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Abstract 5 

Studies of past emergency events have revealed that occupants’ behaviors, egress signage system, local 6 

geometry, and environmental constraints affect crowd movement and govern the building evacuation. In 7 

addition to complying with code and standards, building designers need to consider the occupants’ social 8 

characteristics and the unique layout of the buildings to design occupant-centric egress systems. This paper 9 

describes an agent-based egress simulation tool, SAFEgress, which incorporates important human and 10 

social behaviors observed by researchers in safety and disaster management. Agents in SAFEgress are 11 

capable of perceiving building emergency features in the virtual environment and deciding their behaviors 12 

and navigation. In particular, we describe four agent behavioral models, namely, following familiar exits, 13 

following cues from building features, navigating with social groups, and following crowds. We use 14 

SAFEgress to study how agents (mimicking building occupants) react to different signage arrangements in 15 

a modeled environment. We explore agents’ reactions to cues as an emergent phenomenon, shaped by the 16 

interactions among groups and crowds. Simulation results from the prototype reveal that different designs 17 

of building emergency features and levels of group interactions can trigger different crowd flow patterns 18 

and affect overall egress performance. By considering the occupants’ perception about the emergency 19 

features using the SAFEgress prototype, engineers, designers, and facility managers can study the human 20 
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factors that may influence an egress situation and, thereby, improve the design of safe egress systems and 21 

procedures. 22 

Keywords: crowd simulation, egress simulation, building egress, social agents, social behavior, collective 23 

behavior, simulated perception 24 

 25 

1. Introduction 26 

We designed a computer model (Social Agent for Egress or SAFEgress) for studying how agents react 27 

to cues in emergency situations. Instead of treating agents as isolated atoms reacting to emergency 28 

scenarios, we embedded them into social groups, each defined by a unique social structure and group norm. 29 

The agents make decisions considering group members and neighbors, in addition to individual preferences. 30 

Moreover, each agent is equipped with the capabilities of sensing, reasoning, memorizing, and locomotion 31 

to decide and execute its actions. This setting allows us to explore reactions to cues as an emergent 32 

phenomenon, shaped by the interactions between individual preferences, group characteristics and crowd 33 

behaviors.  34 

Specifically, we use SAFEgress to study the impacts of different exit signage systems within the 35 

constraints of a given building layout. Simulation results from our demonstration indicate that occupants’ 36 

exit preferences, visual perception of the signage system, herding behavior, and social behavior among 37 

groups can lead to very different reactions to cues. The results can be used to suggest potential 38 

improvements in the placement of exit signs in order to trigger more efficient evacuations from buildings 39 

during emergencies. Furthermore, our model also has applications outside the field of induced behavioral 40 

change. For instance, SAFEgress can be used to study the effects of human and social behaviors on 41 

collective crowd movement patterns. Most egress simulation tools assume simplistic behavioral rules and 42 

mostly ignore social behaviors of the agents (Aguirre et al., 2011; Kuligowski 2011). By modeling agents 43 

with social behaviors, SAFEgress addresses these deficiencies.  44 



This paper is organized as follows: Section 2 describes the related work in modeling human and social 45 

behaviors in egress. Section 3 explains the SAFEgress simulation platform and the key components of the 46 

platform. Section 4 describes some examples of plausible egress behaviors in the current prototype. Section 47 

5 concludes the paper with discussion. 48 

2. Related work 49 

2.1. Social behaviors during emergencies 50 

A shikake is a mechanism or a device that triggers a behavioral change. Matsumura (2013) defines a 51 

shikake more precisely using three interrelated factors: (1) a shikake is an embodied trigger for behavioral 52 

change; (2) the trigger is designed to induce a specific behavior; and (3) the behavior solves a personal or 53 

social issue. These factors highlight that a shikake is a practical and simple mechanism that offers a solution 54 

to a (social or personal) problem (Matsamura 2013). For example, the placing of fly targets in urinals in 55 

airports reduced spillage by 80% due to the propensity of men to aim at the fly. In turn, reduced spillage 56 

contributed toward reducing cleaning time and water consumption (Matsamura and Fruchter 2013). The 57 

simplicity of a shikake rests on the complexity of the psychological or social mechanism it triggers 58 

(Rosenberg et al. 2013; Salganick et. al., 2006). In this paper we focus more on the latter, keeping 59 

psychological processes in the background. Before describing how we model the social behavior of agents, 60 

we review the previous literature on how people react to emergency scenarios. 61 

Post-fire studies have shown that occupants in emergencies do not act randomly, as if in a panic, nor act 62 

in an identical manner without individual cognitive ability as if they are physical molecules (Aguirre, 1998; 63 

Drury et al., 2009; Sime, 1983; McPhail, 1991). Rather, occupants in emergencies often base their actions 64 

on their past experience, social structures, and perceptions and interactions with others to define an 65 

emergent understanding of the situation. For example, the affiliative theory (Mawson, 2005; Sime, 1983) 66 

and place script theory (Tong and Canter, 1985) examine individuals’ behaviors based on their personal 67 

knowledge, risk perceptions, experience, and routines. The emergent norm theory (ENT) specifies that 68 



disasters may lead to collective behavior through the process of milling and keynoting (Turner and Killian 69 

1987). Milling is a communication process whereby individuals in a collective attempt to define the 70 

situation, while during keynoting, leaders emerge, interpret the situation and make suggestions on what to 71 

do next (McPhail, 1991). Aguirre (1998) further applied ENT to explain occupants’ reactions in the World 72 

