

An Assistive Learning Workflow on Annotating

Images for Object Detection

Vivian Wen Hui Wong

Engineering Informatics Group

Civil and Environmental

Engineering

Stanford University

Stanford, United States

vwwong3@stanford.edu

Max Ferguson

Engineering Informatics Group

Civil and Environmental

Engineering

Stanford University

Stanford, United States

maxferg@stanford.edu

Kincho H. Law

Engineering Informatics Group

Civil and Environmental

Engineering

Stanford University

Stanford, United States

law@stanford.edu

Yung-Tsun Tina Lee

Systems Integration Division

National Institute of Standards

and Technology (NIST)

Gaithersburg, United States

yung-tsun.lee@nist.gov

Abstract—We present an end-to-end workflow to generate

annotated image datasets for object detection semi-automatically,

thereby reducing manual annotation need. With this workflow,

which we call assistive learning, we are able to reduce manual

annotation time on two experimental datasets by approximately

80%. The experimental results of this work show three

contributions of the assistive learning workflow: (1) Savings on

human annotation time; (2) generalizability to variable dataset

sizes, domains and convolutional neural network (CNN) models;

and (3) faster CNN training with limited amount of labeled data

using a novel contextual sampling method, thereby a reduction in

human workload early on in the assistive learning process. In

addition, we wrap the workflow in an interactive annotation

interface, allowing annotators without any machine learning

experience to speed up the annotation process for training the

CNN models.

Keywords—data annotation workflow, computer vision, object

detection, smart manufacturing, vehicle detection

I. INTRODUCTION

Object detection is one of the fundamental tasks in computer
vision. This task is often useful for industrial applications in a
variety of domains, such as medical imaging [1], agriculture [2]
and robotics [3]. State-of-the-art object detectors are built with
convolutional neural networks (CNNs). With well-built CNN
architectures, object detectors can achieve excellent accuracies
[4]. However, to obtain a high performance, object detectors
must be trained with a vast number of training images. The
images are typically labelled with bounding boxes; the process
is laborious and time consuming to draw [5]. Given a diverse set
of tasks that we would like to use CNNs for, being able to
quickly build domain-specific datasets and models is important.
There is therefore a need for a faster and more automatic
annotation process.

Many existing works have been reported on methods that can
reduce data-labeling efforts, including transfer learning [6],
semi-supervised learning [7], and weakly supervised learning
[8]. However, most of these methods still require a certain
amount of training data specific to the problem being solved.
Data scientists usually still have to build their own dataset to

fine-tune their models. Obtaining ground truth labels for these
custom datasets remain crucial and time-consuming.

Another notable technique to reduce training time for
building a CNN model is active learning, where the model
selects the most informative data points based on certain criteria,
then inquires a human annotator to obtain labels of those points
[9]. However, existing active learning algorithms face
limitations. For instance, most criteria that determine
informativeness can only be computed with classification
problems and require extra CNN training and inference time to
obtain. These limitations are further discussed in Section II.A.
With the biggest drawback of active learning being the cost of
computation, there is currently no practical, end-to-end
workflow that uses active learning algorithms to sample image
datasets for object detection.

On the other hand, works have been done to accelerate the
obtainment of annotated data. Crowd-sourcing has been
proposed to combine the efforts of many annotators [5]. This is,
however, still costly when building large, problem-specific
datasets that require expert labelers. Self-training, a technique
for semi-supervised learning, has been suggested, where a model
trained with a small amount of labeled data is employed to
generate annotations for the remaining unlabeled data [10]. Most
existing self-training works, as discussed later in Section II.B,
suffer from the tradeoff between the workload of manual
labeling and the accuracy of the predicted labels. The tradeoff is
that it would cost more labor in the first place to get a more
accurate model, but if we reduce the number of expensive
manual annotations, the model trained can be inaccurate, and the
generated annotations are of low quality.

In this work, we have developed an assistive learning
workflow, which builds upon techniques of active learning and
self-training. In active learning, the model samples the most
informative data points and sends them to the annotator. In self-
training, the model is first trained with partially labeled data,
then used to annotate the remaining data. In the proposed
assistive learning workflow, the model not only combines the
behavior of learners in both techniques, but can also learn from
the labeled instances and therefore gradually improve the

2

accuracy of predicted labels. This process is iterated through a
feedback loop involving the annotator and the model.

This paper describes an end-to-end workflow called assistive
learning that consists of a human annotator and a machine
annotator cooperating in a feedback loop to annotate images in
an object detection dataset. Our work shows that the assistive
learning workflow is able to generalize well across object
detection models and domains, and to overcome the limitation
of labor-accuracy tradeoff. In addition, users can access the
workflow using an intuitive user interface (UI), which allows
visualization and generation of annotations. To demonstrate the
robustness of assistive learning, we conduct experiments on two
datasets with two CNN architectures, namely YOLOv3 [11] and
Mask R-CNN [12]. The end-to-end workflow reduces the time
of annotation by 79.4% and 83.1% in the two experimental
datasets. Furthermore, the system is designed such that assistive
learning can be utilized without the annotators having to concern
themselves with the technical aspects of machine learning.

The rest of the paper is organized as follows. Section II
provides an overview of related works. Section III presents a
brief introduction to object detection and the CNN architectures
deployed in our experiments. Section IV gives the details of the
assistive learning workflow. Section V presents the
experimental results. Section VI discusses the implications of
the results, and, finally, Section VII briefly concludes our work.

II. RELATED WORKS

This study relates closely to the existing works on active
learning and self-training for object detection. This section
discusses how assistive learning leverages these works and the
points of departure.

