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Abstract 

Studies of past emergency events have revealed that 

occupants’ behaviors, local geometry, and environmental 

constraints affect crowd movement and govern the 

evacuation. Occupants’ social characteristics and the unique 

layout of the buildings should be considered to ensure that 

the egress systems can handle the actual occupants’ behaviors 

in egress. This paper describes an agent-based egress 

simulation tool, SAFEgress, which is designed to incorporate 

human and social behaviors during evacautions. Simulation 

results on two scenarios are presented. The first scenario 

illustrates the effects of exiting strategies adopted by the 

occupants on evacuation. The second scenario shows the 

influence of social group behavior on evacuation. By 

assuming different occupants’ behaviors using the prototype, 

engineers, designers, and facility managers can study the 

important human factors on an egress situation and, thereby, 

improve the design of safe egress systems and procedures. 

1. INTRODUCTION 

Computer simulations are often used to evaluate building 

egress and occupant safety. Despite observations and studies 

about human behaviors during emergencies, most simulation 

tools assume simplistic behavioral rules and mostly ignore 

social behaviors of the occupants. The deficiencies in 

modeling human behaviors for egress simulation have been 

echoed by authorities in fire engineering and social science 

(Aguirre et al. 2011; Kuligowski 2011). To address the need 

to incorporate human and social behaviors, we design 

SAFEgress (Social Agent For Egress), an agent-based model, 

for egress simulation. SAFEgress models occupants as agents 

with affiliation to social groups, each defined by a unique 

social structure and group norm. The agents, being part of 

their own group rather than isolated individuals, make 

decisions considering group members and neighbors, in 

addition to individual preferences. Moreover, each agent is 

equipped with the capabilities of sensing, cognitive 

reasoning, memorizing, and locomotion to decide and 

execute its actions. By incorporating the agents with plausible 

behaviors, SAFEgress can be used to study the effects of 

human and social behaviors on collective crowd movement 

patterns and egress performance. 

The focus of this paper is to show the effects of human 

and social behaviors on egress performance. Simulation 

results from our case studies indicate that occupants’ exit 

strategies and social behavior can lead to very different 

congestion patterns and evacuation times. This kind of 

analysis can be useful in many applications, e.g., architects 

can design occupant-centric floor layouts and ensure that the 

egress design can handle a wide range of occupant behaviors. 

The simulation results can also help design and placement of 

signage to guide evacuation. As echoed by our collaborators 

from theme parks and sport stadiums, such analysis can be 

useful for facility management to plan evacuation strategies 

and design emergency training programs. 

2. RELATED WORK 

2.1. Human behaviors during emergencies 

Researchers have proposed a variety of social theories 

regarding human behaviors during emergencies. For 

example, the affiliative theory and place script theory 

examine individuals’ behaviors based on their personal 

knowledge, risk perceptions, experience, and routines 
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(Mawson 2005; Sime 1983). The emergent norm theory and 

the pro social theory suggest that people continue to maintain 

group structure and behave in a pro social manner during 

emergencies (McPhail 1991; Aguirre et al. 2011). The social 

identity theory infers that people have a tendency to 

categorize themselves into one or more “in-groups,” building 

their identity in part on their membership in the groups and 

enforcing boundaries with other groups (Drury et al. 2009).  

Moreover, studies in sociology and psychology suggest that 

people influence each other’s behaviors through the 

spreading of information and emotions (Rydgren 2009).  

Social theories can provide valuable insights into 

occupants’ behaviors during emergencies. However, 

developing a unified theory that fully explains occupants’ 

behaviors in different situations is difficult. We conjecture 

that egress models require individual, group, and crowd level 

characteristics and mechanisms to predict the outcome of an 

egress situation. At the individual level, occupants may refer 

to their past experiences and knowledge to decide on their 

actions. At the group level, the pre-existing social structure 

(relations between group members) and group norms 

(expectations of each other’s behavior) would affect the 

behavior of an individual. Crowd-level behaviors are 

emergent phenomena and often follow social norms. As 

evidenced from recent studies of emergency incidents, 

occupants interact with their group members and the people 

nearby to guide their decision-making process (Kuligowski 

2011). Therefore, an egress model should properly reflect the 

social structure and capture the social interactions among the 

occupants, in addition to assuming occupants as individual 

constructs (Macy and Flache 2009). 

