
 

An Assistive Learning Workflow on Annotating 

Images for Object Detection   
 

Vivian Wen Hui Wong 

Engineering Informatics Group 

Civil and Environmental 

Engineering  

Stanford University 

Stanford, United States 

vwwong3@stanford.edu 

Max Ferguson 

Engineering Informatics Group 

Civil and Environmental 

Engineering  

Stanford University 

Stanford, United States 

maxferg@stanford.edu 

 

Kincho H. Law 

Engineering Informatics Group 

Civil and Environmental 

Engineering  

Stanford University 

Stanford, United States 

law@stanford.edu 

Yung-Tsun Tina Lee 

Systems Integration Division 

National Institute of Standards 

and Technology (NIST) 

Gaithersburg, United States 

yung-tsun.lee@nist.gov

  

Abstract—We present an end-to-end workflow to generate 

annotated image datasets for object detection semi-automatically, 

thereby reducing manual annotation need. With this workflow, 

which we call assistive learning, we are able to reduce manual 

annotation time on two experimental datasets by approximately 

80%. The experimental results of this work show three 

contributions of the assistive learning workflow: (1) Savings on 

human annotation time; (2) generalizability to variable dataset 

sizes, domains and convolutional neural network (CNN) models; 

and (3) faster CNN training with limited amount of labeled data 

using a novel contextual sampling method, thereby a reduction in 

human workload early on in the assistive learning process. In 

addition, we wrap the workflow in an interactive annotation 

interface, allowing annotators without any machine learning 

experience to speed up the annotation process for training the 

CNN models. 

Keywords—data annotation workflow, computer vision, object 

detection, smart manufacturing, vehicle detection 

I. INTRODUCTION 

Object detection is one of the fundamental tasks in computer 
vision.  This task is often useful for industrial applications in a 
variety of domains, such as medical imaging [1], agriculture [2] 
and robotics [3]. State-of-the-art object detectors are built with 
convolutional neural networks (CNNs). With well-built CNN 
architectures, object detectors can achieve excellent accuracies 
[4]. However, to obtain a high performance, object detectors 
must be trained with a vast number of training images. The 
images are typically labelled with bounding boxes; the process 
is laborious and time consuming to draw [5]. Given a diverse set 
of tasks that we would like to use CNNs for, being able to 
quickly build domain-specific datasets and models is important. 
There is therefore a need for a faster and more automatic 
annotation process.  

Many existing works have been reported on methods that can 
reduce data-labeling efforts, including transfer learning [6], 
semi-supervised learning [7], and weakly supervised learning 
[8]. However, most of these methods still require a certain 
amount of training data specific to the problem being solved. 
Data scientists usually still have to build their own dataset to 

fine-tune their models. Obtaining ground truth labels for these 
custom datasets remain crucial and time-consuming.  

Another notable technique to reduce training time for 
building a CNN model is active learning, where the model 
selects the most informative data points based on certain criteria, 
then inquires a human annotator to obtain labels of those points 
[9]. However, existing active learning algorithms face 
limitations. For instance, most criteria that determine 
informativeness can only be computed with classification 
problems and require extra CNN training and inference time to 
obtain. These limitations are further discussed in Section II.A. 
With the biggest drawback of active learning being the cost of 
computation, there is currently no practical, end-to-end 
workflow that uses active learning algorithms to sample image 
datasets for object detection.  

On the other hand, works have been done to accelerate the 
obtainment of annotated data. Crowd-sourcing has been 
proposed to combine the efforts of many annotators [5]. This is, 
however, still costly when building large, problem-specific 
datasets that require expert labelers. Self-training, a technique 
for semi-supervised learning, has been suggested, where a model 
trained with a small amount of labeled data is employed to 
generate annotations for the remaining unlabeled data [10]. Most 
existing self-training works, as discussed later in Section II.B, 
suffer from the tradeoff between the workload of manual 
labeling and the accuracy of the predicted labels. The tradeoff is 
that it would cost more labor in the first place to get a more 
accurate model, but if we reduce the number of expensive 
manual annotations, the model trained can be inaccurate, and the 
generated annotations are of low quality.  

In this work, we have developed an assistive learning 
workflow, which builds upon techniques of active learning and 
self-training. In active learning, the model samples the most 
informative data points and sends them to the annotator. In self-
training, the model is first trained with partially labeled data, 
then used to annotate the remaining data. In the proposed 
assistive learning workflow, the model not only combines the 
behavior of learners in both techniques, but can also learn from 
the labeled instances and therefore gradually improve the 
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accuracy of predicted labels. This process is iterated through a 
feedback loop involving the annotator and the model. 