Trade Center Explosion in 1993, and showed that social groups and enduring social relationships could 73 

lengthen the time of evacuation.  74 

ENT and the pro social theory suggest that people continue to maintain group structure and behave in a 75 

pro social manner during emergencies (Aguirre et al., 2011). The social identity theory infers that people 76 

have a tendency to categorize themselves into one or more “in-groups,” building their identity in part on 77 

their membership in the groups and enforcing boundaries with other groups (Drury et al., 2009).  Moreover, 78 

studies in sociology and psychology suggest that people influence each other’s behaviors through the 79 

spreading of information and emotions (Rydgren, 2009; Hoogendoorn et al., 2010).  80 

Researchers in safety and disaster management have proposed theoretical frameworks that describe the 81 

processes of seeking information, interpreting the situation, assessing the risk, and making decisions 82 

specifically in response to a disaster. For example, Lindell and Perry (2011) applied the Protective Action 83 

Decision Model (PADM) to examine the disaster response of occupants in residential fires and study the 84 

effect of warning mechanisms on evacuation time. Based on the PADM framework, Kuligowski (2011) 85 

studied the actions taken during the pre-evacuation period of the 911 WTC (World Trade Centers) attacks 86 

and developed a model to qualitatively describe how occupants made their decisions to evacuate.  Reneke 87 

(2013) proposed the Evacuation Decision Model to predict the state of the occupants by modeling the level 88 

of risk perception and the effect of knowledge, social influence, and alarm as they occur over time during 89 

the pre-evacuation period. These frameworks and models synthesize human behaviors in emergencies as 90 

process models that can be systematically analyzed further by incorporating factors, such as threats, social 91 

relationships, and personal experience, to determine the outcome of evacuation.  92 



In light of prior studies, we conjecture that creating a shikake for egress will require individual, group, 93 

and crowd-level characteristics. At the individual level, occupants may refer to their past experiences and 94 

knowledge and their perceptions of the situation to decide on their actions. At the group level, the pre-95 

existing social structure (relations between group members) and group norms (expectations of each other's 96 

behavior) affect the behavior of an individual. Crowd-level behaviors are emergent phenomena and often 97 

follow social norms.  98 

 99 

2.2. Current crowd simulation approaches 100 

Different crowd modeling approaches, such as the particle (Helbing et al., 2000; Moussaïd et al., 2011), 101 

cellular automata (Burstedde et al., 2001), and agent-based systems (Lin et al., 2010; Galea et al., 1998; 102 

Durupinar et al., 2011; Musse and Thalmann, 2001; Aguirre et al., 2011), have been adopted into various 103 

simulation software to model crowd movement in virtual environments. Zheng, Zhong, and Liu (2007) 104 

have provided detailed reviews of the different simulation models. The following discussion focuses on the 105 

agent-based approach which is adopted in the implementation of SAFEgress. 106 

Agent-based systems model the crowd as a collection of autonomous entities known as “agents” to 107 

represent the human occupants. These systems allow emergent phenomena as a result of interactions among 108 

the virtual agents. Many egress models have recently adopted this approach and proposed different 109 

representations of the spatial environment and the agents. One common way of representing the spatial 110 

environment is dividing the space into a 2-D array of cells where each cell contains up to a certain number 111 

of agents (Lin et al., 2010; Galea et al., 1998). While the grid-based spatial representation benefits from its 112 

computational efficiency, the representation limits agents’ spatial movements and can potentially show an 113 

unnatural checkerboard pattern when crowd density is high. Another approach is to represent the spatial 114 

environment as a continuous space that allows agents to navigate naturally on a continuous plane while 115 

considering constraints imposed by the physical geometry of the building (Durupinar et al., 2011; Musse 116 



and Thalmann, 2001). Our simulation framework uses the continuous spatial representation which allows 117 

a wider array of locomotions of the agents as well as the simulation of high-density crowd scenarios, such 118 

as over-crowding and pushing at exit (Aguirre et al., 2011).  119 

In most agent-based systems, the agent navigation routes are usually pre-defined by specifying explicitly 120 

the origins and destinations of the occupants (Aguirre et al., 2011; Turner and Penn, 2002). Optimal routes 121 

(usually defined in terms of travel time or distance) are obtained by assuming that the agents have good, 122 

often perfect, knowledge of the environment. Examples are the way-finding model in EXODUS 123 

(Veeraswamy et al., 2009) and the simulation model proposed by Kneidl et al. (2013). Other agent-based 124 

systems model an agent’s navigation decision as the outcome of decision-making processes, rather than 125 

pre-defined or optimized routes. For example, ViCrowd (Musse and Thalmann, 2001) is a crowd simulation 126 

tool in which crowd behaviors are modeled as scripted behaviors, as a set of dynamic behavioral rules using 127 

events and reactions, or as externally controlled behaviors in real time. MASSEgress (Pan, 2006) gauges 128 

an agent’s urgency level, evaluate behavior models represented as decision trees, and invokes a particular 129 

behavior to determine the navigation target. These models consider agents’ behaviors as a perceptive and 130 

dynamic process subjected to external changes. We also adopt the perceptive approach in SAFEgress when 131 

updating the agents’ behaviors. 132 

As noted by Kuligowski and Peacock (2005), a wide variety of computational tools for egress simulation 133 

are available; however, human and crowd behaviors are often ignored and group effects on evacuation 134 

patterns are seldom explored (Challenger et al., 2009; Aguirre et al., 2011).  Only recently have efforts been 135 

attempted to incorporate social behaviors into egress simulations. For example, Tsai et al. (2011) 136 

implemented exit knowledge, families, and emotional contagion on evacuation and evaluated the impacts 137 

of emotional and informational interactions between agents. Similarly, Aguirre et al. (2011) described an 138 

agent-based model which attempts to implement the pro social model in simulating emergency evacuations. 139 

