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ABSTRACT 
Predicting crowd flow patterns in a physical space can be useful for infrastructure management 
and safety planning. A simple representation of individuals in Euclidean space is insufficient for 
representing people’s spatial distribution and movements over time. This paper describes a 
spatiotemporal graph formulation, namely Crowd Mobility Graphs (CMGraphs), to represent the 
spatiotemporal data. The CMGraphs model employs dynamic node features that store temporal 
crowd flow information, while the time-invariant edges represent spatial connectivity of locations 
of interests in the surrounding space. The spatiotemporal formulation using the CMGraphs allows 
for crowd flow prediction. Specifically, graph neural network is used to aggregate neighborhood 
nodal information on CMGraphs to capture spatial connectivity. Subsequently, recurrent neural 
network is employed to generate future sequences of crowd flow. An experiment is conducted 
using a publicly available video dataset at a train station to demonstrate the effectiveness of the 
proposed CMGraph formulation for crowd flow forecasting. 
 
INTRODUCTION 
Understanding the distribution of people in a physical space is an important aspect of safe 
management and operation of a facility. For instance, uncontrolled crowding at egresses causes 
slow evacuation during disasters, and overly dense crowds can cause stampedes (Wang et al. 
2015). The ability to predict crowd flow and distribution in a dynamically changing environment 
can be useful for infrastructure management and safety planning.  

Predicting the movement of individuals in crowded scenes is a complex task as both spatial 
and temporal factors can influence their movement in a physical space. While many existing works 
model individuals as time series signals for movement prediction, for example using recurrent 
neural networks (Alahi et al. 2016; Mohamed et al. 2020), the spatial information of the 
surrounding space is rarely taken into account.  

 Representation of spatial connectivity and spatiotemporal crowd flow in Euclidean space 
is difficult. This study introduces Crowd Mobility graphs (CMGraphs) that is able to 
simultaneously represent spatial and temporal information. The spatial connectivities are modeled 
by the edges of the CMGraph and the temporal information are modeled with the dynamically 
changing nodal signals. CMGraphs can be exploited to facilitate the study of the crowd flow 
problem. Specifically, we propose a deep learning Dense-GCN-GRU model that uses graph 
convolutional network (GCN) and gated recurrent unit (GRU) to conduct crowd flow forecasting. 
By applying our CMGraph representation and Dense-GCN-GRU model to a publicly available 
surveillance video dataset at a train station, we demonstrate that the CMGraph formulation can be 
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used for the spatiotemporal crowd forecasting problem. Furthermore, we compare the Dense-
GCN-GRU model with two baseline methods to show the advantage of incorporating spatial 
connectivity and dense connection. 

The remainder of the paper is organized as follows: the Literature Review section describes 
related research to the topic of spatiotemporal modeling for forecasting applications. The Problem 
Formulation section then describes the forecasting problem and the formulation of CMGraphs. 
The Spatiotemporal Forecasting of Crowd Flow section outlines the Dense-GCN-GRU 
methodology for the prediction of crowd flow. The Case Study section presents experimental 
results using a train station dataset, as an illustration of the potential application of the suggested 
spatiotemporal modeling approach. Finally, the Conclusion section presents concluding remarks.  

 
LITERATURE REVIEW 
This section briefly reviews prior research concerning human forecasting applications and graph-
based spatiotemporal modeling approaches for various domains. Social LSTM (Alahi et al. 2016) 
uses a Long Short-Term Memory (LSTM) network to simulate pedestrian movements at several 
time steps and to capture dynamic interactions between pedestrians. Recently, researchers have 
begun incorporating spatial interactions into graph-based methods. By putting a kernel function 
on the weighted adjacency matrix, for instance, Social-STGCNN (Mohamed et al. 2020) captures 
inter-pedestrian interaction. However, spatial connectivity data of the physical space, such as the 
locations of doors, stairs, and tunnels, are not incorporated into these models.  