This paper describes an end-to-end workflow called assistive 
learning that consists of a human annotator and a machine 
annotator cooperating in a feedback loop to annotate images in 
an object detection dataset.  Our work shows that the assistive 
learning workflow is able to generalize well across object 
detection models and domains, and to overcome the limitation 
of labor-accuracy tradeoff. In addition, users can access the 
workflow using an intuitive user interface (UI), which allows 
visualization and generation of annotations. To demonstrate the 
robustness of assistive learning, we conduct experiments on two 
datasets with two CNN architectures, namely YOLOv3 [11] and 
Mask R-CNN [12]. The end-to-end workflow reduces the time 
of annotation by 79.4% and 83.1% in the two experimental 
datasets. Furthermore, the system is designed such that assistive 
learning can be utilized without the annotators having to concern 
themselves with the technical aspects of machine learning.  

The rest of the paper is organized as follows. Section II 
provides an overview of related works. Section III presents a 
brief introduction to object detection and the CNN architectures 
deployed in our experiments. Section IV gives the details of the 
assistive learning workflow. Section V presents the 
experimental results. Section VI discusses the implications of 
the results, and, finally, Section VII briefly concludes our work.     

II. RELATED WORKS 

This study relates closely to the existing works on active 
learning and self-training for object detection. This section 
discusses how assistive learning leverages these works and the 
points of departure. 

A. Active Learning 

The key idea of active learning is the sampling of the most 
informative data point and querying it to an annotator. Active 
learning has been shown to reduce labeling costs on image 
classification tasks [13,14]. Several strategies have been 
formulated to evaluate the informativeness of a data point.  

The most popular active learning sampling strategy for 
object detection is to use uncertainty indicators as measures of 
informativeness. The key to uncertainty-based sampling is to 
first calculate a degree of uncertainty of classification labels 
using, for example, entropy measure, and then sample the 
instance with the highest uncertainty. For example, uncertainty-
based sampling strategies have been used for object detection 
tasks with shallow machine learning models [15,16,17]. Other 
works have applied uncertainty-based sampling to deep neural 
network architectures [18,19]. The works mentioned above, 
though achieve good results in many scenarios, sample instances 
solely based on the classification labels of one or two of the most 
uncertain detections. More information can be captured by 
aggregating the scores from each detection to calculate the total 
uncertainty of one image [20]. However, the method on deep 
CNN architectures still suffers from two drawbacks: First, the 
method does not account for the representation of the entire 
dataset [21]. Second, it has been shown that deep CNN models 
can fit even random noise labeling with high confidence, thereby 
reducing the effectiveness of uncertainty calculations [22]. In 
addition to uncertainty-based sampling, details of other 

sampling strategies in active learning, such as Query-By-
Committee, can be found in [9].  

The methods mentioned above mostly evaluate their trained 
model on every unlabeled instance, then calculate their measure 
of informativeness based on the outputted classification scores. 
This is impractical in the annotation scenario, because having a 
deep CNN model to evaluate every unlabeled image would be 
costly in both time and computational resources with many 
unlabeled images. Furthermore, with the most labor-intensive 
part of annotation being the accurate placement of bounding 
boxes, a sampling criterion computed with classification scores 
would not seem to be a natural and practical approach, and do 
not generalize to single-class object detection datasets.  

Besides the above-mentioned active learning methods that 
solely use classification scores to determine informativeness, it 
has been proposed to use an intermediate CNN layer as a 
descriptor function to represent all images in the dataset [23]. 
The unlabeled image whose representation has the highest 
average Euclidean distance to all labeled image representations 
is sampled. This method, although theoretically feasible for 
CNN architectures and single-class datasets, is computationally 
inefficient, since every sampling instance requires a new round 
of training and evaluation with the CNN model. Our sampling 
method considers not only the average Euclidean distances of 
unlabeled images, but also some contextual criteria. The 
contextual sampling strategy is more computationally efficient 
as it does not require running machine learning models against 
every image.  Furthermore, our method does not rely on the 
prediction of classification scores to sample the unlabeled 
images. 

B. Self-Training 

Many works have used a trained model to complete parts of 
the annotation process. A model trained with a limited number 
of labeled images is used to predict labels for a set of either 
unlabeled or weakly labeled images [24,25].  

Some works, in addition to self-training, have involved 
humans in the process of correcting predicted labels. A Polygon-
RNN tool has been introduced to allow the users to correct the 
polygon segmentation masks being generated by a deep CNN 
model [26,27]. Hand correction of masks can also be 
incorporated, and the model is iteratively retrained with 
corrected labels for medical image analysis [28].  