A. Active Learning

The key idea of active learning is the sampling of the most
informative data point and querying it to an annotator. Active
learning has been shown to reduce labeling costs on image
classification tasks [13,14]. Several strategies have been
formulated to evaluate the informativeness of a data point.

The most popular active learning sampling strategy for
object detection is to use uncertainty indicators as measures of
informativeness. The key to uncertainty-based sampling is to
first calculate a degree of uncertainty of classification labels
using, for example, entropy measure, and then sample the
instance with the highest uncertainty. For example, uncertainty-
based sampling strategies have been used for object detection
tasks with shallow machine learning models [15,16,17]. Other
works have applied uncertainty-based sampling to deep neural
network architectures [18,19]. The works mentioned above,
though achieve good results in many scenarios, sample instances
solely based on the classification labels of one or two of the most
uncertain detections. More information can be captured by
aggregating the scores from each detection to calculate the total
uncertainty of one image [20]. However, the method on deep
CNN architectures still suffers from two drawbacks: First, the
method does not account for the representation of the entire
dataset [21]. Second, it has been shown that deep CNN models
can fit even random noise labeling with high confidence, thereby
reducing the effectiveness of uncertainty calculations [22]. In
addition to uncertainty-based sampling, details of other

sampling strategies in active learning, such as Query-By-
Committee, can be found in [9].

The methods mentioned above mostly evaluate their trained
model on every unlabeled instance, then calculate their measure
of informativeness based on the outputted classification scores.
This is impractical in the annotation scenario, because having a
deep CNN model to evaluate every unlabeled image would be
costly in both time and computational resources with many
unlabeled images. Furthermore, with the most labor-intensive
part of annotation being the accurate placement of bounding
boxes, a sampling criterion computed with classification scores
would not seem to be a natural and practical approach, and do
not generalize to single-class object detection datasets.

Besides the above-mentioned active learning methods that
solely use classification scores to determine informativeness, it
has been proposed to use an intermediate CNN layer as a
descriptor function to represent all images in the dataset [23].
The unlabeled image whose representation has the highest
average Euclidean distance to all labeled image representations
is sampled. This method, although theoretically feasible for
CNN architectures and single-class datasets, is computationally
inefficient, since every sampling instance requires a new round
of training and evaluation with the CNN model. Our sampling
method considers not only the average Euclidean distances of
unlabeled images, but also some contextual criteria. The
contextual sampling strategy is more computationally efficient
as it does not require running machine learning models against
every image. Furthermore, our method does not rely on the
prediction of classification scores to sample the unlabeled
images.

B. Self-Training

Many works have used a trained model to complete parts of
the annotation process. A model trained with a limited number
of labeled images is used to predict labels for a set of either
unlabeled or weakly labeled images [24,25].

Some works, in addition to self-training, have involved
humans in the process of correcting predicted labels. A Polygon-
RNN tool has been introduced to allow the users to correct the
polygon segmentation masks being generated by a deep CNN
model [26,27]. Hand correction of masks can also be
incorporated, and the model is iteratively retrained with
corrected labels for medical image analysis [28].

The drawbacks of self-training works mentioned above are
that they either do not cover the full end-to-end workflow or
focus only on specific datasets. Our work leverages the level of
human-machine interaction in existing self-training works by
feeding the corrected data back to the model to continuously
improve its accuracy throughout the annotation process.

III. OBJECT DETECTION

Object detection is the task of generating a bounding box
around the object of interest [29]. Different object detectors have
been reported using machine learning methods [30,31,32].
Nowadays, CNNs (e.g. AlexNet [33], SqueezeNet [34]) trained
using deep learning technologies are the predominant approach.
There are two main types of CNN architectures for object
detectors: one-stage and two-stage.

3

In this work, we have experimented both a one-stage and a
two-stage detector, each with a different dataset, in order to
demonstrate that the annotation tool is able to generalize across
domains. We implement the one-stage YOLOv3 [11]
architecture on a vehicle detection dataset [35], and the two-
stage Mask R-CNN architecture on a manufacturing casting
defect dataset named GDXray [36]. These two cases were
chosen due to the high model scoring accuracies achieved in [35]
and [37], as well as the fact that the two datasets have very
different types of images. Vehicles on an image are much larger
in size than defects on metal castings. Therefore a one-stage
detector’s grid-based prediction approach can achieve a high
accuracy for the vehicle detection problem while dispensing less
computational times compared to two-stage detectors.
Manufacturing defects, however, are much smaller and can be
easily mistaken as noise. Therefore a region proposal stage will
increase the detection accuracy. Figs. 1 and 2 illustrate the
images of each dataset.

A. One-stage Object Detectors

CNN architectures, such as RetinaNet [38], SSD [39] and
YOLO [40], are one-stage object detectors whose single task is
to directly predict confidence scores for classifying and
constructing bounding boxes that surround the objects of
interest. One-stage detectors have been shown to train faster than
two-stage detectors [11,39].

A popular one-stage object detector is YOLOv3, which is
one of the two refined models of YOLO, the first one-stage deep
learning object detector published in 2015 [11,40,41]. YOLOv3
has been demonstrated to give a good balance of speed and
accuracy in [35] and is adopted as an illustrative implementation
of the assistive learning workflow for the vehicle detection
dataset.

B. Two-stage Object Detectors

Other CNN architectures such as R-CNN [42], Fast R-CNN
[43] and Mask R-CNN [12] are two-stage detectors, which
consist of an intermediate stage that generates region proposals.
Two-stage detectors are able to perform with very high
accuracies even for images with fine details but require more
computing resources to train [11].

