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ABSTRACT 
Summarization of intermediary query result sets plays an 
important role when users browse through digital library 
collections. Summarization enables users to quickly digest the 
results of their queries, and provides users with important 
information they can use to narrow their search interactively. 
Techniques from the field of data analysis may be applied to the 
problem of generating summaries of query results efficiently. 
Such techniques should permit the incorporation of classification 
hierarchies in order to provide powerful browsing environments 
for digital library users. 
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1. INTRODUCTION 
Data browsing capabilities are essential in digital libraries. Many 
users often have fuzzy or incomplete queries, which they wish to 
refine iteratively once they see what a library actually contains. In 
order to reline their search, these users need feedback about the 
results of intermediate searches; this feedback should summarize 
the results of the user’s query in an easily digestible form. We are 
studying issues in data browsing in the context of the Alexandria 
Digital Library (ADL) [16], which contains large collections of 
maps, air photos, and other geospatially-referenced information. 
Many of ADL’s users are so-called “naive” users, i.e., people who 
are neither librarians, geographers nor database experts. These 
users commonly wish to find a map of a certain geographic area at 
a certain scale, and perhaps from a certain time period, e.g. “find 
me a map of the City of Santa Barbara from the 1950’s”. 

Users who query the collection face several obstacles. First, they 
may not be aware of exactly what is contained in the collection. 
Without guidance, they may issue many queries that return no 
results. Second, and conversely, they may issue queries that return 
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very large result sets. This is problematic because the results 
returned by a query become increasingly unmanageable for a user 
as the size of the result set grows. For example, suppose a user 
makes a request for satellite photographs in a map library. A 
query result set that contains a list of 50,000 photos would 
probably not be very useful in narrowing the search further; the 
result set is too large to be digested easily [2]. 

These problems in information discovery, to a large degree, result 
from inadequacies in the query model supported by most database 
indexes. In general, traditional index structures support a “one- 
shot” query model: users submit a query to the index, and the 
index returns a list of items in the database that fulfill the query. 
For very large collections, this model is inherently unwieldy. The 
large size of the collection forces users to form very precise 
queries, or risk getting enormous result sets that are essentially 
meaningless by virtue of their indigestibility. But forming very 
precise queries on a collection, about which a user may know very 
little, is likely to result in many queries that return empty result 
sets. The one-shot query model is appropriate when queries are 
issued by people who know the collection, its schema, its 
vocabulary, and its contents intimately. It does not fit casual users, 
who want to browse collections all over the world without having 
to know the associated schemas, vocabularies, etc., of those 
collections [5]. 

Many users also have an entirely different approach to 
information discovery than the one-shot model supports: they 
wish to develop their queries through browsing in an interactive 
fashion, iteratively forming new queries as they see the results of 
previous queries. Iterative queries, also called dynamic queries, 
are a powerful tool for information browsing and discovery in 
unfamiliar collections; by relining searches based on feedback 
about previous, broader queries, users can quickly narrow down 
their result set to items of interest, even in unfamiliar collections 
[15]. The traditional query model, however, does not take into 
account the notion that users may need several query/feedback 
steps to iteratively create their desired query, and it does not 
provide the user with the kinds of information that would be 
useful in further refining their search. There are two deficiencies: 
first, there is no facility for obtaining a “top-level” description of 
all the items in the collection, i.e., to answer the question “what 
kind of items does this collection contain?” Every query is issued 
“blind”: the user never knows beforehand whether the collection 
contains items that might match the query. Second, there is no 
capability for providing high level summaries and feedback 
regarding the results that are returned for arbitrary queries, which 
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Figure 1. A hypothetical data cube presenting the number of satellite photos in a collection which cover 
given latitude,iongitude pairs. Data-are hypothetical. 

would enable users to quickly digest large result sets to determine 
if their query needs refinement. 

These problems can be remedied by presenting the user with 
summary information about any arbitrary query result set, i.e., 
aggregating the items in the result set in some manner. When the 
result set is very large, users are better served when they are given 
the results in summary form [15]. When a user searches for 
satellite photos, a graphical summary showing the numbers of 
photos found, organized by geographic region and date, might be 
very helpful in further narrowing the search. Such a summary of 
an entire collection would enable users to immediately ascertain 
whether the collection has what they are looking for. Or, 
summaries can show a user that the items they want are not in the 
collection at all, e.g. “this collection only has maps from the 
period 1900 to 1597”, when the user is looking for 18th Century 
maps. Summarization capabilities are particularly helpful when a 
user first encounters a collection, e.g. when searching for 
interesting collections on the web. 