The drawbacks of self-training works mentioned above are 
that they either do not cover the full end-to-end workflow or 
focus only on specific datasets. Our work leverages the level of 
human-machine interaction in existing self-training works by 
feeding the corrected data back to the model to continuously 
improve its accuracy throughout the annotation process.   

III. OBJECT DETECTION 

Object detection is the task of generating a bounding box 
around the object of interest [29]. Different object detectors have 
been reported using machine learning methods [30,31,32]. 
Nowadays, CNNs (e.g. AlexNet [33], SqueezeNet [34]) trained 
using deep learning technologies are the predominant approach. 
There are two main types of CNN architectures for object 
detectors: one-stage and two-stage.  
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In this work, we have experimented both a one-stage and a 
two-stage detector, each with a different dataset, in order to 
demonstrate that the annotation tool is able to generalize across 
domains. We implement the one-stage YOLOv3 [11] 
architecture on a vehicle detection dataset [35], and the two-
stage Mask R-CNN architecture on a manufacturing casting 
defect dataset named GDXray [36]. These two cases were 
chosen due to the high model scoring accuracies achieved in [35] 
and [37], as well as the fact that the two datasets have very 
different types of images. Vehicles on an image are much larger 
in size than defects on metal castings. Therefore a one-stage 
detector’s grid-based prediction approach can achieve a high 
accuracy for the vehicle detection problem while dispensing less 
computational times compared to two-stage detectors. 
Manufacturing defects, however, are much smaller and can be 
easily mistaken as noise. Therefore a region proposal stage will 
increase the detection accuracy. Figs. 1 and 2 illustrate the 
images of each dataset.  

A. One-stage Object Detectors 

CNN architectures, such as RetinaNet [38], SSD [39] and 
YOLO [40], are one-stage object detectors whose single task is 
to directly predict confidence scores for classifying and 
constructing bounding boxes that surround the objects of 
interest. One-stage detectors have been shown to train faster than 
two-stage detectors [11,39].  

A popular one-stage object detector is YOLOv3, which is 
one of the two refined models of YOLO, the first one-stage deep 
learning object detector published in 2015 [11,40,41]. YOLOv3 
has been demonstrated to give a good balance of speed and 
accuracy in [35] and is adopted as an illustrative implementation 
of the assistive learning workflow for the vehicle detection 
dataset.  

B. Two-stage Object Detectors  

Other CNN architectures such as R-CNN [42], Fast R-CNN 
[43] and Mask R-CNN [12] are two-stage detectors, which 
consist of an intermediate stage that generates region proposals. 
Two-stage detectors are able to perform with very high 
accuracies even for images with fine details but require more 
computing resources to train [11].  

Although training speed differs for different CNN 
architectures, in general, training good object detectors require a 
massive amount of training images with ground truth labels.   

IV. ASSISTIVE LEARNING 

We propose an end-to-end assistive learning workflow. This 
section is organized into two subsections. In the first subsection, 
we introduce the underlying framework of assistive learning, 
and we describe the role of the human annotator and the machine 
annotator in detail. In the second subsection, we describe the 
functionalities of an interactive UI, which allow any annotator 
to engage in the workflow.  

A. End-to-end Workflow 

We introduce a framework that involves the collaboration 
between a human annotator and a machine annotator, which 
assists and learns from the human. Given an unlabeled dataset, 
the framework consists of the feedback loop shown in Fig. 3. 

The human annotator observes and annotates images 
suggested by the machine annotator. If the machine annotator 
has already annotated the image, the human annotator reviews 
the machine-generated labels and correct them if necessary. We 
consider human-generated labels as ground truth labels. The 
machine annotator consists of two modules: the object detection 
module and the contextual sampling module. The two modules 
work together to suggest and label a subsequent image, which is 
then sent to the human annotator for review.  

1. The object detection module is a CNN model that is able to 
train on the ground truth labels that the human annotator has 
provided. It can therefore learn from more and more training 

 
Fig. 1. Examples of labeled vehicle detection images. Vehicles are generally 

large and easily distinguishable visually.   

 

 
Fig. 2. Examples of labeled GDXray Casting images. Defects are small and 

very similar to surrounding design features.  
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samples as we iterate through the loop as shown in Fig. 3. 
The object detection module annotates the sampled image 
outputted from the contextual sampling module and suggests 
the annotation to the human annotator.   