2.2. Human and crowd simulations 

Humans, instead of moving randomly, tend to perform 

way finding when navigating the environment (Gärling et al. 

1986). During the way-finding process, they examine the 

surrounding layout and perceive sensory (visual or audio) 

information, and then move towards a direction based on 

their purpose of navigation, destinations, and knowledge of 

the space (Turner and Penn 2002). The way-finding process, 

unlike the motion of molecules or particles that are 

determined by interaction with their immediate neighbors, 

depends on both the short-term, nearby information and the 

long-term decision-goal. Since human movements aggregate 

to form the collective crowd flow, egress simulations need to 

model properly the individual agent navigation decision in 

order to predict the overall egress performance.  

 Agent-based modeling (ABM) has been widely adopted 

for crowd simulation, among many other different simulation 

approaches. In most ABMs, the agent navigation routes are 

usually pre-defined by specifying explicitly the origins and 

destinations of the occupants (Aguirre et al. 2011; 

Veeraswamy et al. 2009). Optimal routes (usually defined in 

terms of travel time or distance) are obtained by assuming 

that the agents have good, often perfect, knowledge of the 

environment. Examples are the way-finding model in 

EXODUS (Veeraswamy et al. 2009) and the simulation 

model proposed by Kneidl et al. (2013). In real situations, 

however, occupants usually decide their final destinations 

dynamically in real time and may not have complete 

knowledge of the space, particularly during emergencies in 

an unfamiliar environment. Researchers in environmental 

and cognitive psychology have argued that the people use 

their perceptions to guide their navigation (Gärling et al. 

1986). With proper spatial representation of the environment, 

Turner and Penn (2002) have shown that natural human 

movement can be reproduced in simulations without the need 

to assign the agents with extra information about the location 

of a destination and an escape route.  

Other ABMs model agents’ navigation decisions as the 

outcomes of decision-making processes, rather than pre-

defined or optimized routes. For example, ViCrowd is a 

crowd simulation tool in which crowd behaviors are modeled 

as scripted behaviors, as a set of dynamic behavioral rules 

using events and reactions, or as externally controlled 

behaviors in real time (Musse and Thalmann 2001). 

MASSEgress gauges the agents’ urgency and invokes a 

particular behavior implemented using a decision tree (Pan 

2006). These models consider agents’ behaviors as a 

perceptive and dynamic process subjected to external 

changes. SAFEgress also adopts the perceptive approach 

when updating the agents’ knowledge of the environment. 

The agents, each representing an occupant, use both the 

perceived states of the environment and their background 

knowledge of the building to determine their behaviors.  

3. SAFEGRESS  

SAFEgress is an agent-based model designed to simulate 

human and social behaviors during evacuation. Figure 1 

depicts the system architecture of SAFEgress. The key 

modules are the Global Database, Crowd Simulation Engine, 

and Agent Behavior Models Database, which are described 

as follows:  



 The Global Database holds all the information about the 

geometry of the building, the status of emergency 

situations, and the agent population, which are input 

through the Situation Data Input Engine, the Geometry 

Engine, and the Population Generator. 

 The Crowd Simulation Engine interacts closely with the 

Agent Behavior Models Database. It keeps track of the 

simulation, and records and retrieves information from 

the Global Database. The generated simulation results 

are sent to the Event Recorder and the Visualizer.  

 The Agent Behavior Models Database contains the 

individual, group, and crowd behavioral models. Apart 

from the default models, new models can be added to 

investigate different behaviors and different scenarios. 

Details of the system have been described in our previous 

work (Chu and Law 2013). In particular, algorithms 

(proximity and visibility computation) have been carefully 

designed to allow the platform to handle a large number of 

agents. 

3.1. Spatial representation of the environment 

A floor space includes physical obstacles, such as walls 

and furniture. Agents navigate the virtual space and avoid 

colliding with physical obstacles. To enable the agents to 

“sense” the vicinity of the physical obstacles and the visible 

space, an obstacle model is built according to the user-input 

building geometry, which describes the locations and the 

dimensions of different building objects, such as walls, doors, 

and windows. The obstacle model is constructed to represent 

the boundary surfaces of the physical obstacles as a set of 

polygon planes. Using the obstacle model, an agent can 

perform proximity tests to determine the distances from 

nearby obstacles and visibility tests to determine if a given 

point in the virtual space is visible to the agent.  

