.70 0.993
Vanilla 3D U-Net 6.58 0.863
3D U-Net with GN 14.00 0.881
Residual 3D U-Net 19.97 0.884

Note: Bold values show that the 2D U-Net outperforms the 3D U-Net
models as dataset is anisotropic.

Table 2 Details of U-Net base configuration

Model Encoder/decoder Downsampling Upsampling

2D U-Net (3 × 3 convolution + BN + ReLU) × 2 2× 2 max pool Bilinear with a scale of 2
Vanilla 3D U-Net (3 × 3 × 3 convolution + BN + ReLU) × 2 2× 2 × 2 max pool 2 × 2 × 2 transposed convolution
3D U-Net with GN (3 × 3 × 3 convolution + ReLU + GN) × 2
Residual 3D U-Net (3 × 3 × 3 convolution + GN + ReLU) × 3
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(4) High resolution: The resolution size of the input images in
the referenced AM dataset is very large. Table 1 presents
the number of voxels and the array shape of each specimen
image. This not only leads to high memory consumption
during preprocessing and training but also discards the pos-
sibility to conduct downsampling before training, as down-
sampling would lose valuable information on the already
rare small defects.

In Sec. 5, we propose a number of enhancements on the dataset to
improve the performance of the U-Net models.

5 Data Augmentation and Model Developments
Although the results in Table 3 show that 2D U-Net outperforms

3D U-Net on the dataset used in this study. A 3D U-Net model
could be useful to directly make predictions on AM volumetric
parts with complex geometries. This section describes an approach
that can enhance the performance of 3D U-Net models on segment-
ing AM defects based on the nnU-Net, which is a framework that
performs preprocessing, U-Net configuration, training, and postpro-
cessing for image segmentation [49]. Figure 6 shows how choices

of data enhancement techniques can help address the four identified
challenges of AM defect segmentation. We also perform the same
techniques on the 2D U-Net to observe their effects. The five tech-
niques as shown in Fig. 6 are as follows:

• Nonzero cropping: The images are cropped into regions where
voxel values are nonzero. Caused by the high image resolu-
tion, each AM specimen image consists of a large number of
voxels. Such large arrays of voxels induce heavy computa-
tional cost. Cropping out nonzero voxels at borders can
reduce the size of arrays while keeping the data containing
valuable information for training. However, since convolution
is done on rectangular images, some voxels outside of the
cylinders are preserved after cropping.

• Dice+CE loss: A loss function that sums the Dice loss and CE
loss is used [50]. Dice loss is a commonly used loss function
for segmentation. Here, the objective function is set as the
Dice score, an evaluation metric for accuracy that considers
class imbalance. However, since training is done in patches,
we cannot calculate the Dice score of the entire image based
on any single patch. An estimated Dice score, derived from
combined patches, could be an inaccurate estimate of the

Fig. 5 Examples of segmentation results outputted by (a) 2D U-Net and (b) residual
3D U-Net

Fig. 6 Techniques used to address segmentation challenges posed by AM defects
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true Dice score and lead to unstable training. Conversely, CE
loss, another commonly used loss function, measures the
degree at which the prediction differs from the true label. It
is found empirically that combining CE loss and Dice loss
improves segmentation quality [51]. Therefore, to address
both training stability and the imbalanced number of defects
and background voxels, the loss function is selected to be
the sum of the Dice loss and the CE loss functions as follows:

Ldc = 1 −
∑

i∈I hiyi∑
i∈I hi +

∑
i∈I yi

(3)

Lce = −(y log (h) + (1 − y) log (1 − h)) (4)

Ltotal = Ldc + Lce (5)

where Ldc is the Dice loss averaged over all batches, Lce is the
cross-entropy loss, Ltotal is the total loss, h is the model predic-
tion, and y is the ground truth.