Research studies in spatiotemporal forecasting problems outside the context of human 
mobility have considered the connection of the physical space. Panagopoulos et al. (2021) 
completed COVID-19 pandemic forecasting by constructing a graph connecting Italy, England, 
Spain, and France based on country-to-country travel, and then deploying a message-passing graph 
neural network to predict the pandemic's spread. Highway and taxi vehicular traffic problems have 
been widely investigated by using graphs to represent existing road networks and employing GCN 
and recurrent neural network for the forecasting task (Bai et al. 2021; Zhao et al. 2019). Graph 
formulation for these two problems can be derived from existing transportation networksm, such 
as road connections. Pedestrian crowds, on the other hand, lack such physical and spatial 
relationships, making the modeling of pedestrian crowd data into a graph structure considerably 
more difficult. In this study, we propose integrating spatial connectivity information into temporal 
crowd flow signals by manually identifying egress locations from floor layouts in our case study.  

 
PROBLEM FORMULATION 
This section introduces the formulation of the crowd flow forecasting problem in terms of a 
sequence generation task and presents the modeling of crowd flow data as a sequence of Crowd 
Mobility Graphs (CMGraphs).  
 
Crowd Flow Forecasting. The prediction of crowd flow is modeled as a time series problem that 
involves forecasting future crowd flow information based on past observations. Given the crowd 
flow information during the observed discrete time horizon 1 to 𝑇!"#, the aim is to predict the 
crowd flow information from time 𝑇!"#$% to 𝑇&'() . To study crowd flow in a built environment, 
we divide the physical space into 𝑁 egress regions, such as entry and exit tunnels and doors. Using 
floor plans of a given public space, these egress regions can be manually identified by observing 
the locations of such egresses. Often, egresses are equipped with sensors or surveillance cameras 
that can be used to collect and derive crowd flow information, including volume, density, and 
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speed. Crowd flow information can then be used to construct a feature matrix at each observed 
time step, denoted as 𝑋 ∈ ℝ*×,, where 𝑁 is the number of egress regions and 𝐷 is the number of 
features. Thus, the crowd flow forecasting problem can be formulated as a sequence generation 
task that aims to learn a function 𝑓 that maps historical feature matrices *𝑋(1), 𝑋(2), … , 𝑋(𝑇!"#)0 
to future feature matrices 1𝑋(𝑇!"# + 1), 𝑋(𝑇!"# + 2),… , 𝑋*𝑇&'()03. 

CMGraph Formulation to Model Spatiotemporal Data. We represent crowd flow data recorded 
over a discrete time span 𝑡 = 1,… , 𝑇!"# as a set of undirected and unweighted dynamic graphs 
{𝐺(𝑡)  =  (𝑉(𝑡),  𝐸)} . The set of vertices or nodes, 𝑉(𝑡) = {𝑣%, … , 𝑣*} , corresponds to the 𝑁 
egress regions. The node feature matrix, 𝑋-*×,, stores the crowd flow data at time 𝑡, where 𝐷 is 
the number of node features. 𝐸 denotes the set of time-invariant edges, where an edge 𝑒./ ∈ {0,1} 
connecting node 𝑣.  and node  𝑣/ 	 is 1  if two egress regions are adjacent to each other and 0 
otherwise. Two egress regions are adjacent if pedestrians can walk from one region to another 
without entering a third egress region. The graph topology can also be represented as an adjacency 
matrix 𝐴 ∈ ℝ*×*, where entry 𝐴./ = 1 if there exists an edge between node 𝑣. and 𝑣/ (i.e., 𝑒./ =
1). Figure 1 shows an example of at the Grand Central Station in New York, where manually 
identified egress regions (using the train station’s floor plan (Suarez 2015)) are used to construct 
the topology of a CMGraph.  
 
SPATIOTEMPORAL FORECASTING OF CROWD FLOW 
Exploiting both spatial connectivity (with the adjacency matrix, 𝐴) and recorded temporal crowd 
flow signal (with the node feature matrix sequence 𝑋(1), 𝑋(2), … , 𝑋(𝑇!"#), we formulate the 
crowd flow forecasting problem as:  

1𝑋A(𝑇!"# + 1), 𝑋A(𝑇!"# + 2),… , 𝑋A*𝑇&'()03 = 𝑓 1*𝑋(1), 𝑋(2), … , 𝑋(𝑇!"#)0; 𝐴3	 (1) 
where 𝑓  is the function to be learned. *𝑋(1), 𝑋(2), … , 𝑋(𝑇!"#)0 is the input sequence (Figure 
2(a)), and 1𝑋A(𝑇!"# + 1), 𝑋A(𝑇!"# + 2),… , 𝑋A*𝑇&'()03  is the generated output sequence, 𝑋A(∙) 
denoting a predicted value (Figure 2(b)). 