Besides avoiding collisions with the obstacles, agents also 

need to detect the obstacle-free space in their surroundings 

for navigation. According to prior way-finding studies, the 

choice of next navigation direction is motivated by the 

subsequent movements to get closer to the final destinations 

(Gärling et al. 1986). To facilitate this navigation decision 

process, a navigation map, which represents the obstacle-free 

space, is constructed. This map is then used by SAFEgress to 

facilitate the computations that allow agents to “perceive” the 

possible navigation directions in the virtual space. The 

navigation map is constructed using the following procedure:  

1) The continuous space is discretized into square cells to 

form a 2-D grid. The cells with the building features 

(such as exits, doors, and windows) are identified to form 

the initial set of navigation points (Figure 2a). 

2) The algorithm computes the area of visibility for each 

cell on the 2-D grid. Then, each cell’s visibility area is 

compared to the area of its neighboring cells. The cells 

with the largest locally visible areas become additional 

navigation points (Figure 2b). 

3) Edges are added to link the navigation points that are 

visible to each other within a certain radius. The resulting 

navigation map is a graph representing the connectivity 

of the obstacle-free space (Figure 2c). 

In the real world, humans can only perceive their local 

obstacle-free surroundings. Similarly, in SAFEgress, the 

virtual agents can access only the “visible” portion of the 

navigation map to decide their navigation directions. More 

precisely, every agent can query the navigation map to 

identify navigation points that are visible from the agent’s 

(a) Subdividing the space into square cells and 

initializing exits as navigation points 
(b) Adding navigation points with the cells 

with large areas of visibility 
(c) Linking the navigation points which are 

visible to each other within a certain radius 

Figure 2: Procedure for generating navigation map 

Figure 1: System architecture of SAFEgress 
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current position. Then, the agent selects its navigation target 

based on its motivation and its prior knowledge and working 

memory of the building layout. For example, an agent having 

the knowledge of a familiar exit might choose a navigation 

point that is near the familiar exit. In Figure 3, the agent, with 

knowledge of the main entrance, can choose the point 

labelled “1” to move closer to the main entrance among the 5 

visible navigation points. On the other hand, if an agent does 

not have prior knowledge of the spatial layout, the agent 

would assign equal weight to all the options and choose a 

navigation target randomly. For example, if the agent in 

Figure 3 is unfamiliar with the environment, it can choose 

randomly one of the five navigation points to explore the 

space. Finally, each agent can “memorize” the areas traveled 

by registering the visited navigation points in its cognition 

module. Therefore, an agent can avoid repeated visits to the 

same area, because it will assign less weight to the visible 

navigation points that it has visited before. This cognitive 

ability to memorize the previously travelled areas is 

particularly important for modeling a natural navigation 

trajectory when an agent has no prior knowledge of the 

environment and needs to explore the surroundings for exit.  

3.2. Agent representation of occupants 

 Each agent is given a set of static and dynamic attributes 

to model the occupants. Static attributes are defined prior to 

the simulation and dynamic attributes are updated during the 

simulation. The choice of the attributes is crucial since it 

implicitly determines the range of tests that the users can do 

with SAFEgress. To make this choice we relied mainly on 

published work (See Section 2). The agents’ attributes, listed 

in Table 1, can be further categorized into three levels—

individual, group, and crowd as described below with the 

static attributes shown in bold: 

 At the individual level, an agent has a physical profile, 

a level of familiarity with the building, and prior known 

exits of at least one that the agent enters (Mawson 2005; 

Sime 1983). 

  At the group level, social groups are defined by the 

following attributes (Aguirre et al. 2011; McPhail 1991): 

a group leader (each group has one default leader), the 

group intimacy level (e.g., high intimacy among a 

family group), the group-seeking property (describing 

willingness to search for missing members), and the 

group influence (describing the influence of a member 

to the others in the same group). The agents belonging to 

the same group share the same group attributes. 

 At the crowd level, an agent’s social position is defined 

by the social order, stating the likelihood to exhibit 

deference behavior (Drury et al. 2009). The lower the 

social order, the higher the chance for the agent to defer 

to other agents when negotiating the next move. A 

special agent, such as authorities, a safety personnel, etc., 

may have assigned roles, which is responsible to 

execute actions, such as sharing information and giving 

instructions (Kuligowski 2011). 