Features, such as leaders and followers within a group, have been implemented to simulate population at a 140 

group level and observe emergent patterns as a result of social relationships. Our model extends the notion 141 



of pre-existing social relationships by defining groups with several salient attributes, such as intimacy level 142 

and group influence. Furthermore, we incorporate the effect of neighboring crowds on individuals and 143 

investigate crowd behaviors, such as herding, on the evacuation patterns.  144 

 145 

2.3. Model of spatial representation in simulations 146 

People’s knowledge and memory of a space has a significant effect on their route choices. For example, 147 

when the desirable destinations (such as the entrance of the building) are not immediately visible, people 148 

refer to external information (such as signage) or memory of a specific route (such as following the paths 149 

which they traveled before) to determine their travel directions (Gärling et al. 1986). Moreover, researchers 150 

in environmental and cognitive psychology have argued that evacuees use their perceptions to guide their 151 

navigation (Gärling et al. 1986; Turner and Penn 2002). With proper spatial representation of the 152 

environment, Turner and Penn (2002) have shown that natural human movement can be reproduced in 153 

simulations without the needs to assign the agents with extra information about the location of destination 154 

and escape route.  155 

To simulate the spatial cognitive capability of the agents, a proper representation of the spatial 156 

connectivity that can be used for navigation by the agents is needed (Turner and Penn 2002). The spatial 157 

connectivity is often represented as a navigation graph or a roadmap. A variety of techniques have been 158 

proposed to create a navigation graph from a given building geometry. Most of these techniques have been 159 

developed in the field of robotics (Latombe, 1995). Many space discretization techniques (such as Voronoi 160 

diagrams) have been used to derive a navigation graph. Although these techniques are commonly used for 161 

steering robots, they need to be modified for egress simulation for which human-like cognition and 162 

navigation are important. Approaches that are capable of more accurately modeling human perception and 163 

cognition are based on visibility graphs (Choset, 2005). A visibility graph consists of nodes defined by the 164 

physical geometry of the building, its special features and the destinations of the agents. An edge is added 165 



to link two nodes if they are in the line of sight. In our work, we adopt a visibility graph to represent the 166 

spatial connectivity of a floor (Chu et al. 2014). The visibility graph is used in SAFEgress primarily as a 167 

representation of the continuous space to allow the agents to perceive possible areas to explore, rather than 168 

as a navigation guide that dictates the movement by the agents.  169 

 170 

3. A simulation framework for modeling human and social behaviors 171 

SAFEgress is an agent-based model designed to simulate human and social behaviors as well as 172 

emerging crowd behaviors during evacuations. In the following sections, we first provide an overview of 173 

SAFEgress framework and describe each major module of the system. We then briefly discuss the spatial 174 

representation, followed by the agent representation and the attributes used to model occupants in an 175 

emergency situation. Details of the system and the individual components have been described elsewhere 176 

(Chu al et. 2014; Chu and Law 2013). 177 

3.1. System architecture 178 

SAFEgress is an agent-based model designed to simulate human and social behaviors as well as 179 

emerging crowd behaviors during evacuations. Figure 1 depicts the system architecture of SAFEgress. The 180 

key modules of the framework are the Global Database, Crowd Simulation Engine, and Agent Model, while 181 

the supporting sub-modules include the Situation Data Input Engine, Geometric Engine, Event Recorder, 182 

Population Generator, and Visualizer.  183 

 184 

Figure 1. System architecture of SAFEgress (Chu and Law, 2013) 
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 The Global Database stores all the information about the agent population, the physical geometries, 185 

and the status of emergency situations. It maintains the state information (such as mental states, 186 

behavioral decisions, locations) of the agents. 187 

 The Crowd Simulation Engine is the key module of the system. It interacts closely with the Agent 188 

Behavior Models Database, keeps track of the simulation, and records and retrieves information 189 

from the Global Database. The generated simulation results are sent to the Event Recorder and the 190 

Visualizer.  191 

 The Agent Behavior Models Database contains the individual, group, and crowd behavioral 192 

models. Besides the default behavioral models, new models can be created by users to investigate 193 

a range of behaviors under different scenarios.  194 

 The Situation Data Input Engine contains the properties of emergency cues and threats, such as fire 195 

alarms, smoke, and fire, which the virtual agents perceive during the simulation. 196 

 The Geometric Engine maintains the spatial information, such as the physical geometry, exit signs, 197 

and openings about a facility.  A virtual 3D model is built based on the spatial information and is 198 

used for collision avoidance and agent perception, as well as for visualization of simulation results. 199 

 The Event Recorder stores the simulation results at each time step.  The results can be retrieved for 200 

further analysis, such as identifying congestion areas and exit usages.  The events captured can also 201 

be used to compare with known and archived scenarios.  202 

 The Population Generator receives input assumptions of the agent population and generates the 203 

agents using physical (such as age, mobility, physical size) and behavioral profiles. This module 204 

can also generate both pre-defined and random social groups to study different social behaviors.  205 