• Batch and patch size: Classification of voxels at boundaries of
irregular defects is a difficult task for the network. Typically, a
larger training patch size means that more contextual informa-
tion from surrounding voxels is incorporated when computing
the weights. Capturing the full shape of a defect could also lead
to less confusion over the boundaries. A larger patch size is
therefore desirable in training, but results in a reduction of
the batch size. Hence, the batch size is selected to be small.
While batch normalization [38] is often used in CNN training
to improve robustness and convergence, but, because of the
small batch size, instance normalization [40] is used. Finally,
the size of kernels is calculated by limiting the total size of
feature maps to the limited GPU memory budget.

• Oversampling: Sincewe have less voxels of defects than voxels
of background, the (class) imbalance in training data leads to the
lack of training data, thereby impacting the accuracy of segmen-
tation. Oversampling resolves the issue by sampling examples
containing the rarer class, in this case, the defects, more often
than themore dominant class.When sampling patches for train-
ing, we ensure that the rarer class is sampled more frequently:
Patches are sampled such that at least one of the patches or
one-third of the patches in a batch, whichever is greater, is guar-
anteed to contain a randomly selected defect voxel, with the rest
of the batch being randomly sampled.

• Image augmentation: Multiple data augmentation techniques
are used during training. Images used as inputs to the network
are normalized to ensure that each voxel has a similar distribu-
tion. This adds robustness and improves convergence during
training. In our approach, each image is normalized by subtract-
ing themean and dividing by the standard deviation of voxels in
that image. Images are randomly rotated and scaled. Further-
more, we add additional noise into the dataset to improve
robustness. With a certain probability controlled by a random
number generator, Gaussian noise, Gaussian blur, brightness,
contrast, simulation of low resolution, Gamma augmentation,
and mirroring are applied. These augmentation techniques
help robustness of the network to generalize defects with
varying defect geometries, such as aspect ratios, colors, and
shapes. Details and specifics of these augmentation techniques
have been described by Isensee et al. on nnU-Net [49].

In addition to the data enhancements made earlier, several minor
modifications to the original U-Net architecture are made. The

ReLU activation functions are replaced with Leaky ReLU, and
downsampling is implemented as strided convolution. Deep super-
vision is used in training, which adds an additional term for loss in
some larger feature maps of the decoder. These modifications are
useful design choices to facilitate training.
In the last step of the approach, we train a CNN model that uti-

lizes the five data enhancement techniques and the architectural
design choices mentioned previously. To train a model, we
sample minibatches and train iteratively to optimize the layer
parameters over the Dice+CE loss function.

5.1 Implementation
The models implemented with data enhancement techniques are

presented in Table 4. All models are trained end-to-end and without
pretraining, with weights initialized using the initialization proce-
dure described by He et al. [52]. Stochastic gradient descent with
Nesterov momentum [53] is used to optimize the learning. The
initial learning rate is selected at 0.01 and decays throughout train-
ing at a rate of 9 × 10−6 per epoch. Each epoch is defined as 250
training iterations on the minibatches. The total number of epochs
is determined based on the convergence of losses. The training
loss is calculated by summing cross-entropy loss and batch Dice
loss. Since trade-off exists between runtime and loss reduction,
training is terminated at 56 epochs, when all models have reached
a plateau in losses.
Given the goal of a small batch size, and constrained by the limited

GPU’s capacity employed in this work, the 3D U-Net and the Resi-
dual 3DU-Net use a batch size of 2, with each patch size being 128 ×
128 × 128. The 2DU-Net uses a batch size of 3, with the patch size of
1024 × 1024. Input images are augmented using the previously men-
tioned image augmentation techniques conducted on the fly during
the training process. The inference procedure is patch based and
uses the same patch size used during training.