Although training speed differs for different CNN
architectures, in general, training good object detectors require a
massive amount of training images with ground truth labels.

IV. ASSISTIVE LEARNING

We propose an end-to-end assistive learning workflow. This
section is organized into two subsections. In the first subsection,
we introduce the underlying framework of assistive learning,
and we describe the role of the human annotator and the machine
annotator in detail. In the second subsection, we describe the
functionalities of an interactive UI, which allow any annotator
to engage in the workflow.

A. End-to-end Workflow

We introduce a framework that involves the collaboration
between a human annotator and a machine annotator, which
assists and learns from the human. Given an unlabeled dataset,
the framework consists of the feedback loop shown in Fig. 3.

The human annotator observes and annotates images
suggested by the machine annotator. If the machine annotator
has already annotated the image, the human annotator reviews
the machine-generated labels and correct them if necessary. We
consider human-generated labels as ground truth labels. The
machine annotator consists of two modules: the object detection
module and the contextual sampling module. The two modules
work together to suggest and label a subsequent image, which is
then sent to the human annotator for review.

1. The object detection module is a CNN model that is able to
train on the ground truth labels that the human annotator has
provided. It can therefore learn from more and more training

Fig. 1. Examples of labeled vehicle detection images. Vehicles are generally

large and easily distinguishable visually.

Fig. 2. Examples of labeled GDXray Casting images. Defects are small and

very similar to surrounding design features.

4

samples as we iterate through the loop as shown in Fig. 3.
The object detection module annotates the sampled image
outputted from the contextual sampling module and suggests
the annotation to the human annotator.

2. The contextual sampling module ensures that the next
unlabeled image sent to the human annotator satisfies the
contextual criteria. The contextual criteria consist of two
parts: uniqueness and average Euclidean distance. The
criteria are applied on the raw images.

In industry applications, datasets often contain images
captured from the same source or specimen. These images are
therefore very similar. An example is the GDXray dataset [36],
where several images are captured using the same metal casting.
In contextual sampling, we avoid repeatedly sampling from the
same specimen by examining an image’s uniqueness.
Uniqueness is defined as follows: Let’s define a set of all images
in a dataset, 𝒳, consisting of labeled images ℳ and unlabeled
images 𝒩, i.e. 𝒳 = ℳ⋃𝒩. Suppose there are K (𝐾 ≥ 1) pre-
defined specimens in the dataset 𝒳, the dataset 𝒳 can also be
expressed as 𝒳 = ⋃ 𝑋𝑖

𝐾
i=1 , where 𝑋𝑖 is the set of all images in

specimen i. An unlabeled image 𝑥 in specimen k (i.e. 𝑥 ∈ 𝒩 ∩
𝑋𝑘, where 1 ≤ 𝑘 ≤ 𝐾) is considered unique if specimen k has
the fewest number of images in the set of labeled images ℳ. In
other words, if an unlabeled image 𝑥 in specimen k (𝑥 ∈
𝑁 ∩ 𝑋𝑘) is considered unique, then the number of images in
𝑋𝑘 ∩ ℳ is fewer than or equal to that in all other
𝑋1, … , 𝑋𝑖 , … , 𝑋𝐾 ∩ ℳ, for 𝑖 ≠ 𝑘.

The other contextual sampling criterion considers the
average Euclidean distance of an image. An image 𝑥 ∈ 𝒩 is
sampled if of all the images that satisfy the uniqueness criterion,
x has the highest average Euclidean distance to all images in the
labeled set ℳ . We denote the average Euclidean distance
between an image x and all images in ℳ as 𝑑𝑥 = 𝑑(𝑥, ℳ).

Following the definition of the two contextual criteria, we
now present the procedure of contextual sampling. We calculate
the number of images in 𝑋𝑖 ∩ ℳ for all 𝑋𝑖 ∈ {𝑋1, … , 𝑋𝐾} and
select specimen k that has the fewest number of images among
𝑋𝑖 ∩ ℳ. For each unlabeled image 𝑥 ∈ 𝒩 ∩ 𝑋𝑘 , we compute
𝑑𝑥 = 𝑑(𝑥, ℳ), the average Euclidean distance between x and
all images in ℳ and select the sampled image (denoted by 𝑥̂)
with maximum 𝑑𝑥 among all unlabeled images x in specimen k.
The pseudocode of this procedure is presented as shown in

Algorithm 1. Note that for images that do not have pre-defined
specimens (for example, the vehicle detection dataset), we set
the number of specimens 𝐾 = 1 . Since there is only one
specimen, the average Euclidean distance is the only contextual
criterion.

B. Functionality of User Interface

A user interface (UI) is necessary for the level of human-
machine interaction needed in our workflow. To that end, we
develop an interface for the workflow and implement features to
visualize, create, edit and remove annotations, to sample images,
and to train the object detector.

1) Visualization and Annotation

Fig. 4 illustrates an example of using the interface to
visualize bounding boxes generated by the machine annotator.
Since the workflow is flexible to the object detector deployed, it
can output any box predicted by the object detectors.

Using the library Fabric.js [44], the UI is able to render
images and boxes. Furthermore, it is intuitive for a user to
rescale bounding boxes with anchor points on the four edges and
corners. Deletion of a box is done simply with the click of a key.
An additional box can be drawn by pressing down the mouse on
the location of one corner and releasing the mouse at the box’s
diagonal corner. An example of a human-reviewed annotation is
illustrated in Fig. 5.