In addition, when users start with broad or incompletely-specified 
queries, summaries and feedback regarding query results can be 
very useful in helping them narrow their query to manageable 
result sizes. The presentation of such summaries at the broad- 
query stage can prevent users from pursuing query directions that 
will result in empty result sets [2]. Summaries and aggregations 
can alert users to dimensions they may use to further refine their 
queries, and can help users discover trends that occur when they 
make modifications to their queries [ 151. Efficient summary 
capabilities for arbitrary queries on large collections will be an 
essential element in providing the interactive querying and data 
browsing that users desire with very large collections, such as 
those in digital libraries. Traditional database index structures are 
not themselves designed to provide efficient aggregated 
summaries of arbitrary queries. To produce such summaries, a 
traditional index structure would have to retrieve all the items 
matching a query and use them to generate the desired summary; 
this can be very costly when query result sets are large. 

The data cube [8], also known in the OLAF’ community as the 
multidimensional database [ 1, 14, 31, is a tool for information 
analysis which aggregates information contained in databases and 
data warehouses. A data cube is constructed from a subset of 
attributes in the database. Certain attributes are chosen to be 
measure attributes, i.e., the attributes whose values are of interest. 
Other attributes are selected as dimensions or functional 

attributes. The measure attributes are aggregated according to the 
dimensions. For example, consider a hypothetical database 
containing information about a collection of satellite photos. One 
may construct a data cube from the database with COUNT as a 
measure attribute, and LATITUDE and LONGITUDE as 
dimensions; such a data cube would provide aggregated total 
counts of all photos covering a given location on the Earth (Figure 
1). We will limit our discussion to two dimensions merely for 
ease of presentation; in real-world applications there could be 
many additional dimensions, such as scale, date of publication, 
etc. 

While use of the data cube has primarily been confined to data 
analysis and data mining applications, we will present techniques 
that permit the data cube to form the basis for efficient generation 
of summaries of query result sets. We further offer a technique 
for integrating classification hierarchies into the data cube 
framework, to support essential browsing capabilities in digital 
libraries. 

Paper Organization The paper is organized as follows. We 
discuss related work in Section 2. Section 3 describes a means by 
which data cubes may be utilized to form the basis for efficient 
generation of summaries of user query result sets. Section 4 
addresses the need to incorporate classification hierarchies into a 
browsing system, and presents a method of doing so within the 
data cube framework. Section 5 considers the case when multiple 
classification hierarchies are present for browsing. The paper is 
concluded in Section 6. 

2. RELATED WORK 
Researchers have noted the utility of providing summaries of 
query results. User studies involving systems that give visual 
feedback of query results have been shown to assist users in 
forming and refining their queries [2, 15, 181. Other such systems 
[4, 9, 131 have incorporated the use of aggregations to enable 
easier understanding of large query result sets. These systems are 
typically designed to work on top of existing database 
management systems (DBMS), and do not directly address the 
question of efficiently supporting summaries of query results at 
the system level. 

Other work has examined ways to generate summaries efficiently. 
Salzberg and Reuter [ 171 have proposed maintaining an auxiliary 
index and storing frequently used aggregation values into it. The 
method makes use of a multidimensional index, along with 
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South America: 0 items 1980-1989: 37,002 items 

Other: 0 items 1990+: 5,210 items 

Would you like to: 

1) Retrieve the selected records now, or 

2) Refine your query further? 

Enter choice: _ 

Figure 2. Sample interface showing a summary of the query results returned by a query for “items in Europe”. 
Data are hypothetical 

supporting data structures to increase the efficiency of 
synchronizing the auxiliary index with the main index. However, 
the authors note that updates are very expensive in their model, 
requiring 2” updates to the auxiliary index for each update to the 
main index, where n is the number of dimensions, and they 
propose that such an index only be built when the data are not 
likely to change. This model is not appropriate for a library, since 
library collections are updated frequently. Johnson and Shasha 
have proposed hierarchically split cube forests to address the 
problem of obtaining summaries efficiently [12]. The approach 
results in efficient retrieval of summaries; however, the model 
requires space that grows exponentially as the number of 
dimensions increases and as the number of unique values in any 
dimension increases. The space requirements would not be 
scalable to a large library collection. We have proposed the Smart 
Index[S], which incorporates summary information into the nodes 
of a standard index tree, such as a b-tree. While this method is 
successful in providing summaries of arbitrary user queries, in 
general its query performance is related to the area enclosed by 
the user’s query. Since many exploratory queries begin as large- 
area queries, it would be preferable to find a method that is 
insensitive to the query area. 