5.2 Experimental Results
The performances of the three enhanced U-Net models are pre-

sented in Table 5 where the mean IOU evaluation scores and the
amount of time taken for training are reported. As shown in the
table, the residual 3D U-Net model, with a mean IOU of 0.993,
achieves the highest accuracy, and is comparable to the nonpatched
2D U-Net as presented in Table 3. The training of the 3D models
requires, as expected, much more time than the 2D counterpart,
which, with patch-based sampling, also takes longer time than the
original 2D U-Net model.
Figure 7 shows a slice of the segmentation mask outputted by the

Residual 3D U-Net model. It can be observed that most defects have
been segmented by the model. The prediction resembles well with

Table 5 Validation mean IOU and average training time per
epoch on enhanced U-Net models

Model Training time (h) Validation mean IOU

2D U-Net (patched) 4.55 0.988
3D U-Net 21.06 0.992
Residual 3D U-Net 20.61 0.993

Note: Bold value shows that the residual 3D U-Net model, with a mean IOU
of 0.993, achieves the highest accuracy.

Table 4 Details of enhanced U-Net configuration

Model Encoder/decoder Downsampling Upsampling

2D U-Net (patched) (3 × 3, stride 2 convolution + IN + leaky ReLU) × 2 Done through strided convolution 2 × 2 transposed convolution
3D U-Net (3 × 3 × 3, stride 2 convolution +IN + leaky ReLU) × 2 2 × 2 × 2 transposed convolution
Residual 3D U-Net (3 × 3 × 3, stride 2 convolution +IN + leaky ReLU) × 2
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the labeled mask and is able to segment the complex geometries of
most identified defects. However, it should be noticed that defects
with very light colors in the input have more ambiguous labels,
and therefore, those voxels may not necessarily be classified cor-
rectly by the model.

6 Summary and Discussion
This article presents the use of U-Net models for automatic detec-

tion of AM defects using XCT images. Given the small number of
specimens with varying levels of porosities, the U-Net architecture
with a combination of encoder, decoder, and skip connectors that
allow the fusion of high- and low-resolution feature maps appears
to performverywell evenwith a verymodest GPU formodel training
and inference. Using the dataset available in this study, the 2DU-Net
achieves accurate segmentation with the shortest training time.
Although the 2D U-Net seems to be the best fit for this AM defect
dataset, onemust note that the dataset contains several characteristics
as described in Sec. 3, which could lead to the 2DU-Net outperform-
ing the 3DU-Netmodels. 3DU-Netmodelsmay becomemore effec-
tive with other datasets and scenarios, for example, when the
geometry of the AM fabricated part is complex or when the CT
images are much noisier. In practice, AM parts have more complex
geometry than the cylindrical specimens employed in this study.
3D model would allow better differentiation between intended and
unintended porosity, for example, for parts that have internal features
such as holes and channels inside.
Based on the dataset employed in this study, a number of chal-

lenges for defect segmentation in AM are identified. The challenges
include the large variation in defect sizes, very small percentage of
porosities in the specimens, highly irregular shapes and geometries
of defects, and high memory consumption due to image resolutions.
With minor modifications in network architectures, the mean IOU
increased substantially for the 3D U-Net models. We attribute the
improved accuracy to the various data enhancement techniques
used, including additional preprocessing, oversampling, image aug-
mentation, as well as the change in the design of the loss function.
These techniques are purposely tailored toward improving prediction
given the domain-specific challenges.We argue that these techniques
take on a more significant role than minor changes in network archi-
tecture designwhen deploying 3DU-Netmodels on the same dataset
and suggest that these techniques should be considered in future

relatedworks to improvemodel performance. Furthermore, for situa-
tions that deem necessary, attention modules can be introduced to
potentially further improve model accuracy [54].
In summary, while conventional manual or thresholding methods

for AM defect segmentation remain tedious and unscalable, this
article has presented a method for automatic volumetric segmenta-
tion of AM specimens—a challenging task given: the complex
geometries of the specimens, the poor contrast and lighting resulting
from measuring metal specimens, and the imbalance of defect and
background classes associated with the images. A high predictive
accuracy with a mean IOU of 0.993 is achieved by the 2D U-Net
model and the residual 3D U-Net model with data enhancements.
The high accuracy of the method demonstrates the potential of
deep learning models to be applied to aid the quality control of
AM parts in practice.
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