2. The contextual sampling module ensures that the next 
unlabeled image sent to the human annotator satisfies the 
contextual criteria. The contextual criteria consist of two 
parts: uniqueness and average Euclidean distance. The 
criteria are applied on the raw images.  

In industry applications, datasets often contain images 
captured from the same source or specimen. These images are 
therefore very similar. An example is the GDXray dataset [36], 
where several images are captured using the same metal casting. 
In contextual sampling, we avoid repeatedly sampling from the 
same specimen by examining an image’s uniqueness. 
Uniqueness is defined as follows: Let’s define a set of all images 
in a dataset, 𝒳, consisting of labeled images ℳ and unlabeled 
images 𝒩, i.e. 𝒳 = ℳ⋃𝒩. Suppose there are  K (𝐾 ≥ 1) pre-
defined specimens in the dataset 𝒳, the dataset 𝒳 can also be 
expressed as 𝒳 =  ⋃ 𝑋𝑖

𝐾
i=1 , where 𝑋𝑖 is the set of all images in 

specimen i. An unlabeled image 𝑥 in specimen k (i.e. 𝑥 ∈ 𝒩 ∩
𝑋𝑘, where 1 ≤ 𝑘 ≤ 𝐾) is considered unique if specimen k has 
the fewest number of images in the set of labeled images ℳ. In 
other words, if an unlabeled image 𝑥  in specimen k ( 𝑥 ∈
𝑁 ∩ 𝑋𝑘) is considered unique, then the number of images in 
𝑋𝑘 ∩ ℳ  is fewer than or equal to that in all other 
𝑋1, … , 𝑋𝑖 , … , 𝑋𝐾 ∩ ℳ, for 𝑖 ≠ 𝑘. 

The other contextual sampling criterion considers the 
average Euclidean distance of an image. An image 𝑥 ∈ 𝒩  is 
sampled if of all the images that satisfy the uniqueness criterion, 
x has the highest average Euclidean distance to all images in the 
labeled set ℳ . We denote the average Euclidean distance 
between an image x and all images in ℳ as 𝑑𝑥 = 𝑑(𝑥, ℳ). 

Following the definition of the two contextual criteria, we 
now present the procedure of contextual sampling. We calculate 
the number of images in 𝑋𝑖 ∩ ℳ for all  𝑋𝑖 ∈ {𝑋1, … , 𝑋𝐾} and 
select specimen k that has the fewest number of images among 
𝑋𝑖 ∩ ℳ. For each unlabeled image 𝑥 ∈ 𝒩 ∩ 𝑋𝑘 , we compute 
𝑑𝑥 = 𝑑(𝑥, ℳ), the average Euclidean distance between x and 
all images in ℳ and select the sampled image (denoted by 𝑥̂ ) 
with maximum 𝑑𝑥 among all unlabeled images x in specimen k. 
The pseudocode of this procedure is presented as shown in 

Algorithm 1. Note that for images that do not have pre-defined 
specimens (for example, the vehicle detection dataset), we set 
the number of specimens 𝐾 = 1 . Since there is only one 
specimen, the average Euclidean distance is the only contextual 
criterion.  

B. Functionality of User Interface 

A user interface (UI) is necessary for the level of human-
machine interaction needed in our workflow. To that end, we 
develop an interface for the workflow and implement features to 
visualize, create, edit and remove annotations, to sample images, 
and to train the object detector. 

1) Visualization and Annotation 

Fig. 4 illustrates an example of using the interface to 
visualize bounding boxes generated by the machine annotator. 
Since the workflow is flexible to the object detector deployed, it 
can output any box predicted by the object detectors.  

Using the library Fabric.js [44], the UI is able to render 
images and boxes. Furthermore, it is intuitive for a user to 
rescale bounding boxes with anchor points on the four edges and 
corners. Deletion of a box is done simply with the click of a key. 
An additional box can be drawn by pressing down the mouse on 
the location of one corner and releasing the mouse at the box’s 
diagonal corner. An example of a human-reviewed annotation is 
illustrated in Fig. 5.   

In addition to the intuitive annotating features, a 
visualization feature of the UI is to allow the annotator to detect 
with different models. In Fig. 4, we demonstrate that prediction 
can be done with YOLOv3 and Mask R-CNN on the same 
image. This is a convenient feature for debugging when 
switching models, or for the annotator to compare their 
accuracies. 

2) Training  
After the human annotator has reviewed and labeled a batch 

of images, the training function can take the batch of ground 
truth data and use it to train the object detector. Training will 
occur whenever the human annotator decides to do so. Since the 

 
Fig. 3. Assistive learning feedback loop.  