In addition to the intuitive annotating features, a
visualization feature of the UI is to allow the annotator to detect
with different models. In Fig. 4, we demonstrate that prediction
can be done with YOLOv3 and Mask R-CNN on the same
image. This is a convenient feature for debugging when
switching models, or for the annotator to compare their
accuracies.

2) Training
After the human annotator has reviewed and labeled a batch

of images, the training function can take the batch of ground
truth data and use it to train the object detector. Training will
occur whenever the human annotator decides to do so. Since the

Fig. 3. Assistive learning feedback loop.

ALGORITHM 1: DETAILED IMPLEMENTATION OF CONTEXTUAL SAMPLING TO

SAMPLE THE NEXT IMAGE FROM UNLABELED IMAGES.

5

model can be trained in the background, the human annotator
has the option to do manual annotations while the model trains
itself. We specifically allow this parallel process because
annotators are usually paid, for example, on an hourly basis, so
any unnecessary waiting would be uneconomical.

The training function must be called by the human annotator
by pressing the “Train” button. It will not automatically
commence whenever an image has been annotated. This is a
designed feature, since usually, training after every image is
undesirable. Although training time differs for each model, the
improved accuracy of adding only one image to the training set
does not usually compensate for the cost in training time.

C. Implementation Details

The annotation interface developed is an application on the
web browser built using the model-view-controller architecture
[45]. As shown in Fig. 6, the frontend development of the tool
is implemented with Javascript and HTML. The Javascript
HTML5 canvas library Fabric.js [44] is used to render the
images and bounding boxes on an HTML canvas, as well as to
draw, edit or remove bounding boxes. In backend development,
the tool uses Python 3.7 for contextual sampling, model training
and detection. The CNN implementation is based on the
PyTorch framework [46]. A controller module is written to
connect the frontend to the backend features.

V. EXPERIMENTAL RESULTS

This section discusses the two case studies to estimate the
amount of manual annotation time reduced by assistive learning,
and to show that our sampling method is able to reduce the
amount of data required for a CNN model to achieve a certain
level of accuracy.

A. Vehicle Detection with YOLOv3

The YOLOv3 model is trained and evaluated using a total of
3500 vehicle images from [35]. The training set consists of 2600
images, including a combination of daytime camera photos on a
highway and online vehicle images. The training set has 4391
vehicle instances (2947 trucks, 344 pick-up trucks, and 1100
cars). The testing set has 900 daytime camera images captured
on the highway, and consists of 1226 vehicles (566 trucks, 178
pick-up trucks, and 482 cars). Camera images under various
weather and lighting conditions as well as online images are
included to ensure that the machine annotator (when both
detecting and sampling) can generalize, and that future camera
images captured under various conditions can receive an
accurate predicted label. We also augment the images by
flipping them vertically and horizontally. A weight pre-trained
on ImageNet data is used to initialize parameters of the model
[29].

1) Annotation Time

To estimate the time taken to annotate, we use the results
presented in [5], which states that the average time it takes a
person to draw a bounding box is 88.0 seconds [5]. We make the
assumption that editing or removing an incorrect bounding box
takes half the time, or 44.0 seconds. This is in fact, quite a
conservative estimation, since deleting a bounding box takes
only a couple of seconds, and the adjustment of an existing box
is easy when there is already a suggestion. Using the common
standards in the object detection field, an intersection-over-

Fig. 4. A screenshot of the annotating UI. Image labeled is from the GDXray

Castings dataset. Red bounding boxes are from YOLOv3 object detector. Blue

bounding boxes are from Mask R-CNN object detector.

Fig. 5. An example of editing bounding boxes using anchors. With the same

image in Fig. 4, the human annotator can manually edit the red bounding boxes

to fit them tighter to the defects. The blue bounding boxes recommended by

the object detector are kept in place as reference.

Fig. 6. Model-view-controller design of annotation interface.

6

union (IOU) of 0.5 or above is considered a correct prediction
[47]. We therefore assume that a bounding box will need to be
either edited or removed when IOU is under 0.5. Note that we
do not count the training time into the calculation of manual
annotation time. This is because during training, the human
annotator is not required to do any work. Using our system, the
human annotator is free to either take a break or annotate while
the model trains in the background.

To simulate annotating the vehicle detection dataset with
YOLOv3, we split the 2600 images in the training set into 10
smaller datasets as shown in Table I, with dataset sizes ranging
from the smallest to the largest. The order of images is obtained
using the contextual sampling method described earlier in
Section IV. Since the vehicle detection dataset does not contain
specimens, we use average Euclidean distance as the only
contextual criterion. The first dataset is considered fully
annotated by a human annotator. For the first dataset, we train it
for 5 epochs with weights frozen for intermediate layers of the
CNN, and another 35 epochs without holding weights fixed. We
test the newly trained model on the second dataset, and compare
the evaluation result to ground truth labels to compute the
amount of human annotation time needed to correct inaccurate
labels. The second dataset, after the simulated correction
process, is now considered fully annotated. The model then
trains on all fully annotated images, which now consist of the
first and the second dataset, for 35 epochs. The process is
repeated for all remaining datasets: For each dataset after the
first, we evaluate it with the model trained with previously added
fully annotated images. We then add the evaluated images to the
fully annotated images, simulating the hand-correction of a
human annotator, then train for 35 epochs.