To learn the function 𝑓, we present an approach that uses graph convolutional network 
(GCN) (Kipf and Welling 2017) with dense connection (Huang et al. 2019) and gated recurrent 
unit (GRU) (Cho et al. 2014). Dense-GCN serves as a spatial encoder that learns an embedding 
vector encoding spatial features resulting from the topology of the CMGraphs. The embedded 
graphs are used as the input to the GRU cells, which learn to encode temporal representations from 
the time series data. We sequentially stack these two encoders to obtain an embedding vector 
representing both spatial and temporal features. Lastly, a fully connected (FC) layer processes the 
resulting embedding to generate the output sequence of the crowd flow. The architecture of the 
model is shown in Figure 2. The following describe the GCN and GRU operations in more details. 
 
Dense-GCN as Spatial Encoder. Figure 2(c-1) shows the process of the spatial encoding with 
Dense-GCN. For a set of 𝑁 nodes in a CMGraph 𝐺(𝑡) = (𝑉(𝑡), 𝐸), a GCN layer updates the nodal 
information using a target node’s neighboring nodal information for all nodes. More formally, 
given a target node 𝑣., whose node embedding vector is 𝑥. (the 𝑖-0 row of the feature matrix 𝑋(𝑡)), 
and its set of neighboring nodes 𝐽, a GCN layer updates the target node embedding as follows: 

𝑥.
(2) =

𝑊(2)

|	𝐽	| I𝑥/
(24%)

/∈6

	 (2) 



  – 4 –   

where 𝑊(2)  and 𝑥.
(2)are a learnable parameter and the 𝑖-0  node’s updated embedding of the 

𝑘-0	layer, respectively. In the first layer, 𝑥.
(7) is the initial feature vector of node 𝑣. 	∀	𝑣. ∈ 𝑉(𝑡). 

The dimension of 𝑋′(0) is 𝑁 × 𝐷, where 𝑁 and 𝐷 are the number of nodes and the number of node 
features, respectively.  

Stacking 𝐾 GCN layers allow us to update node embeddings using information aggregated 
from nodes in the 𝐾-hop neighborhood. After 𝐾  GCN layers, we have learned the embedded 
graph, 𝐺8(𝑡), whose node embedding matrix is 𝑋′(𝑡), each row being the updated embedding 
vectors 𝑥.8	∀𝑖 ∈ 𝑉(𝑡). Each node embedding vector is of an embedding dimension 𝐻9:*, a tunable 
hyperparameter. The dimension of 𝑋8(𝑡) is therefore 𝑁 × 𝐻9:*.  

The concept of dense connections, first introduced in the convolutional neural network 
(CNN) model DenseNet (Huang et al. 2019), involves concatenates an output from earlier layers 
with an output from later layers. In light of the issue of over-smoothing in deep GCN as observed 
by Li et al. (2018), skip connections have been shown to be effective in reducing this effect in deep 
GCNs (Li et al. 2019). Thus, in this study, we have incorporated the concept of dense connections 
from CNNs into GCNs by concatenating the GCN-learned spatial embedding, 𝑋′(𝑡), with the 
original input, 𝑋(𝑡). The resulting output of this architecture, referred to as Dense-GCN, is denoted 
as 𝑋′′(𝑡) ∈ ℝ*×(;!"#$,).  
 
GRU as Temporal Encoder. GRU can be used to encode hidden state representations of time 
series inputs, as shown in Figure 2(c-2). Mathematically, each GRU operation in a layer 𝑙 can be 
expressed as follows:  

𝑟-
(<) = 𝜎1𝑊='

(<)𝑎-
(<) + 𝑏='

(<) +𝑊0'
(<)ℎ-4%

(<) + 𝑏0'
(<)3	 (3) 

𝑧-
(<) = 𝜎1𝑊=>

(<)𝑎-
(<) + 𝑏=>

(<) +𝑊0>
(<)ℎ-4%

(<) + 𝑏0>
(<)3	 (4) 

𝑛-
(<) = tanh ^𝑊=?