 

ALGORITHM 1: DETAILED IMPLEMENTATION OF CONTEXTUAL SAMPLING TO 

SAMPLE THE NEXT IMAGE FROM UNLABELED IMAGES. 
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model can be trained in the background, the human annotator 
has the option to do manual annotations while the model trains 
itself. We specifically allow this parallel process because 
annotators are usually paid, for example, on an hourly basis, so 
any unnecessary waiting would be uneconomical.  

The training function must be called by the human annotator 
by pressing the “Train” button. It will not automatically 
commence whenever an image has been annotated. This is a 
designed feature, since usually, training after every image is 
undesirable. Although training time differs for each model, the 
improved accuracy of adding only one image to the training set 
does not usually compensate for the cost in training time.  

C. Implementation Details 

The annotation interface developed is an application on the 
web browser built using the model-view-controller architecture 
[45].  As shown in Fig. 6, the frontend development of the tool 
is implemented with Javascript and HTML. The Javascript 
HTML5 canvas library Fabric.js [44] is used to render the 
images and bounding boxes on an HTML canvas, as well as to 
draw, edit or remove bounding boxes. In backend development, 
the tool uses Python 3.7 for contextual sampling, model training 
and detection. The CNN implementation is based on the 
PyTorch framework [46]. A controller module is written to 
connect the frontend to the backend features.  

V. EXPERIMENTAL RESULTS 

This section discusses the two case studies to estimate the 
amount of manual annotation time reduced by assistive learning, 
and to show that our sampling method is able to reduce the 
amount of data required for a CNN model to achieve a certain 
level of accuracy.  

A. Vehicle Detection with YOLOv3 

The YOLOv3 model is trained and evaluated using a total of 
3500 vehicle images from [35]. The training set consists of 2600 
images, including a combination of daytime camera photos on a 
highway and online vehicle images. The training set has 4391 
vehicle instances (2947 trucks, 344 pick-up trucks, and 1100 
cars). The testing set has 900 daytime camera images captured 
on the highway, and consists of 1226 vehicles (566 trucks, 178 
pick-up trucks, and 482 cars). Camera images under various 
weather and lighting conditions as well as online images are 
included to ensure that the machine annotator (when both 
detecting and sampling) can generalize, and that future camera 
images captured under various conditions can receive an 
accurate predicted label. We also augment the images by 
flipping them vertically and horizontally. A weight pre-trained 
on ImageNet data is used to initialize parameters of the model 
[29].  

1) Annotation Time 

To estimate the time taken to annotate, we use the results 
presented in [5], which states that the average time it takes a 
person to draw a bounding box is 88.0 seconds [5]. We make the 
assumption that editing or removing an incorrect bounding box 
takes half the time, or 44.0 seconds. This is in fact, quite a 
conservative estimation, since deleting a bounding box takes 
only a couple of seconds, and the adjustment of an existing box 
is easy when there is already a suggestion. Using the common 
standards in the object detection field, an intersection-over-

 
Fig. 4. A screenshot of the annotating UI. Image labeled is from the GDXray 

Castings dataset. Red bounding boxes are from YOLOv3 object detector. Blue 

bounding boxes are from Mask R-CNN object detector.   

 

 
Fig. 5. An example of editing bounding boxes using anchors. With the same 

image in Fig. 4, the human annotator can manually edit the red bounding boxes 

to fit them tighter to the defects. The blue bounding boxes recommended by 

the object detector are kept in place as reference. 

 

 

 
Fig. 6. Model-view-controller design of annotation interface.   
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union (IOU) of 0.5 or above is considered a correct prediction 
[47]. We therefore assume that a bounding box will need to be 
either edited or removed when IOU is under 0.5. Note that we 
do not count the training time into the calculation of manual 
annotation time. This is because during training, the human 
annotator is not required to do any work. Using our system, the 
human annotator is free to either take a break or annotate while 
the model trains in the background.  

To simulate annotating the vehicle detection dataset with 
YOLOv3, we split the 2600 images in the training set  into 10 
smaller datasets as shown in Table I, with dataset sizes ranging 
from the smallest to the largest. The order of images is obtained 
using the contextual sampling method described earlier in 
Section IV. Since the vehicle detection dataset does not contain 
specimens, we use average Euclidean distance as the only 
contextual criterion. The first dataset is considered fully 
annotated by a human annotator. For the first dataset, we train it 
for 5 epochs with weights frozen for intermediate layers of the 
CNN, and another 35 epochs without holding weights fixed. We 
test the newly trained model on the second dataset, and compare 
the evaluation result to ground truth labels to compute the 
amount of human annotation time needed to correct inaccurate 
labels. The second dataset, after the simulated correction 
process, is now considered fully annotated. The model then 
trains on all fully annotated images, which now consist of the 
first and the second dataset, for 35 epochs. The process is 
repeated for all remaining datasets: For each dataset after the 
first, we evaluate it with the model trained with previously added 
fully annotated images. We then add the evaluated images to the 
fully annotated images, simulating the hand-correction of a 
human annotator, then train for 35 epochs.  