Since the goal of this study is to demonstrate the
effectiveness of the techniques proposed, no hyperparameter
optimization is conducted. The training schedule is also not
aiming to fully minimize training loss. As shown in Table I,
when trained on the same training set and tested on the testing

set as [35], the model achieves an mean average precision
(mAP) of 0.831, which is 88.7% of the mAP of 0.937 in [35].
Our accuracy is sufficiently high for the purpose of this study,
but to achieve accuracies as high as [35], one will need to tune
all hyperparameters and train for more epochs.

Table I shows that when annotating the entire vehicle
detection dataset, assistive learning significantly reduces manual
annotation time compared to a human annotator working alone.
As more labeled images are added to the training set, the
machine annotator saves a higher percentage of time for the
human annotator, due to improved performance of the machine
annotator with more training.

2) Sampling Methods

By experimenting with YOLOv3 on the vehicle detection
dataset, we compare the contextual sampling method (average
Euclidean distance as the only contextual criterion) proposed in
Section IV with random sampling. To conduct the experiment,
we train a YOLOv3 model on various numbers of images, then
compare the results with those obtained from random sampling.
Pre-trained ImageNet weights are used for training. Each time
the model is trained on 5 epochs with weights of intermediate
layers fixed, then 35 epochs not fixed. Five identical,
independent experiments are run.

Fig. 7 shows that the contextual sampling method improves
the performance of the object detector when there are little
labeled data. With 50 labeled images, the mean mAP from 5
independent runs is 0.32 for random sampling and 0.40 for
contextual sampling. Contextual sampling improves the mean
mAP by 25.0%. With 100 labeled images, contextual sampling
improves the mean mAP by 23.3%, from 0.43 with random
sampling to 0.53 with contextual sampling. This is because with
contextual sampling, the labeled data show less similarity. The
object detector can therefore generalize and fit faster. As the
number of labeled images grows larger, however, the
performance of the model given the two sampling methods
converge.

B. Castings Defect Detection with Mask R-CNN

 The Mask R-CNN model is trained and evaluated using
images from the GDXray Castings dataset [36]. The Casting
Series dataset contains 2727 images. Many of the images in the

Fig. 7. Relationship between mean average precision (mAP) and number of

training images, sampled randomly and contextually on the vehicle detection
dataset. mAP are obtained by testing on the same test dataset. The shaded areas

show the standard deviations from 5 independent runs.

TABLE II. TOTAL ANNOTATION TIME TO LABEL ALL IMAGES USING MASK

R-CNN WITH GDXRAY CASTINGS DATASET. RESULTS COMPARED WITH AND

WITHOUT THE USE OF MACHINE ANNOTATOR.

of

images

trained

of

images

annotate

d with

machine

annotator

Time

with

human

annotator

alone

(hours)

Time

with

assistive

learning

(hours)

% Time

reduced
mAP

30 5 0.22 0.09 61.1% 0.483

35 10 0.46 0.28 39.5% 0.150

45 25 2.47 0.31 87.6% 0.616

70 30 2.98 0.55 81.6% 0.750

100 100 8.75 1.14 87.0% 0.656

200 200 16.57 3.24 80.5% 0.793

400 285 23.44 4.11 82.5% 0.768

685 171 12.27 1.64 86.7% 0.872

Total

hours
- 67.17 11.34 83.1%

TABLE I. TOTAL ANNOTATION TIME TO LABEL ALL IMAGES USING

YOLOV3 WITH VEHICLE DETECTION DATASET. RESULTS COMPARED WITH

AND WITHOUT THE USE OF MACHINE ANNOTATOR.

of

images

trained

of

images

annotate

d with

machine

annotator

Time

with

human

annotator

alone

(hours)

Time

with

assistive

learning

(hours)

% Time

reduced
mAP

30 5 0.54 0.48 11.4% 0.042

35 10 0.37 0.32 13.3% 0.197

45 25 1.10 0.88 20.0% 0.097

70 30 1.54 0.83 46.0% 0.343

100 100 6.43 2.86 55.5% 0.227

200 200 9.34 2.59 72.3% 0.535

400 400 15.11 3.37 77.7% 0.674

800 800 29.02 5.15 82.3% 0.691

1600 1000 37.74 6.28 83.4% 0.767

2600 900 32.24 4.68 85.5% 0.831

Total

hours
- 133.42 27.44 79.4%

7

dataset were unlabeled or had ambiguous labels, so we chose to
train on the 685 training images specified in [37,48]. Testing
was conducted on the 171 images specified in [37,48]. This
dataset contains a single casting defects class, but the labeled X-
ray images come from 33 specimens. Images coming from the
same specimen are very similar. The model parameters are
initialized with weights pre-trained on COCO data [49].

1) Annotation Time

Similar to the vehicle detection problem, to simulate
annotating the GDXray Castings dataset with Mask R-CNN, we
split the 685 images in the training set into 8 smaller datasets,
with dataset sizes ranging from the smallest to the largest.
Contextual sampling is applied (with average Euclidean distance
and specimen uniqueness as the contextual criteria). Due to high
computing time of Mask R-CNN, we only train 5 epochs for
each dataset. The first dataset includes an additional epoch for
fixing the weights on all except the output layer. We evaluate
every dataset after the first dataset with the model trained with
previously evaluated datasets.