 The Visualizer, currently implemented using OpenGL, receives the positions of agents, overlays 206 

with the virtual 3D model, and then dynamically generates and displays simulation results as 2D/3D 207 

visual images. 208 



The modular simulation framework allows investigation of crowd dynamics and incorporation of different 209 

behavioral models.  Diverse populations of individuals and groups can be modeled and emergent collective 210 

behaviors can be simulated. In particular, efficient computational algorithms (such as detecting proximity 211 

and spatial visibility) have been carefully designed to allow simulations with a large number of agents.  212 

3.2. Hierarchical space representation  213 

Local building geometry, spatial arrangement of safety signage, and occupants’ previous experience and 214 

familiarity with the buildings can significantly influence the choice of egress routes in emergencies. We 215 

design a space model to represent the virtual environment such that the agents can perform the following 216 

tasks: 217 

 move naturally by avoiding collision with physical obstacles and walls; 218 

 detect visible building features such as exit signs and door openings; 219 

 support cognitive abilities of the agents, such as reasoning and acquiring knowledge of the 220 

building layouts.  221 

 222 

 223 

As shown in Figure 2, the proposed hierarchical space model consists of three layered components: a 224 

continuous movement space, sematic representation of the building features, and a visibility graph. Each 225 

Figure 2. Three components of the hierarchical space model 
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component of the hierarchical space model is discussed further in the following sections. For computational 226 

efficiency, the space model is built prior to simulation and, once constructed, is used throughout the 227 

simulation, unless changes are made to the building layout that necessitate an update to the space model.  228 

 229 

3.2.1. Continuous movement space  230 

SAFEgress represents the spatial environment as a continuous space (as shown in Figure 2a) that the 231 

agents navigate. A typical floor space includes physical obstacles, such as walls and furniture. Agents 232 

navigate the virtual space and avoid colliding with physical obstacles.  Using the user inputted building 233 

geometry, which describes the locations and the dimensions of the physical objects, such as walls and doors, 234 

the obstacle model is built to enable the agents to “sense” the physical surrounding and the visible space.  235 

To construct the obstacle model, the boundary surfaces of each 3-dimensional physical obstacle are 236 

represented as a set of polygon planes. Using the obstacle model, an agent performs two basic tests: (1) 237 

collision tests to determine its separating distances from nearby obstacles, and (2) visibility tests to 238 

determine if any given point in the virtual space is visible to the agent.  239 

3.2.2. Sematic representation of building safety features 240 

In an emergency situation, people observe relevant building features such as exits and exit signs to guide 241 

them to safety.  These safety features provide additional information to the agents, such as the possible 242 

directions of travel leading to exit or outlet options.  As illustrated in Figure 2b, three safety features (namely 243 

exits, exit signs, and doors) are included in the space model.  244 

 Exit: The exit objects represent the outlets of the floor. The agents are equipped to visibly detect 245 

the exit objects.  If an agent decides to escape through a particular exit object, the agent navigates 246 

towards the location of the exit object.  Once reaching the exit, the agent is considered as 247 

physically exited from the floor space. The attributes describing an exit object are its spatial 248 

location and angle of orientation. 249 



 Exit Sign: The exit sign objects represent the exit signs installed in a building as part of the 250 

egress system. The signs can be either directional or non-directional. Non-directional signs are 251 

attraction points for agents to move close to. A directional exit sign includes additional 252 

navigation direction.  As an agent detects and decides to follow an exit sign, the agent extracts 253 

and follows the directional information as posted on the sign.  The attributes describing the exit 254 

sign object include its spatial location, angle of orientation and, optionally, the directional 255 

information (such as left or right). 256 

 Door: The door objects are similar to exit objects which serve as “attraction points” to the agents. 257 

Unlike an exit object which discharges the agent upon arrival, the agent remains in the floor 258 

space and continues to navigate until reaching an exit object. The attributes describing a door 259 

object are its spatial location and angle of orientation. 260 

Although the selected building safety features (namely, exit, exit sign, and door) do not represent all the 261 

possible features that are found in a building, they are the most salient features pertaining to egress design 262 

and have  great influence on people’s evacuation decisions.   263 

 264 

3.2.3. Visibility graph 265 

Navigation during an evacuation is motivated by the subsequent movements towards closer to the final 266 

destination (Gärling et al., 1986; Turner and Penn, 2002). Even with no apparent visual cues in the 267 

surroundings, humans move naturally in a direction that allows them to move further. To emulate natural 268 

human movement, we represent an obstacle-free space by populating the space with navigational points.  269 

Furthermore, we construct a visibility map to link the navigational points to represent the connectivity in 270 

the obstacle-free space.  As shown in Figure 3, the visibility map is constructed using the following 271 

procedure: 272 



(1) The continuous space is first discretized into square cells to form a 2-D grid for computational 273 

efficiency. The cells with the building features (such as exits, doors, and windows) are identified as an 274 

initial set of navigation points (Figure 3a). 275 

(2) For each cell on the 2-D grid, we compute the area that is visible from an agent in that cell (visibility 276 

area).  The cells that has the largest visibility area among its neighboring cells are identified and become 277 

navigation points.  Figure 3b illustrates the navigation points constructed for a floor space.  278 