 Based on the studies by researchers in disaster 

management and fire engineering about emergency occupant 

behaviors, a five-stage process model, perception – 

interpretation – decision-making – execution – 

memorization, is executed to update the agents’ behaviors 

(Lindell and Perry 2011; Kuligowski 2011).  Each stage may 

lead to changes in the parameter values of the dynamic 

attributes (shown in bold), as described below: 

  At the perception stage, the agents perceive the nearby 

environment by detecting threats and visible features 

nearby, such as exits and doors (Lindell and Perry 2011). 

They detect neighboring agents within a certain radius 

(Aguirre et al. 2011). If an agent is affiliated with a social 

group, it also updates the visible group members. When 

the default group leader is not visible, the agent searches 

Level Individual Group Crowd 

Static  

 Physical Profile1 

 Familiarity 

 Known Exits 

 Group 

Affiliation2 

 Social Order 

 Assigned 
Roles 

Dynamic  

 Spatial Position 

 Urge 

 Spatial Knowledge 

 Visible 
Group 

Member 

 Neighboring 
Agents 

1 The physical profile includes attributes such as age, gender, body size, 

travel speed, and personal space. 
2 The group characteristics include group leader(s), group intimacy 
level, group seeking, and group influence. 

Table 1: Agents’ static and dynamic attributes 

Figure 3: Illustration of an agent’s visible navigation points 

An agent detects the 
visible navigation points 

from its current position. 
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for a temporary group leader who has the highest group 

influence among the visible group members. 

 At the interpretation stage, the agents revise their internal 

urge level according to the perception and the perceived 

urge level of the visible social group and neighbors 

(Rydgren 2009). 

 At the decision-making stage, the agents select and 

invoke the behavioral decision trees according to their 

urge level, social affiliation, and crowd condition. A 

behavioral decision tree consists of intermediate nodes 

(which compare the agents’ attributes and parameter 

values to the threshold values defined by users) and leaf 

nodes (which are either conditional checks leading to 

another decision tree, or low-level locomotion 

functions). The outcomes of decision-making are the 

exhibited behaviors and the navigation targets. The 

current implementation is a rule-based reasoning system. 

 At the execution stage, the agents perform low-level 

locomotion to move toward a navigation target 

determined by the decision-making process. 

 Finally, at the memorization stage, the agents register the 

decision made and update the spatial knowledge about 

their previous locations and visited areas (Turner and 

Penn 2002; Sime 1983). 

Each stage mimics a cognitive process or an act by an 

occupant during evacuation. Collectively they define the 

behavioral process of the occupants.  

4. CASE STUDIES  

In this section, we demonstrate the flexibility of 

SAFEgress to explore different human and social behaviors 

on egress performance. Two different case studies are 

presented. In the first case study, we vary the level of 

familiarity and the known exit to examine the effect of 

individual knowledge on evacuation patterns. In the second 

case study, we test the group effects by varying the intimacy 

level of the groups that the agents are affiliated with. The 

agents’ static attributes are defined prior to simulation. In all 

cases, the population consisted of 50% male and 50% female.  

All the agents have no assigned role and have equal social 

order, and they begin to evacuate immediately upon the start 

of the simulation (no delay time).  

Based on real-life observations and social studies, we 

construct different plausible agents’ behavioral models and 

compare the results of different simulations using a museum 

as the physical setting. The museum consists of several 

exhibition halls with four exits (the main entrance, the right 

exit, the left exit, and the café exit), as highlighted in Figure 

4. A total of 550 agents are assigned in the simulation runs. 

4.1. Effects of different individual exiting behaviors 

In an emergency situation, the primary goal of the 

occupants is to exit the building safely. Depending on their 

familiarity with the building and previous experience, the 

occupants may adopt a broad range of strategies in choosing 

an evacuation route. For example, occupants who are 

unfamiliar with the building may select the entrance they 

used to enter the building as the possible exit (Mawson 2005; 

Sime 1983). On the other hand, occupants who visit the 

building regularly may have learned their preferred exit over 

time or have knowledge of the nearest exit. We study the 

effect of individual exit knowledge by varying the values 

assigned to the known exits and assume all agents have no 

group affiliation. We conjecture and design four simple 

individual exiting behaviors as follows: 

 Case 1: agents have the knowledge of the main entrance 

of the museum and exit through the main entrance. 