(<)𝑎-
(<) + 𝑏=?

(<) + 𝑟-
(<) ∗ 1𝑊0?

(<)ℎ-4%
(<) + 𝑏0?

(<)3`	 (5) 

ℎ-
(<) = 11 − 𝑧-

(<)3 ∗ 𝑛-
(<) + 𝑧-

(<) ∗ ℎ-4%
(<) 	 (6) 

 
Figure 1. Egress region division and CMGraph formulation of the Grand Central 

Station. Grand Central Station floorplan adopted from (Suarez 2015). An entry of the 
adjacency matrix, 𝑨𝒊𝒋, is 𝟏 if two egress regions are adjacent.  
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where 𝑊='
(<),𝑊0'

(<),𝑊=>
(<),𝑊0>

(<),𝑊=?
(<),𝑊0?

(<), 𝑏='
(<), 𝑏0'

(<), 𝑏=>
(<), 𝑏0>

(<), 𝑏=?
(<), 𝑏0?

(<)	are learnable parameters of 
the 𝑙-0 layer. 𝑎-

(<) is the input to the layer and is equal to the output from the Dense-GCN part, 
𝑋88(𝑡), at layer 𝑙 = 0. ℎ-

(<) is the hidden state of the 𝑙-0 layer at time 𝑡. ℎ-4%
(<)  is the hidden state of 

the layer at time 𝑡 − 1 or the initial hidden state at time 0. 𝜎 is the sigmoid function. 𝑟-
(<), 𝑧-

(<), 𝑛-
(<) 

are the reset, update, and new gates of the 𝑙-0  layer, respectively. ∗  denotes element-wise 
multiplication. The final output at time 𝑡 = 𝑇!"# after 𝐿 GRU layers is then ℎB$%&

(C) , a vector with 
length 𝐻9DE, a tunable hyperparameter.  
 
CASE STUDY  
To illustrate the use of CMGraph to represent spatiotemporal information and Dense-GCN-GRU 
for crowd flow forecasting, this section describes the experimental results of a case study with the 
New York Grand Central Station (GCS) dataset, collected by Zhou et al. (2011). The dataset 
consists of video frames collected with a camera mounted in the train station. Figure 1 shows one 
of the video frames. Point-wise individual trajectories were manually annotated by Yi et al. (2015). 
The dataset consists of 17,682 trajectories, with 6,000 video frames at a resolution of 1920×1088, 
annotated at 1.25 frames per second (FPS). Detailed description of the dataset can be found in the 
cited references. 
 
Evaluation Metrics. The mean squared error (MSE) between the node feature matrix of the 
predicted graph sequence and of the true sequence is used as an evaluation metric of prediction 
accuracy. The MSE loss measures the difference between the predicted node feature matrices 
𝑋A(𝑇!"# + 1),… , 𝑋A(𝑇&'()) and the true node feature matrices 𝑋(𝑇!"# + 1),… , 𝑋(𝑇&'()) . Denoting 
the 𝑖th element of a matrix 𝑋(𝑡) as 𝑥.- and 𝑋A(𝑡) as 𝑥g.-, the MSE is computed as 

MSE =
1
𝑁𝑇I I (𝑥.- − 𝑥g.-)F

B'()*

-G%

*

.G%

	 (7) 

The mean absolute error (MAE) is also reported, as MSE places more penalization on larger errors 
with the squared error term, making MSE more susceptible to outliers. MAE measures the average 
of magnitude difference between the prediction and the true node feature matrices:  

MAE =
1
𝑁𝑇I I |𝑥.- − 𝑥g.-|

B'()*

-G%

*

.G%

	 (8) 

 

 
Figure 2. Architecture of the proposed GCN-GRU model. For simplicity, only a single layer 

of Dense-GCN (𝑲 = 𝟏) and GRU (𝑳 = 𝟏) are drawn. 
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Implementation Details. The Dense-GCN-GRU model uses a 3-layer (𝐾 = 3) GCN to learn the 
spatial representations, and a 2-layer (𝐿 = 2) GRU to learn the temporal representations. The 
number of node features is 𝐷 = 2 and are (1) the aggregated crowd count, and (2) timestamp for 
each egress region. The embedding dimension of the GCN encoder is 𝐻9:* = 128 . The 
embedding dimension of the GRU part is 𝐻9DE = 64. We use 𝑇!"# = 20 and 𝑇&'() = 20 in the 
study and split the CMGraph sequences from the GCS dataset into train and test set following a 
70/30 ratio. The graph data is batched into minibatches of size 32 for training. The Adam optimizer 
with a learning rate of 0.001 is used to train the GCN-GRU model as well as each baseline model 
for at most 40 epochs. The loss function used is MSE loss, as detailed in Equation (7).  