(3) Edges are added to link the navigation points that are visible to each other within a certain radius. The 279 

resulting visibility map is a graph that represents the connectivity of traversal areas in the obstacle-free 280 

space (Figure 3c).  Specifically, Figure 3c shows the graph in which the nodes are the locations of the 281 

building safety features and the intermediate navigation points, and the edges are pairs of nodes that 282 

are visible from their locations.  283 

 284 

The full visibility map represents the spatial connectivity of the floor which is customized based on the 285 

building geometry and locations of the safety features. By querying the visibility map with its current 286 

location, an agent “perceives” the possible navigation directions in the virtual space and makes subsequent 287 

navigation decisions.  Three basic rules are observed to define the use of the visibility map by the agents: 288 

 (b) Adding navigation points to 

the cells with maximum visibility 

zones 

(c) Linking the navigation points 

which are visible to each other 

within a certain radius 

Figure 3. A procedure for generating visibility map (Chu et al. 2014) 
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 289 

Rule #1: An agent can detect the navigational points that are within the line of sight at each simulation 290 

step. 291 

As humans can only perceive their local obstacle-free surroundings, the virtual agents can access only 292 

the “visible” portion of the visibility map to decide their navigation directions. An agent queries the 293 

visibility map with its current navigation point (determined based on its current location) to identify any 294 

connecting navigation points that are visible to the agent. Figure 4 illustrates the differences of the agent’s 295 

trajectories with and without the visibility graph. With the notion of the visibility map as shown in Figure 296 

4b, instead of relying on local collision avoidance with obstacles which can cause unnatural trajectories 297 

(such as walking towards walls or blockages), the agent navigates the environment by detecting visible 298 

navigational points and moving with reference to the next navigation points.  299 

(a) Agent’s trajectories with visibility graph (b) Agent’s trajectories without visibility graph 

(relying on collision avoidance)  

The agent walks randomly towards the 

dead ends and walls. 

Figure 4. Agent’s trajectories navigating space with and without visibility graph 

Initial position  Initial position  



 300 

Rule #2: An agent chooses intermediate navigation points based on its navigation destinations and its 301 

knowledge of the building. 302 

When an agent does not have a particular navigation destination, it chooses randomly one of the 303 

navigation points to explore the space. When the agent has a particular navigation destination, it selects the 304 

next navigation target based on its knowledge of the building layout. For example, an agent having the 305 

knowledge of a familiar exit would choose among the navigation points the one that is nearest to the familiar 306 

exit (Gärling et al., 1986; Turner and Penn, 2002). As illustrated in Figure 5, the agent, with knowledge of 307 

the main entrance as its familiar exit, can weigh heavily and choose among the five visible navigation points 308 

the navigation point labeled 1 to move closer to the main entrance. On the other hand, if an agent does not 309 

have prior knowledge of the spatial layout, unless being influenced by other information, the agent assigns 310 

equal weight to all the options and choose a navigation target randomly. 311 

Figure 5. Illustration of visible navigation points from an 

agent (Chu et al. 2014) 
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312 

Rule #3: An agent “memorizes” the traveled space to avoid backtracking. 313 

During the simulation, an agent can memorize the areas traveled by registering the traveled navigation 314 

points in its cognition module. Less weight will be assigned to the visible navigation points that it has 315 

traveled before.  By doing so, the agent may avoid repeatedly visiting the same area. This cognitive ability 316 

to memorize the previously traveled areas is particularly important for generating a natural navigation 317 

trajectory in a situation that an agent has no prior knowledge of the environment and attempts to explore 318 

the surroundings for exit.  Figure 6 illustrates the differences in the trajectories by an agent with and without 319 

memory.  As shown in Figure 6a, the agent with memory tends to explore new areas with little backtracking.  320 

In contrast, as depicted in Figure 6b, the agent without memory moves repeatedly back-and-forth to the 321 

same areas.   322 

With the notion of visibility map, the agents in SAFEgress can perceive the surrounding to: (1) identify 323 

the obstacle-free space as visible navigation points; (2) transverse through the visible navigation points and 324 

travel to a particular destination, such as the entrance used to enter the building, through intermediate 325 

navigation points which are visible to the agents; and (3) construct a working memory of the spaces that 326 

have traveled.  327 

 328 

(a) Agent’s trajectories with “memory”  (b) Agent’s trajectories without “memory”  

Agent moves back and fro in 

previously traveled areas. 

Figure 6. Agent’s trajectories navigating space with and without memory 
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3.3. Agent representation of occupants 329 

In SAFEgress, each individual is modeled as an autonomous agent who interacts with the dynamic 330 

environment and with other agents. Each agent is given a set of static and dynamic attributes to mimic the 331 

occupants. The choice of the attributes is crucial since they implicitly determine the range of simulation 332 

tests users can perform with SAFEgress. We select the attributes that are deemed important as reported by 333 

other researchers. 334 

3.3.1. Static attributes 335 

Static attributes are defined prior to the simulation to specify their population type, experience profile, 336 

social group affiliation, and social traits. The agents’ attributes, listed in Table 1, can be further categorized 337 

into three levels—individual, group, and crowd as described below (with the static attributes shown in 338 

bold): 339 

 At the individual level, an agent has a physical profile, a level of familiarity (Mawson, 2005) with the 340 

building, and prior known exits (Sime, 1983) of at least one that the agent enters. The physical profile 341 

includes attributes such as age, gender, body size, travel speed, and personal space.  342 