Table II shows the reduction of manual annotation time
using a Mask R-CNN object detector to assist the annotation of
GDXray Castings images. In this experiment, the models are
trained on 1 epoch with fixed weights on intermediate layers
followed by 5 epochs without holding weights fixed, the mAP
of 0.872 for constructing the bounding boxes surrounding the
defects is obtained using the same 685 training images and 171
testing images as discussed in [37,48]. The result is also
compatible with the CNN model training under similar setting
[37]. Although it is not conducted in this study because of
extensive computational time and hyperparameter tuning
required, as reported in [37], an mAP of 0.957 could be obtained
when trained with 80 epochs of fixed weights on intermediate
layers and another 80 epochs without holding weights fixed.
That is, the trained model in this experiment achieves 91.1% of
the best mAP as reported in [37]. This result is reasonable,
considering that the model parameters are not optimally updated
at each incremental training step. In short, the results show the
workflow has the capability to greatly reduce manual annotation
time.

2) Sampling Methods

Since the GDXray Castings dataset consists of specimens
that consist of similar images, the contextual sampling method
considers uniqueness and average Euclidean distance when
sampling. Similar to the sampling experiments conducted in
Section A, with GDXray dataset and Mask R-CNN object
detector, similar results are obtained as shown in Fig. 8. When
the dataset size is small, contextual sampling slightly
outperforms random sampling by 9.4% mAP when trained on
30 images and 5.0% mAP when trained on 50 images.

Even though the contextual sampling method improves
performance with limited labeled images, the human annotator
should still take into consideration the labor-accuracy tradeoff.
More upfront labor investment leads to better predicted labels.
However, with the assistive learning workflow, the tradeoff can
be converted to a training time-labor tradeoff. The human
annotator can choose to train more frequently to increase
accuracy of predicted labels, thereby reducing data-labeling
efforts.

VI. DISCUSSION

In this section, we evaluate our workflow based on the
experimental results presented in the previous section. Besides
having shown that the workflow efficiently reduces the
workload of human annotators, this section discusses additional
benefits and the costs to consider when using assistive learning.

A. Generalization on Datasets

By experimenting our tool with two datasets, we were able
to show that the workflow can be applied to problems from
different domains due to the flexibility of the object detector and
sampling strategy. In this subsection, we outline why the two
datasets differ a lot in object detection, in order to illustrate the
importance of cross-domain capability.

The two datasets studied are both commonly observed
industrial problems in engineering yet differ mainly in the
following ways:

• Size of objects Vehicles usually take up a larger portion of
an image compared to casting defects. YOLO is not ideal for
small objects since it limits the number of nearby detections
[50]. Two-stage architectures that use regional proposal are

Fig 8. Relationship between mean average precision (mAP) and number of
training images, sampled randomly and contextually on the GDXrays castings

dataset. mAP are obtained by testing on the same test dataset. The shaded areas

show the standard deviations from 5 independent runs.

TABLE II. TOTAL ANNOTATION TIME TO LABEL ALL IMAGES USING MASK

R-CNN WITH GDXRAY CASTINGS DATASET. RESULTS COMPARED WITH AND

WITHOUT THE USE OF MACHINE ANNOTATOR.

of

images

trained

of

images

annotate

d with

machine

annotator

Time

with

human

annotator

alone

(hours)

Time

with

assistive

learning

(hours)

% Time

reduced
mAP

30 5 0.22 0.09 61.1% 0.483

35 10 0.46 0.28 39.5% 0.150

45 25 2.47 0.31 87.6% 0.616

70 30 2.98 0.55 81.6% 0.750

100 100 8.75 1.14 87.0% 0.656

200 200 16.57 3.24 80.5% 0.793

400 285 23.44 4.11 82.5% 0.768

685 171 12.27 1.64 86.7% 0.872

Total

hours
- 67.17 11.34 83.1%

8

shown to be better at locating small objects [40].
Alternatively, one-stage architectures can be finetuned to
target small objects [51].

• Noisiness of background Vehicles, which have distinct
colors and shape, are normally quite distinguishable from
their backgrounds. On the other hand, casting defects often
look very similar to design features like holes and edges [37].
CNN architectures with high quality feature maps would be
better at distinguishing such defects.

• Classes and specimens The vehicle detection dataset has
three classes of vehicles, whereas the GDXray Castings
dataset has a single class but contains similar images from
the same specimens. It is therefore important to have a
contextual sampling method that is applicable to either
scenarios.

In summary, it is important for the human annotator to take
caution when choosing a suitable object detector (i.e. the CNN
architecture) for annotation, as it greatly depends on the type of
objects in the custom image dataset being built. Our workflow
offers flexibility to customize CNN models and datasets, and
introduces a computationally efficient contextual sampling
method that is applicable to a variety of datasets.

B. Costs for Consideration

Although the tool is able to reduce the need of manual labor,
there are additional costs to be considered. Firstly, the cost of
training time can be quite significant with more complex CNN
models. With these complex models, it might cost less time
overall to annotate with human annotators. For example, with a
one-stage object detector like YOLOv3, training time increases
linearly with the number of training images. Although training
the object detector more often will allow it to learn faster and
reduce labeling efforts, one must evaluate whether the overall
cost in time is more expensive than hand-annotation.

The second factor is the monetary cost of computational
resources. CNN model training nowadays is mostly done on
GPUs, which are powerful in computation. For the tool to train
effectively, it therefore must connect to either a cloud GPU or a
physical GPU, which can be costly. To find the most economical
way to annotate a dataset, it may worth to compare the cost of
hiring human annotators versus the available (and, possibly,
purchasing) computing resources.

C. Future Work

The assistive learning workflow presented in this work is
able to reduce manual annotation time and can be applied to
annotate and build datasets. However, the training process of the
machine annotator can be computationally expensive. Future
work could explore training time and its tradeoff between
prediction accuracy. It would also be interesting to further
evaluate the workflow on object detection with other datasets
and to apply the approach to other applications, such as image
segmentation, natural language processing and multimodal deep
learning.