Since the goal of this study is to demonstrate the 
effectiveness of the techniques proposed, no hyperparameter 
optimization is conducted. The training schedule is also not 
aiming to fully minimize training loss. As shown in Table I, 
when trained on the same training set and tested on the testing 

set as [35], the model achieves an mean average precision 
(mAP) of 0.831, which is 88.7% of the mAP of 0.937 in [35]. 
Our accuracy is sufficiently high for the purpose of this study, 
but to achieve accuracies as high as [35], one will need to tune 
all hyperparameters and train for more epochs.  

Table I shows that when annotating the entire vehicle 
detection dataset, assistive learning significantly reduces manual 
annotation time compared to a human annotator working alone. 
As more labeled images are added to the training set, the 
machine annotator saves a higher percentage of time for the 
human annotator, due to improved performance of the machine 
annotator with more training. 

2) Sampling Methods 

By experimenting with YOLOv3 on the vehicle detection 
dataset, we compare the contextual sampling method (average 
Euclidean distance as the only contextual criterion) proposed in 
Section IV with random sampling. To conduct the experiment, 
we train a YOLOv3 model on various numbers of images, then 
compare the results with those obtained from random sampling. 
Pre-trained ImageNet weights are used for training. Each time 
the model is trained on 5 epochs with weights of intermediate 
layers fixed, then 35 epochs not fixed. Five identical, 
independent experiments are run.  

Fig. 7 shows that the contextual sampling method improves 
the performance of the object detector when there are little 
labeled data. With 50 labeled images, the mean mAP from 5 
independent runs is 0.32 for random sampling and 0.40 for 
contextual sampling. Contextual sampling improves the mean 
mAP by 25.0%. With 100 labeled images, contextual sampling 
improves the mean mAP by 23.3%, from 0.43 with random 
sampling to 0.53 with contextual sampling. This is because with 
contextual sampling, the labeled data show less similarity. The 
object detector can therefore generalize and fit faster. As the 
number of labeled images grows larger, however, the 
performance of the model given the two sampling methods 
converge.  

B. Castings Defect Detection with Mask R-CNN 

 The Mask R-CNN model is trained and evaluated using 
images from the GDXray Castings dataset [36]. The Casting 
Series dataset contains 2727 images. Many of the images in the 

 
Fig. 7. Relationship between mean average precision (mAP) and number of 

training images, sampled randomly and contextually on the vehicle detection 
dataset. mAP are obtained by testing on the same test dataset. The shaded areas 

show the standard deviations from 5 independent runs. 

 

TABLE II. TOTAL ANNOTATION TIME TO LABEL ALL IMAGES USING MASK 

R-CNN WITH GDXRAY CASTINGS DATASET. RESULTS COMPARED WITH AND 

WITHOUT THE USE OF MACHINE ANNOTATOR. 

# of 

images 

trained 

# of 

images 

annotate

d with 

machine 

annotator 

Time 

with 

human 

annotator 

alone 

(hours) 

Time 

with 

assistive 

learning 

(hours) 

% Time 

reduced 
mAP 

30 5 0.22 0.09 61.1% 0.483 

35 10 0.46 0.28 39.5% 0.150 

45 25 2.47 0.31 87.6% 0.616 

70 30 2.98 0.55 81.6% 0.750 

100 100 8.75 1.14 87.0% 0.656 

200 200 16.57 3.24 80.5% 0.793 

400 285 23.44 4.11 82.5% 0.768 

685 171 12.27 1.64 86.7% 0.872 

Total 

hours 
- 67.17 11.34 83.1%  

 

TABLE I. TOTAL ANNOTATION TIME TO LABEL ALL IMAGES USING 

YOLOV3 WITH VEHICLE DETECTION DATASET. RESULTS COMPARED WITH 

AND WITHOUT THE USE OF MACHINE ANNOTATOR. 