 At the group level, the attributes defined for social groups include a group leader (if any), the group 343 

intimacy level (e.g., high intimacy for a family group), the group-seeking property (describing 344 

agents’ willingness to search for missing members), and the group influence (describing the influence 345 

of a member to the others in the same group) (Aguirre et al., 2011; McPhail, 1991). The agents 346 

belonging to the same group share the same group attributes. 347 

 At the crowd level, an agent’s social position is defined by the social order which reflects the likelihood 348 

of the agent to exhibit deference behavior (Drury et al., 2009). The lower the social order, the higher 349 

the chance for the agent to defer decision to other agents when negotiating the next move. A special 350 

agent, such as authority figures, a safety personnel, etc., may have assigned roles, and is responsible 351 

for executing actions, such as sharing information and giving instructions (Kuligowski, 2011). 352 



Table 1. Agents’ static attributes at the individual, group, and crowd level 353 

Individual Group Crowd 

 Physical profile 

o Age 

o Gender 

o Body size 

o travel speed 

o personal space 

 Familiarity 

 Known exits 

 Group intimacy level 

 Group seeking 

 Group leader(s) 

 Group influence 

 Social order 

 Assigned roles 

 354 

3.3.2. Process model and dynamic attributes 355 

Based on the studies by researchers in disaster management and fire engineering about occupants’ 356 

behaviors during emergency (Lindell and Perry, 2011; Kuligowski, 2011), we implement a five-stage 357 

process model (perception – interpretation – decision-making – execution – memorization) to update the 358 

agents’ behaviors.  Each stage in the process model is implemented as an independent computational 359 

module.  Table 2 summarizes the dynamic attributes which describe the perceived information and the 360 

states of an agent at each stage.  During the simulation, the dynamic attribute values are updated at each 361 

process stage as described below (with dynamic attributes shown in bold):  362 

 The Perception Module updates four attributes: 363 

o Emergency cues, such as smoke and alarm, that are visible or audible to the agent 364 

o Visible floor objects, such as doors and signs, that are visible to the agent 365 

o Visible group members that are visible to the agent 366 

o Neighboring agents that are visible to and are located within a certain radius from the agent 367 

 The Interpretation Module maps the current knowledge of the agent into a set of internal thresholds 368 

which describe the urge and well-being of the agent. 369 



 The Decision-making Module invokes the decision tree modeling the behavior assigned to the agent. 370 

Given the agent’s characteristics and the invoked decision tree, it looks up the agent’s behavior and 371 

determines the long-term navigation goal, such as the familiar exit of the agent or the location of the 372 

group leader, and the intermediate navigation point given the agent’s knowledge and location. 373 

 The Locomotion Module calculates the agent’s movement toward the navigation target and returns the 374 

updated spatial position of the agents, which are Cartesian coordinates (x, y, z) in the continuous space.  375 

 The Memory Module registers the decision made during the simulation cycle and updates the spatial 376 

knowledge. The spatial knowledge is an array storing the navigation points that the agents have 377 

visited. The agents remembered the traveled navigation points and can later refer to the spatial 378 

knowledge to avoid backtracking. 379 

Each stage mimics a cognitive process or an act by an occupant during evacuation. Collectively, these 380 

stages define the behavioral process of the occupants.  381 

Table 2. Agents’ dynamic attributes updated at different stages 382 

Perception Interpretation Decision-making Locomotion Memory 

 Emergency cues 

 Visible floor 

objects 

 Visible group 

Member 

 Neighboring 

agents 

 Urge 

 Well-being 

 

 Behavior 

 Navigation goal 

 Navigation point 

 Spatial position  Spatial 

knowledge 

 383 

4. Implementing human and social behaviors 384 

During evacuation, occupants may refer to their previous knowledge of the building, visual perceptions 385 

of the floor, and social cues, such as the presence of group members and others’ movements, to determine 386 

their evacuation routes. This section describes a number of examples to illustrate the capability of 387 

SAFEgress to simulate some plausible behaviors exhibited by occupants in emergencies. These behaviors 388 



include following building features, following familiar exits, group behavior, and herding behavior. In each 389 

example, we discuss the motivation and observation of the behavior, as well as describe the implementation 390 

in the prototype.  391 

 392 

4.1. Following cues from building features 393 

The spatial arrangement of exit signs with different visual displays are important factors that can affect 394 

the movement pattern (O'Neill, 1991; Johnson and Feinberg, 1997). In situations where the occupants are 395 

unfamiliar with the environment, people rely heavily on the information from the signage to guide their 396 

navigation. Therefore, exit signs should be arranged in a proper way to provide markings of exits and escape 397 

routes in buildings and to assist the occupants in leaving the buildings effectively in case of emergency. 398 

 In SAFEgress, each agent can decide their navigation based on the perceived floor objects representing 399 

the building features, such as exit signs and doors as described in Section 3.3.2. At each simulation step, 400 

the agents detect visible floor objects and navigate the space according to the direction given by the floor 401 

objects. Figure 7 illustrates the process that an agent navigates the space by perceiving and following the 402 

guidance from the visible floor objects and escaping via visible exits. Initially, the agent chooses to navigate 403 

toward the only visible floor object, which is the door as shown in Figure 7a. After exiting the room via the 404 

visible door, the agent detects new floor objects, which are the two exit signs (Sign 1 and Sign 2). As the 405 

agent detects more than one visible objects, the agent weighs each object according to three criteria: (1) the 406 

object type (namely exits, doors, and signs), (2) the distance of the object from the agent, and (3) the number 407 

of times of prior visits to the object. Because both objects are “sign” objects and have not been visited 408 

before by the agent, the agent chooses to navigate toward the nearest sign, Sign 1, which is indicated in 409 