VII. CONCLUSION

This paper has presented an assistive learning workflow to
annotate bounding boxes on images for the task of object
detection. By conducting two experiments, we are able to show

that by connecting a human annotator and a machine annotator
with a feedback loop, we can significantly reduce the amount of
manual annotation time. We also propose a novel contextual
sampling method, which improves the performance of YOLOv3
and Mask R-CNN object detector when trained on a very limited
number of labeled images. Together, we deploy the workflow in
the backend of an intuitive user interface. The experimental
results show that our workflow is able to generalize to datasets
in different domains and is flexible to various object detection
architectures. We also note that there exists a tradeoff between
training time and hand-annotation workload.

In summary, this work proposes an end-to-end workflow that
uses assistive learning to annotate images for object detection.
Our estimation of savings in hand-annotation efforts is
conservative yet still exceptional. We hope that this workflow
can be adopted to produce valuable labeled datasets across all
domains, while minimizing manual labor.

VIII. ACKNOWLEDGMENT AND DISCLAIMER

This research is partially supported by the Smart
Manufacturing Systems Design and Analysis Program at the
National Institute of Standards and Technology (NIST), US
Department of Commerce, Grant Numbers 70NANB18H193
and 70NANB19H097 awarded to Stanford University.

Certain commercial systems are identified in this article.
Such identification does not imply recommendation or
endorsement by NIST; nor does it imply that the products
identified are necessarily the best available for the purpose.
Further, any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NIST or any
other supporting U.S. government or corporate organizations.

IX. REFERENCES

[1] Z. Li, M. Dong, S. Wen, X. Hu, P. Zhou, and Z. Zeng, “CLU-CNNs:
Object detection for medical images,” Neurocomputing, vol. 350, pp. 53–
59, Jul. 2019.

[2] L. Saxena and L. Armstrong, “A survey of image processing techniques
for agriculture,” Proceedings of Asian Federation for Information
Technology in Agriculture, pp. 401-413, 2014.

[3] D. Xu, Q. Huang and H. Liu, "Object detection on robot operation
system," 2016 IEEE 11th Conference on Industrial Electronics and
Applications (ICIEA), pp. 1155-1159, 2016,

[4] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: a survey,”
arXiv preprint arXiv: 1905.05055, 2019.

[5] H. Su, J. Deng, and F-F. Li, “Crowdsourcing annotations for visual object
detection,” Workshops at the Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2012.

[6] S. J. Pan and Q. Yang, "A survey on transfer learning," in IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345-1359, 2010.

[7] X. Zhu, "Semi-supervised learning literature survey," Technical Report
TR-1530, Univ. of Wisconsin-Madson, 2005.

[8] Z-H. Zhou, “A brief introduction to weakly supervised learning,”
National Science Review, vol. 5, no. 1, pp. 44–53, 2018.

[9] B. Settles, "Active learning literature survey", University of Wisconsin-
Madison Department of Computer Sciences, Technical Report 1648, 2009.

[10] D. Yarowsky, "Unsupervised word sense disambiguation rivaling
supervised methods", Proc. 33rd. Annual Meeting of the Association of
Computational Linguistics, pp. 189-196, 1995.

[11] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

9

[12] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017
IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, pp. 2980-2988, 2017.

[13] A. Kapoor, K. Grauman, R. Urtasun and T. Darrell, "Active learning with
gaussian processes for object categorization," 2007 IEEE 11th
International Conference on Computer Vision, Rio de Janeiro, Brazil, pp.
1-8, 2007.

[14] A. J. Joshi, F. Porikli and N. Papanikolopoulos, "Multi-class active
learning for image classification," 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, pp. 2372-2379, 2009.

[15] Bietti, A. “Active learning for object detection on satellite images,”
Technical Report, Caltech, 2012. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.1233&rep
=rep1&type=pdf (Accessed: August 1, 2019).

[16] Y. Abramson, Y. Freund, “Active learning for visual object detection,”
San Diego:Department of Computer Science and Engineering, University
of California, 2006.

[17] S. Vijayanarasimhan and K. Grauman, "Large-scale live active learning:
Training object detectors with crawled data and crowds," IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO,
USA, pp. 1449-1456, 2011.

[18] D. Wang and Y. Shang, "A new active labeling method for deep
learning," 2014 International Joint Conference on Neural Networks
(IJCNN), Beijing, China, pp. 112-119, 2014.

[19] C. Feng, M.-Y. Liu, C.-C. Kao, T.-Y. Lee, "Deep active learning for civil
infrastructure defect detection and classification", ASCE International
Workshop on Computing in Civil Engineering, Seattle, WA, USA, pp.
298-306, 2017.

[20] C-A. Brust, C. Käding, and J. Denzler, “Active learning for deep object
detection,” arXiv preprint arXiv:1809.09875, 2019.

[21] T. He et al., “An active learning approach with uncertainty,
representativeness, and diversity,” The Scientific World Journal., vol.
2014, Article ID 827586, 6 pages, 2014.

[22] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning requires rethinking generalization,” International
Conference on Learning Representations, vol. abs/1611.03530, 2017

[23] A. Smailagic et al., “MedAL: Deep active learning sampling method for
medical image analysis,” arXiv preprint arXiv:1809.09287, Sep. 2018.

[24] B. Adhikari, J. Peltomaki, J. Puura and H. Huttunen, "Faster bounding
box annotation for object detection in indoor scenes," 2018 7th European
Workshop on Visual Information Processing (EUVIP), Tampere, Finland,
pp. 1-6, 2018.