All training and inference were conducted on the same computer, equipped with an Intel 
Core i7-7820X processor and a NVIDIA GeForce GTX 1080 Ti GPU. To ensure reproducibility, 
the code repository is publicly available online at https://github.com/vivian-wong/CMGraph-
Crowd-Forecasting.  
 
Baseline Methods. We compare the Dense-GCN-GRU model with two baseline models: GRU 
and GCN-GRU. The GRU model treats inputs as purely temporal signals and do not involve the 
graph’s adjacency matrix in its computation, thereby leaving out the spatial connectivity 
information given by the floor plan of the surrounding space. On the other hand, the GCN-GRU 
model omits the dense connection, and therefore directly uses the un-concatenated spatial 
embedding 𝑋′(𝑡) as the input to GRU (rather than the 𝑋88(𝑡) in the Dense-GCN-GRU model). All 
models are trained with the same hardware setup and hyperparameters as Dense-GCN-GRU.  
 
Results and Analysis. The experimental results obtained from the different models are presented 
in Table 1. As shown in the table, the Dense-GCN-GRU model outperforms the GRU model and 
suggests that considering spatial connectivity enhances the accuracy of crowd forecasting. 
Notably, we observe that the GCN-GRU model exhibits lower accuracy than both the GRU only 
model, which disregards spatial information, and the Dense-GCN-GRU. One potential explanation 
for this observation is that the GCN model oversmoothed target node signals, whereas the GRU 
model does not aggregate neighboring node signals. On the other hand, the Dense-GCN-GRU 
model preserves the original target node signal through the use of dense connections.  

To illustrate the observed results, a sequence of predicted crowd flow is plotted in Figure 
3. A notable disparity in forecasting results is seen in the densely populated regions, particularly 
regions 6, 7 and 9, where the Dense-GCN-GRU better captures the trend of the crowd volume.  
 
Discussion. The case study serves as demonstrative analysis for the plausibility of deploying the 
suggested CMGraph data structure and Dense-GCN-GRU model for predictions of temporal 
crowd flow, informed by spatial information. In this section, an example of Dense-GCN-GRU 
predicting temporal crowd flow patterns and qualitative observations is discussed.  

Figure 3 demonstrates that the model predicts crowd pattern, as evidenced by the decrease 
in crowd flow in region 9 and the corresponding increase in regions 7 and 8. In Figure 4, we 
provide visual evidence from the GCS dataset of an influx of crowd from region 9 dispersing 
towards regions 7 and 8, in line with the model predictions. In practical applications, predicting 
where an influx of crowds move to will give facility operators additional time to plan for the 
dispatchment of additional service support, such as direction guides and signage, and potentially 
help reduce future congestion. Additionally, the forecasting models developed in this paper could 
be employed to test and evaluate different space management strategies, such as the placement of 
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barriers, that could be potentially simulated by modifying the connectivity of the CMGraphs.  
 
CONCLUSION 
In this study, a method to model temporal human crowd flow information with spatial connectivity 
information (derived from egress locations shown on floor plans) is proposed. A case study on  
real-world data of the Grand Central Station is performed, where the data of human crowds is 
modeled into a CMGraph, such that forecasting can be performed with a proposed Dense-GCN-
GRU neural network model. The case study results demonstrate that the CMGraph formulation 
can capture valuable spatiotemporal information, which can be exploited by the forecasting model 
to predict trends of future crowd flow. Future endeavors will develop an end-to-end framework to 
automatically extract crowd information from raw videos in crowded scenes, for example, using 
object detector networks.  
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Figure 3. A sample sequence of the ground truth and predicted crowd flow at each of the 9 

egress regions at the GCS. The Y-axis is the crowd volume, normalized to [-1, 1]. 
 