# of 

images 

trained 

# of 

images 

annotate

d with 

machine 

annotator 

Time 

with 

human 

annotator 

alone 

(hours) 

Time 

with 

assistive 

learning 

(hours) 

% Time 

reduced 
mAP 

30 5 0.54 0.48 11.4% 0.042 

35 10 0.37 0.32 13.3% 0.197 

45 25 1.10 0.88 20.0% 0.097 

70 30 1.54 0.83 46.0% 0.343 

100 100 6.43 2.86 55.5% 0.227 

200 200 9.34 2.59 72.3% 0.535 

400 400 15.11 3.37 77.7% 0.674 

800 800 29.02 5.15 82.3% 0.691 

1600 1000 37.74 6.28 83.4% 0.767 

2600 900 32.24 4.68 85.5% 0.831 

Total 

hours 
- 133.42 27.44 79.4%  

 



7 

 

 

dataset were unlabeled or had ambiguous labels, so we chose to 
train on the 685 training images specified in [37,48]. Testing 
was conducted on the 171 images specified in [37,48]. This 
dataset contains a single casting defects class, but the labeled X-
ray images come from 33 specimens. Images coming from the 
same specimen are very similar. The model parameters are 
initialized with weights pre-trained on COCO data [49].  

1) Annotation Time 

Similar to the vehicle detection problem, to simulate 
annotating the GDXray Castings dataset with Mask R-CNN, we 
split the 685 images in the training set into 8 smaller datasets, 
with dataset sizes ranging from the smallest to the largest. 
Contextual sampling is applied (with average Euclidean distance 
and specimen uniqueness as the contextual criteria). Due to high 
computing time of Mask R-CNN, we only train 5 epochs for 
each dataset. The first dataset includes an additional epoch for 
fixing the weights on all except the output layer. We evaluate 
every dataset after the first dataset with the model trained with 
previously evaluated datasets.   

Table II shows the reduction of manual annotation time 
using a Mask R-CNN object detector to assist the annotation of 
GDXray Castings images. In this experiment, the models are 
trained on 1 epoch with fixed weights on intermediate layers 
followed by 5 epochs without holding weights fixed,  the  mAP 
of 0.872 for constructing the bounding boxes surrounding the 
defects is obtained using the same 685 training images and 171 
testing images as discussed in [37,48]. The result is also 
compatible with the CNN model training under similar setting 
[37].  Although it is not conducted in this study because of 
extensive computational time and hyperparameter tuning 
required, as reported in [37], an mAP of 0.957 could be obtained 
when trained with 80 epochs of fixed weights on intermediate 
layers and another 80 epochs without holding weights fixed. 
That is, the trained model in this experiment achieves 91.1% of 
the best mAP as reported in [37].   This result is reasonable, 
considering that the model parameters are not optimally updated 
at each incremental training step. In short, the results show the 
workflow has the capability to greatly reduce manual annotation 
time. 

2) Sampling Methods 

Since the GDXray Castings dataset consists of specimens 
that consist of similar images, the contextual sampling method 
considers uniqueness and average Euclidean distance when 
sampling. Similar to the sampling experiments conducted in 
Section A, with GDXray dataset and Mask R-CNN object 
detector, similar results are obtained as shown in Fig. 8. When 
the dataset size is small, contextual sampling slightly 
outperforms random sampling by 9.4% mAP when trained on 
30 images and 5.0% mAP when trained on 50 images.  

Even though the contextual sampling method improves 
performance with limited labeled images, the human annotator 
should still take into consideration the labor-accuracy tradeoff. 
More upfront labor investment leads to better predicted labels. 
However, with the assistive learning workflow, the tradeoff can 
be converted to a training time-labor tradeoff. The human 
annotator can choose to train more frequently to increase 
accuracy of predicted labels, thereby reducing data-labeling 
efforts.   

VI. DISCUSSION 

In this section, we evaluate our workflow based on the 
experimental results presented in the previous section. Besides 
having shown that the workflow efficiently reduces the 
workload of human annotators, this section discusses additional 
benefits and the costs to consider when using assistive learning. 

A. Generalization on Datasets 

By experimenting our tool with two datasets, we were able 
to show that the workflow can be applied to problems from 
different domains due to the flexibility of the object detector and 
sampling strategy. In this subsection, we outline why the two 
datasets differ a lot in object detection, in order to illustrate the 
importance of cross-domain capability.  

The two datasets studied are both commonly observed  
industrial problems in engineering yet differ mainly in the 
following ways:  

• Size of objects Vehicles usually take up a larger portion of 
an image compared to casting defects. YOLO is not ideal for 
small objects since it limits the number of nearby detections 
[50]. Two-stage architectures that use regional proposal are 

 
Fig 8. Relationship between mean average precision (mAP) and number of 
training images, sampled randomly and contextually on the GDXrays castings 

dataset. mAP are obtained by testing on the same test dataset. The shaded areas 

show the standard deviations from 5 independent runs. 