[25] C. Rosenberg, M. Hebert and H. Schneiderman, "Semi-supervised self-
training of object detection models," 2005 Seventh IEEE Workshops on
Applications of Computer Vision (WACV/MOTION'05) - Volume 1,
Breckenridge, CO, USA, pp. 29-36, 2005.

[26] L. Castrejón, K. Kundu, R. Urtasun and S. Fidler, "Annotating object
instances with a Polygon-RNN," 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 4485-4493,
2017.

[27] D. Acuna, H. Ling, A. Kar and S. Fidler, "Efficient interactive annotation
of segmentation datasets with Polygon-RNN++," 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, pp. 859-868, 2018.

[28] B. Lutnick et al., “Iterative annotation to ease neural network training:
Specialized machine learning in medical image analysis.,” Nature
Machine Intelligence, vol. 1, no. 2, pp. 112-119, 2019.

[29] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” International Journal of Computer Vision, vol. 115, pp. 1-42,
2015.

[30] P. Viola and M. Jones, "Rapid object detection using a boosted cascade
of simple features," Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
Kauai, HI, USA, pp. I-I, 2001.

[31] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection," 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR'05), San Diego, CA, USA, vol. 1, pp.
886-893, 2005.

[32] P. Felzenszwalb, D. McAllester and D. Ramanan, "A discriminatively
trained, multiscale, deformable part model," 2008 IEEE Conference on
Computer Vision and Pattern Recognition, Anchorage, AK, pp. 1-8, 2008.

[33] M. Z. Alom et al., "The history began from alexnet: A comprehensive
survey on deep learning approaches," arXiv preprint arXiv:1803.01164,
2018.

[34] F. N. Iandola, et al., "SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size," arXiv preprint arXiv:1602.07360,
2016.

[35] R. Hou, S. Jeong, K. H. Law, and J. P. Lynch, “Reidentification of trucks
in highway corridors using convolutional neural networks to link truck
weights to bridge responses,” Smart Structures and Materials +
Nondestructive Evaluation and Health Monitoring, St. Louis, Missouri,
USA, 2019.

[36] D. Mery, V. Riffo, U. Zscherpel, G. Mondragón, I. Lillo, I. Zuccar, H.
Lobel, and M. Carrasco, “GDXray: The database of X-ray images for
nondestructive testing,” Journal of Nondestructive Evaluation, vol. 34, no.
4, p. 42, Nov. 2015.

[37] M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, “Detection and
segmentation of manufacturing defects with convolutional neural
networks and transfer learning,” Smart and Sustainable Manufacturing
Systems, vol. 2, no. 1, pp. 137-164, 2018.

[38] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2999-3007, 2017.

[39] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” European conference on
computer vision, pp. 21--37, 2016.

[40] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, real-time object detection," 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, pp. 779-788, 2016.

[41] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, pp. 6517-6525, 2017.

[42] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies
for accurate object detection and semantic segmentation," 2014 IEEE
Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, pp. 580-587, 2014.

[43] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, 2015, pp. 1440-1448.

[44] Printio.ru Lab, “Fabric.js.” Available: http://fabricjs.com. [Accessed: 1-
Jul-2019].

[45] J. Deacon, “Model-view-controller (MVC) architecture,” Computer
Systems Development, pp. 1-6, 2005.

[46] A. Paszke et al., “Automatic differentiation in PyTorch,” in 31st
Conference on Neural Information Processing Systems (NIPS), pp. 1-4,
2017, [online] Available: pytorch.org.

[47] A. Arnab and P. H. S. Torr, "Pixelwise instance segmentation with a
dynamically instantiated network," 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 879-
888, 2017.

[48] M. Ferguson, R. Ak, Y. T. Lee and K. H. Law, "Automatic localization of
casting defects with convolutional neural networks," 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA, pp.
1726-1735, 2017.

[49] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra- manan, P.
Dolla ́r, and C. L. Zitnick. Microsoft Coco: Common Objects in Context.
arXiv preprint arXiv:1405.0312, 2014.

[50] Q. Peng et al., "Pedestrian detection for transformer substation based on
gaussian mixture model and YOLO," 8th International Conference on
Intelligent Human-Machine Systems and Cybernetics (IHMSC),
Hangzhou, China, pp. 562-565, 2016.

[51] G. Cao et al., “Feature-fused SSD: fast detection for small objects,” in 9th
International Conference on Graphic and Image Processing, Qingdao,
China, volume 10615, page 106151E, International Society for Optics and
Photonics, 2018.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.1233&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.1233&rep=rep1&type=pdf
https://arxiv.org/abs/1809.09875
https://arxiv.org/abs/1809.09287

	I. Introduction
	II. Related Works
	A. Active Learning
	B. Self-Training

	III. Object Detection
	A. One-stage Object Detectors
	B. Two-stage Object Detectors

	IV. Assistive Learning
	A. End-to-end Workflow
	B. Functionality of User Interface
	1) Visualization and Annotation
	2) Training

	C. Implementation Details

	V. Experimental Results
	A. Vehicle Detection with YOLOv3
	1) Annotation Time
	2) Sampling Methods

	B. Castings Defect Detection with Mask R-CNN
	1) Annotation Time
	2) Sampling Methods

	VI. Discussion
	A. Generalization on Datasets
	B. Costs for Consideration
	C. Future Work

	VII. Conclusion
	VIII. Acknowledgment and Disclaimer
	IX. References