 

 
Figure 4. Frames from the GCS model during the sequence shown in Figure 3, where crowd 

flows from Egress Region 9 to Egress Region 7 and 8.  
 

 



  – 8 –   

The research is supported by the Stanford Center at the Incheon Global Campus (SCIGC), which 
is sponsored in part under the National Program to Subsidize Attracting Foreign Educational 
Institution and Research Institutes published by the Ministry of Trade, Industry, and Energy of the 
Republic of Korea and managed by the Incheon Free Economic Zone Authority.  
 
REFERENCES 
Alahi, A., K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. 2016. “Social 

LSTM: Human Trajectory Prediction in Crowded Spaces.” Proc., 2016 IEEE Conference 
on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 961-971. 

Bai, J., J. Zhu, Y. Song, L. Zhao, Z. Hou, R. Du, and H. Li. 2021. “A3T-GCN: Attention Temporal 
Graph Convolutional Network for Traffic Forecasting.” ISPRS Int. J. Geo-Inf. 10, 485. 

Cho, K., B. van Merriënboer, D. Bahdanau, and Y. Bengio. 2014. “On the Properties of Neural 
Machine Translation: Encoder–Decoder Approaches.” Proc., SSST-8, Eighth Workshop on 
Syntax, Semantics and Structure in Statistical Translation, Association for Computational 
Linguistics, Doha, Qatar, 103–111. 

Huang, G., Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger. 2019. “Convolutional 
Networks with Dense Connectivity.” IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 44 (12): 8704-8716.  

Kipf, T., and M. Welling. 2017. “Semi-Supervised Classification with Graph Convolutional 
Networks.” 5th International Conference on Learning Representations, Toulon, France.  

Li, G., M. Müller, G. Qian, I. C. D. Perez, A. Abualshour, A. K. Thabet, and B. Ghanem. 2019. 
“DeepGCNs: Making GCNs Go as Deep as CNNs.” Proc., 2019 IEEE/CVF International 
Conference on Computer Vision, IEEE Computer Society, 9266-9275. 

Li, Q., Z. Han, and X.-M. Wu. 2018. “Deeper Insights into Graph Convolutional Networks for 
Semi-Supervised Learning.” Proc., 32nd AAAI Conference on Artificial Intelligence, 
Association for the Advancement of Artificial Intelligence, 3538-3545.  

Mohamed, A., K. Qian, M. Elhoseiny, M. Elhoseiny, and C. G. Claudel. 2020. “Social-STGCNN: 
A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory 
Prediction.” Proc., 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, IEEE Computer Society, 14412-14420.  

Panagopoulos, G., G. Nikolentzos, and M. Vazirgiannis. 2021. “Transfer Graph Neural Networks 
for Pandemic Forecasting.” Proc., 35th AAAI Conference on Artificial Intelligence, 
Association for the Advancement of Artificial Intelligence, 35 (6): 4838–4845.  

Suarez, S. 2015. “Grand Central Terminal’s Original Lighting: Its Significance, Its Relationship 
With the Current Scheme, and Recommendations for Alternate Considerations.” M.S. 
Thesis, Columbia University, New York, NY, USA. 

Wang, J., Y. N. Ding, and D. D. Liu. 2015. “The research on early warning of preventing the 
stampede on crowded places and evacuated technology.” Proc.,2015 International Forum 
on Energy, Environment Science and Materials, Atlantis Press, 1544–1551.  

Yi, S., H. Li, and X. Wang. 2015. “Understanding pedestrian behaviors from stationary crowd 
groups.” Proc., IEEE Conference on Computer Vision and Pattern Recognition, 488-3496. 

Zhao, L., Y. Song, C. Zhang, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, M. Deng, M. Deng, 
and H. Li. 2019. “T-GCN: A Temporal Graph Convolutional Network for Traffic 
Prediction.” IEEE Transactions on Intelligent Transportation Systems. 21(9):3848-58.  

Zhou, B., X. Wang, and X. Tang. 2011. “Random Field Topic Model for Semantic Region 
Analysis in Crowded Scenes from Tracklets.” Proc., 2011 IEEE Conference on Computer 
Vision and Pattern Recognition, IEEE, 3441–3448. 