 

TABLE II. TOTAL ANNOTATION TIME TO LABEL ALL IMAGES USING MASK 

R-CNN WITH GDXRAY CASTINGS DATASET. RESULTS COMPARED WITH AND 

WITHOUT THE USE OF MACHINE ANNOTATOR. 

# of 

images 

trained 

# of 

images 

annotate

d with 

machine 

annotator 

Time 

with 

human 

annotator 

alone 

(hours) 

Time 

with 

assistive 

learning 

(hours) 

% Time 

reduced 
mAP 

30 5 0.22 0.09 61.1% 0.483 

35 10 0.46 0.28 39.5% 0.150 

45 25 2.47 0.31 87.6% 0.616 

70 30 2.98 0.55 81.6% 0.750 

100 100 8.75 1.14 87.0% 0.656 

200 200 16.57 3.24 80.5% 0.793 

400 285 23.44 4.11 82.5% 0.768 

685 171 12.27 1.64 86.7% 0.872 

Total 

hours 
- 67.17 11.34 83.1%  
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shown to be better at locating small objects [40]. 
Alternatively, one-stage architectures can be finetuned to 
target small objects [51].  

• Noisiness of background Vehicles, which have distinct 
colors and shape, are normally quite distinguishable from 
their backgrounds. On the other hand, casting defects often 
look very similar to design features like holes and edges [37]. 
CNN architectures with high quality feature maps would be 
better at distinguishing such defects.  

• Classes and specimens The vehicle detection dataset has 
three classes of vehicles, whereas the GDXray Castings 
dataset has a single class but contains similar images from 
the same specimens. It is therefore important to have a 
contextual sampling method that is applicable to either 
scenarios.   

In summary, it is important for the human annotator to take 
caution when choosing a suitable object detector (i.e. the CNN 
architecture) for annotation, as it greatly depends on the type of 
objects in the custom image dataset being built. Our workflow 
offers flexibility to customize CNN models and datasets, and 
introduces a computationally efficient contextual sampling 
method that is applicable to a variety of datasets.  

B. Costs for Consideration 

Although the tool is able to reduce the need of manual labor, 
there are additional costs to be considered. Firstly, the cost of 
training time can be quite significant with more complex CNN 
models. With these complex models, it might cost less time 
overall to annotate with human annotators. For example, with a 
one-stage object detector like YOLOv3, training time increases 
linearly with the number of training images. Although training 
the object detector more often will allow it to learn faster and 
reduce labeling efforts, one must evaluate whether the overall 
cost in time is more expensive than hand-annotation.  

The second factor is the monetary cost of computational 
resources. CNN model training nowadays is mostly done on 
GPUs, which are powerful in computation. For the tool to train 
effectively, it therefore must connect to either a cloud GPU or a 
physical GPU, which can be costly. To find the most economical 
way to annotate a dataset, it may worth to compare the cost of 
hiring human annotators versus the available (and, possibly, 
purchasing) computing resources.   

C. Future Work 

The assistive learning workflow presented in this work is 
able to reduce manual annotation time and can be applied to 
annotate and build datasets. However, the training process of the 
machine annotator can be computationally expensive. Future 
work could explore training time and its tradeoff between 
prediction accuracy. It would also be interesting to further 
evaluate the workflow on object detection with other datasets 
and to apply the approach to other applications, such as image 
segmentation, natural language processing and  multimodal deep 
learning.  

VII. CONCLUSION 

This paper has presented an assistive learning workflow to 
annotate bounding boxes on images for the task of object 
detection. By conducting two experiments, we are able to show 

that by connecting a human annotator and a machine annotator 
with a feedback loop, we can significantly reduce the amount of 
manual annotation time. We also propose a novel contextual 
sampling method, which improves the performance of YOLOv3 
and Mask R-CNN object detector when trained on a very limited 
number of labeled images. Together, we deploy the workflow in 
the backend of an intuitive user interface. The experimental 
results show that our workflow is able to generalize to datasets 
in different domains and is flexible to various object detection 
architectures. We also note that there exists a tradeoff between 
training time and hand-annotation workload.  

In summary, this work proposes an end-to-end workflow that 
uses assistive learning to annotate images for object detection. 
Our estimation of savings in hand-annotation efforts is 
conservative yet still exceptional. We hope that this workflow 
can be adopted to produce valuable labeled datasets across all 
domains, while minimizing manual labor.   
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