 Case 2: agents have the knowledge of all four exits and 

choose to evacuate through the nearest exit given their 

initial starting position. 

 Case 3: agents have knowledge of one pre-defined 

familiar exit and escape through the familiar exits; in this 

case, we assign the agent population evenly to the four 

exits. 

 Case 4: agents have no prior knowledge of any exits and 

solely follow the visual cues at their spatial position to  

 guide their navigation and exit the building when a 

visible exit is detected. 

Figure 4: Geometry of the building and initial locations of 550 agents 
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Right 

Exit 

Cafe 

Exit 

Left 

Exit 



Table 2 summarizes the results for the four cases, assuming 

all agents act as an individual (without group affiliation) and 

exhibit the same exiting behavior. The average computation 

time for each simulation run is 4 minutes 30 seconds using an 

Intel Core i5-650 machine at 3.2 GHz. 

The result from Cases 1 and 2 are consistent with the 

common understanding of crowds – occupants who are 

familiar with the building evacuate faster than occupants who 

just use a single exit. From the simulation result, we explore 

how familiarity leads to faster evacuation. In Case 1, as all 

the agents travel to the main entrance, high levels of 

congestion occur at the main entrance, as shown in Figure 5a, 

which leads to long egress times. In Case 2, when all agents 

exit through the nearest exit, the distance travelled for each 

agent is shorter, and as they navigate to different exits, much 

less congestion occurs at the exits (by comparing the crowd 

density at the exits in Figure 5b to that in Figure 5a). In this 

setting, escaping through the nearest exit is the most efficient 

exiting strategy. 

By including the spatial cognitive ability and the visual 

sensing capability of the agents, we observe some interesting 

results in the egress patterns and performances. In Case 3 

wherein all agents “know” and follow their familiar exit, the 

evacuation time is only slightly less than that for Case 1, 

implying that following familiar exits may well be as 

inefficient as congestion at the main entrance. In this case, the 

inefficiency and prolonged egress time are due to the long 

distances for some agents to travel from their initial position 

to their familiar exit. As shown in Figure 5c, congestion due 

to cross flow at narrow corridors occurs. For Case 4, when 

agents follow visual cues as a guide, evacuation appears to be 

a more random process as reflected from the large standard 

deviation (shown in Table 2) on egress time. This situation 

may occur when the occupants are unfamiliar with the 

building and have to explore the building.  The prolonged 

egress time is due to the time spent exploring the space 

without predefined routes before the agents “see” an exit for 

evacuation. Congestion occurs at the connections between 

the rooms and main corridors and the two atriums (as 

indicated by the arrows in Figure 5d), instead of the exits. As 

depicted in Figure 5, the agents’ knowledge of the building 

and visual capability can affect the choice of egress route, and 

thus lead to different flow patterns. The higher congestion 

level at the atriums also suggests that signage should be 

placed at the atriums to provide navigation guidance to the 

occupants who are unfamiliar with the buildings. 

Agent exiting  
behavior 

Egress time 

(s)1 

Exit usage 

Main 
Left 

Exit   

Right  

Exit 

Cafe  

Exit 

1-Main Entrance 200 +/- 5 100% - - - 

2-Nearest Exit 84 +/- 4.5 39% 16% 31% 14% 

3-Known Exit 180 +/- 10 25% 25% 25% 25% 

4-Visible Exit 166 +/- 22.6 30% 30% 30% 10% 
1 Results are averaged over 10 runs, with +/- one standard deviation 

Table 2: Results assuming different exiting strategies 

 Figure 5: Density patterns of resulted from different exiting strategies 

(a) Case 1- Exit through the main entrance (b)   Case 2- Exit through the nearest exit 

(c)      Case 3- Exit through the known exit  (d)      Case 4- Exit through any visible exit 
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4.2. Effects of social group  

      Studies have shown that people in the same group tend to 

evacuate as a group and escape through the same exit 

(Aguirre et al. 2011).  The social structure and norm persist 

and guide the evacuation behaviors. As depicted in Figure 6, 

we simulate the social effect of the group behavior by 

constructing a decision tree that takes into consideration of 

group-level parameters: “group intimacy level”, “group 

leader(s)”, and “group separation distance”. In this study, 

agents are assigned to affiliate with a group with size ranging 

from one to six, and each group has one default group leader. 