Figure 7b. Upon arriving at Sign 1, the agent evaluates all visible objects and chooses to go to Sign 2 (Figure 410 

7b). As the agent moves near Sign 2, the agent detects a new floor object, Exit 1; the agent then weighs all 411 

the visible floor objects, chooses to go to Exit 1, and exits the floor (Figure 7c). 412 



 413 

We further apply SAFEgress to analyze the effects of different exit sign arrangements on egress 414 

performance. Figure 8 shows the floor layout of a museum which consists of several exhibition halls with 415 

four main exits (the entrance, the north exit, the west exit, and the café exit). The floor space is populated 416 

with a total of 360 agents who have medium level of familiarity and have no prior knowledge of exits. They 417 

exit the floor by following the cue from floor objects. We model different exit sign arrangement with the 418 

same building model to trigger different navigation patterns of the agents. The effects of signage 419 

arrangements on evacuation outcomes are compared by: (1) changing the number of exit signs and (2) 420 

rearranging the orientation of the exit signs.  421 

 422 
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The first test studies the effect of additional exit signs on evacuation performance. Figure 9a shows the 423 

initial layout of exit signs and the trajectories of agents exiting the building. The total evacuation time is 424 

165 seconds (averaged over 10 simulation runs). As highlighted in the figure, in this initial exit sign 425 

arrangement, agents take detours and explore the floor before find their way to exit. With additional exit 426 

signs posted, as shown in Figure 9b, the agents travel with more direct routes, and the evacuation time takes 427 

119 seconds (a decrease of 28% in time compared to that of initial layout of fewer exit signs).  428 

 429 

The second test illustrates how changing the exit orientation can help direct crowd flow. As shown in 430 

Figure 9, with the sign arrangement in the first test case, agents tend to exit through the main entrance and 431 

cause the congestions at the main entrance. As shown in Figure 10, we change the facing direction of an 432 

exit sign (depicted with rectangular box) in the main aisle. With the proper exit orientation, more agents 433 

perceived the exit sign and its direction and evacuated through the near exit. As a consequence, the 434 

evacuation time is 89 seconds, a further improvement of 25%. This example clearly illustrates the 435 
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importance of appropriately arranging exit sign to effectively guide the crowd for evacuation and alleviate 436 

congestion.  437 

Assessing the effectiveness of a signage system is difficult in real setting because this kind of assessment 438 

requires experiments with occupants in the buildings. Modeling salient safety features in egress simulations 439 

allows designers to improve egress performance by analyzing different evacuation patterns as a result of 440 

different signage systems.  441 

 442 

4.2. Following familiar exits 443 

Occupants choose evacuation routes based on their previous experience and knowledge (Mawson, 444 

2005; Sime, 1983; Tong and Canter, 1985). Occupants who visit the building regularly may have learned 445 

their preferred exits over time or have knowledge of the nearest exits. They may also have evacuation drill 446 

experience from which they learned the instructed evacuation routes in case of emergency. To incorporate 447 

the effect of known exits into agents’ route choices, we make use of the agents’ static parameter, known 448 

exit(s). We model the “following familiar exits” behavior as follows: prior to the simulation, the user 449 

Figure 10. Congestion patterns assuming different signage arrangements 
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assumes the parameter value of the attribute, known exits, of the agents, indicating that the agents have 450 

knowledge of one or more known exits.  During the simulation, the agents query the spatial model with the 451 

known exits and retrieve the shortest paths to the known exits. At the decision making stage, the agents 452 

choose to move to the visible navigation points along the shortest paths to get to their known exits. 453 

Figure 11 shows an example floor plan and evacuation patterns resulted from assigning different known 454 

exits to 200 agents. In Case 1, agents have the knowledge of the main entrance and exit through the main 455 

entrance. The arrows in Figure 11a show the emerging crowd flows as agents travel to the main entrance. 456 

In Case 2, agents have the knowledge of all exits and choose to evacuate through the nearest exit given their 457 

initial starting positions. The arrows in Figure 11b show the diverging crowd flows as agents travel to their 458 

nearest exits. Besides the differences in the crowd flow patterns, the assumption of different known exits 459 

also changes the evacuation time significantly. The average evacuation times over 10 simulation runs are 460 

106 seconds and 70 seconds for Case 1 and Case 2, respectively. The longer evacuation time in Case 1 is 461 

due to the longer travel distance and congestion at the main entrance. 462 

 463 
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Figure 11. Evacuation patterns with different exit assignments  
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4.3. Navigating with social group 464 

During evacuation, members belonging to a group, such as families and close friends concerned the 465 

safety of their group members, and often seek out and evacuate with the entire group even when evacuation 466 

is urgent (Aguirre et al. 2011; Sime 1983). We model this group behavior using two group-level static 467 

attributes: group separation distance (measured as the desirable physical distance between members) and 468 

group-seeking (measured as the desirable percentage of members that are visible). We assign a low value 469 

(average distance of 4ft to each visible group member) to the group separation distance attribute (i.e. agents 470 

try to maintain close proximity with other group members) and a high value to the group-seeking attribute 471 

(i.e. all group members have to be visible to the group) to simulate agent groups with close relationships. 472 

Figure 12 shows a comparison of the evacuation patterns of agents with and without group affiliations by 473 

varying the group-seeking attribute.  474 

In the example showing in Figure 12, we assume all 50 agents evacuate at once. We test the effect of 475 

group affiliation on evacuation patterns. The first case assumes each agent evacuates as an individual 476 

through its familiar exit (which is the nearest exit to the agent). Figure 12a shows the evacuation pattern of 477 

agents without any group affiliation, and the average evacuation time is 29 seconds (averaged over 10 478 

simulation runs). In the second case, we test the effect of group behaviors by assigning all agents with group 479 

affiliation (group size ranges from three to five agents). All groups are assigned with a high group-seeking 480 

value, such that all members in the group have to be visible to each other before the members in the group 481 

start to evacuate. In this case, as shown in Figure 12b, agents pace back-and-forth, and even detour, as they 482 

seek other group members. In this scenario, the average evacuation time increases to 39 seconds (averaged 483 

over 10 simulation runs). The longer evacuation time in the group-seeking scenario is possibly contributed 484 

by longer and indirect routes taken by the agents as they search for the missing group members. By varying 485 

the value assigned to the group-seeking attributes, we can alter the level of desire for the group to look for 486 

other members. Similarly, by adjusting the group separation distance of the social group, we can simulate 487 

different types of groups with different levels of intention to follow other group members. Depending on 488 



the initial distribution of the group members and their relationships, group behaviors in egress simulations 489 

affect the evacuation time and the escape routes.  490 

 491 

4.4. Following crowds 492 

As the first signs of a potential threat are often ambiguous (Tong and Canter, 1985), people may spend 493 

a substantial amount of time to investigate and interact with one another before deciding how to respond 494 

(Sime, 1983).  The movement of some evacuees toward different exits provides others with social cues of 495 

the availability of alternative exits. Often, as opposed to moving towards familiar exits, people may follow 496 

social cues and choose the exits preferred by the crowd as they observe others’ actions. We model the 497 

“following the crowd” behavior as follows: during the simulation, the herding agent (who is seeking to 498 

follow other agents) perceives the space and detects visible floor objects. At the decision making stage, the 499 

herding agent assesses, for each visible floor object, the number of neighbors who are traveling towards the 500 

floor object. The herding agent chooses the visible floor object with the highest number of neighboring 501 

agents traveling towards because the agent considers the movement of its neighbors as a social cue to 502 

explore potential areas for exits. If there are no visible floor objects that other agents move to, the agent 503 

Note: Black squares (■) indicate initial positions of the 50 agents. 
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then will adopt other navigation strategies, such as referring to their known exits (as described in Section 504 

4.1) or following the visual cues (as described in Section 4.2).  505 

Figure 13 illustrates the differences in agents’ trajectories when 100 agents with and without crowd 506 

following behavior. As shown in Figure 13a, when agents follow only visual cues, the usage of the two 507 

exits is about even. When half of the agent population (i.e. 50 agents) exhibit crowd following behavior, as 508 

shown in Figure 13b, one of the exits became more congested. In real situation, the escape routes taken by 509 

the occupants who initiate the evacuation can have an impact on the congestion patterns as other occupants 510 

who are unsure or unfamiliar with the situation will tend to follow the crowd. Herding and overcrowding 511 

phenomena emerge as the crowd triggers individuals to exhibit crowd following behaviors. By including 512 

the perception of crowd movement, our framework captures the emergence of crowd following 513 

phenomenon. 514 

 515 

5. Discussion 516 

The building geometry unique to each building and the layout of building emergency features (such as 517 

exit signs and doors) can trigger different navigation decision of the occupants during egress. SAFEgress 518 

allows users to assess different building geometries and egress systems in a flexible manner. Furthermore, 519 

sensitivity analysis on different agent attributes can be conducted in SAFEgress to identify and assess the 520 

impacts of important social factors in different physical and environmental settings, as illustrated in the four 521 

examples presented in this paper. This kind of analysis can give insights to architects, building designers, 522 
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Figure 13. Evacuation patterns with and without herding behaviors 
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and facility managers to design user-centric safe egress and improve emergency procedures and training 523 

programs. 524 

Our simulation results confirm the needs of incorporating occupants’ perception, previous knowledge, 525 

and social behaviors in egress simulation. In our examples, we show that different arrangements of exit 526 

signs, social settings of the agents and prior knowledge and familiarity with the building could trigger 527 

different crowd behaviors and crowd flow patterns. By embedding individuals into groups, our model has 528 

the capabilities to model occupant behaviors such as the spreading of information within social groups and 529 

crowds (Rydgren 2009; Hoogendoorn et al. 2010) and the role of authorities (Kuligowski 2011). In broader 530 

terms, we see our approach to modeling social behavior to be in line with recent efforts in computational 531 

social science to capture emerging social behaviors using computer-simulation and large datasets made 532 

available through digital technology and new forms of communication (Lazer et. al., 2009). The described 533 

platform represents a step forward toward incorporating social science knowledge of social interactions into 534 

engineering models that capture human behaviors. 535 

 536 
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