Group members start in the same room and are visible to each 

other at the beginning of the simulations. We vary the value 

of group intimacy level of the groups to test the effect of 

group behaviors. A high intimacy level group represents a 

closely-related group, like family or couple, while a low 

intimacy group represents a loosely-related group, such as co-

workers. In the baseline model, Case 1, all groups are defined 

to have a low group intimacy level, in which all agents are 

loosely affiliated to their group and choose to exit 

individually through either the main entrance or a visible exit. 

In Case 2 and Case 3, a high group intimacy level is assigned 

to 50% and 100% of the groups, respectively. Table 3 

summarizes the simulation results for the three cases with 

different group assumptions. The average computation time 

for each simulation run is 5 minutes 45 seconds using an Intel 

Core i5-650 machine at 3.2 GHz.  

 As shown in the simulation results, we found that the 

group behaviors can have significant effects on the 

evacuation patterns and performances. In Case 1, as shown in 

Figure 7a, congestions occur at the exits where the agents 

exhibit individual behaviors exiting the building. In Case 2 

and Case 3, as shown in Figure 7b and 7c, the crowding is 

less serious at the exits, but high crowd densities are observed 

at the intersections of corridors and at the locations 

connecting the exhibition halls to the corridor. The result also 

shows that group behaviors have a prolonging effect on 

evacuation. The effects on congestion patterns and 

lengthened evacuation are due to the waiting time for group 

members as well as the fact that agents may take a detour in 

order to move closer to the group, therefore causing 

congestion at the corridors and the intersections as they leave 

the exhibition halls.  

5. DISCUSSION 

To realistically predict the building egress performance, 

designers and managers of the building need to consider the 

building geometry unique to each building, and more 

importantly, the occupants’ individual and social 

characteristics. With the proper representations of space and 

occupants, SAFEgress allows users to assume a wide range 

of combinations of occupant populations and behaviors in a 

convenient and flexible manner. Agents’ behaviors are 

modeled as different behavioral decision trees, which 

represent the plausible occupant behaviors in emergencies. 

Group intimacy 

level assumption 

Egress 

time (s)1 

Exit usage 

Main 
Left 

Exit 

Right 

Exit 

Cafe 

Exit 

1 - low intimacy;  
exit Individually 

120 +/- 

15 
58% 7% 29% 6% 

2 - 50% high 

intimacy  

140 +/- 

16.5 
59% 6% 28% 7% 

3 - 100% high 

intimacy  

152 +/- 

18 
58% 6% 28% 8% 

1Results are averaged over 10 runs, with +/- one standard deviation 

Table 3: Results assuming different group traits of the agent population 

 

Figure 7: Density patterns of Case 1, 2, and 3 assuming different group intimacy levels 
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Sensitivity analysis on different agents’ static attributes can 

be conducted to identify and assess the impacts of social 

factors in different physical and environmental settings, like 

the case studies we present in this paper. This kind of analysis 

can give insights to architects, building designers, and facility 

managers to design user-centric safe egress and improve 

emergency procedures and training programs.  

Studies of past emergency events emphasize for the needs 

of incorporating social behaviors in egress simulation. 

Through the case studies in this paper, we show that the 

inclusion of a social parameter like group intimacy 

significantly alters the behavior of the agents during 

evacuation. By embedding individuals into groups, our 

model adds flexibility to established plausible occupant 

models based on the spreading of information within social 

groups and crowds and the role of authorities (Rydgren 2009; 

Hoogendoorn et al. 2010; Kuligowski 2011). The described 

platform represents a step forward toward incorporating 

social interactions into engineering models that capture 

human behaviors. 

Based on the synthesis of social studies of past 

emergencies, we conjecture that SAFEgress is a reasonable 

and sufficient platform to model a range of evacuation 

behaviors of occupants. Given the flexibility of framework, 

reasonable initial assumptions of the occupants’ 

characteristics (such as demographics, how familiar the 

occupants are with the building, and their preference to use 

different exits) are important in order to generate realistic and 

relevant simulation results. We continue to gather feedback 

on the framework from our industry collaborators. Moreover, 

as a part of our on-going validation effort, we establish 

benchmark scenarios based on modeling guidelines and real-

life data (Chu and Law 2013; videos: 

eig.stanford.edu/SAFEgress). 
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