In the area of data cubes, Ho et. al. have presented a method of 
calculating range sums in the data cube in constant time which we 
call the prefix sum method [ 111. The relative prefix sum method 
[7] improves upon the Ho et. al. results by lowering the cost of 
updates to the structures; the dynamic data cube [6] further 
improves upon these methods by providing balanced query and 
update performance, and also gracefully handles sparse data cubes 
and data cubes that grow dynamically. These techniques may be 
applied when the measure attribute involves sum, count, average, 
rolling sum, rolling average, and other useful aggregates. 

3. BROWSING IN NUMERIC DOMAINi 
We envision browsing as an interactive process wherein a user 
begins with a broad query. At each step in the query process, the 
system provides feedback regarding the results of the query, at 
which point the user may modify their query further. Consider the 
following examples, for which we have constructed a hypothetical 
database that contains latitude, longitude, scale and date of 
publication information for the Alexandria Digital Library’s 
collection of maps. 

A user is looking for a map of Europe for a study he is planning 
on weather patterns. He begins by forming a query specifying the 
latitude and longitude boundaries of Europe, and submits the 
query to the DBMS. A traditional index would return a list of 
items falling within the specified coordinates; for ADL this would 
return approximately 200,000 items. This is a case when a list of 
items matching a query is indigestible for a user. A traditional 
system would not provide any information as to how the query 
might be modified so as to narrow the large result set; no 
summary information is available about the items in the query 
result set. A browsing system, however, would at this stage return 
only a summary of the items in the result set, which would be 
presented to the user via a suitable interface (Figure 2). The user 
would then be asked to either accept the query “as is”, in which 
case the actual records would be retrieved, or to modify the query. 
This process of query, receive feedback is repeated until the user 
is satisfied that the query results are approximately what the user 
is looking for, and are also manageable in size. In this scenario, 
the user sees immediately that 200,000 items is too many for him, 
so he modilies his query to include scale information in the range 
l:lM+. The summary information acts as a guide to these 
modifications, letting him know which ranges are populated [IS]. 
Since the summary shows that there are no maps in this collection 
having dates before 1900, the user knows not to search in that 
range. Similarly, ranges that are highly populated may indicate 
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areas in which the collection is particularly strong, such as maps 
of Europe from the 1970’s. 

Another user wishes to find maps of the town of Isis Vista from 
the 1930’s. She forms a query using the latitude and longitude of 
Isla Vista and the date range 1930-1939, and submits the query to 
the DBMS. She receives a summary of the results of her query in 
the same form as Figure 2. Noticing from the summary of her 
query results that the collection does not have any maps of Isla 
Vista that fulfill her query, she decides to drop the date 
requirement and see what the collection contains for lsla Vista in 
general. She resubmits her query without the date information. 
The summary she receives shows that the collection has maps of 
Isla Vista, but mostly from the 1940’s through the 1970’s. She 
decides that maps from the 1940’s will be sufficient, and modifies 
her query accordingly. The summary information enabled her to 
see how her query might be modified so that the system could 
return items of interest to her. 

Summaries take many forms. When a user is searching for maps, 
suitable summaries might include the number of maps matching 
the query, perhaps along with breakdowns showing how many 
maps fall into various categories, date ranges, etc. The nature of 
summaries depends upon the utility of the summaries to the user 
population. This paper is concerned with summaries that are 
numeric in nature. It is assumed that the user’s query will take the 
form of ranges along several dimensions, e.g. a range of dates of 
publication, a range of latitudes and longitudes covered by the 
map, etc. The area enclosed by a query is defined to be the area of 
the multidimensional bounding box formed by these ranges. A 
method is required that will efficiently generate summary 
information for the result sets of user queries, and do so in a 
manner that is incensitive to the size of the area enclosed by the 
query. 
When the summaries are numeric, their generation is related to the 
notion of range sum queries in data cubes. Range sum queries 
aggregate the measure attribute in the data cube within the range 
of the query. Queries of this form are currently used in data 
analysis environments for finding trends and discovering 
relationships between attributes in the database; however. we may 
adapt them to our browsing requirements. Returning to our data 
cube example, a typical range sum query would calculate the 
number of satellite photos in the collection which cover a given 
region on the planet (Figure 3). In the figure, the values in the 
shaded region are aggregated (in this case, summed) to produce 
the summary corresponding to the area of the user’s range query. 

Since range sum queries calculate summaries for arbitrary range 
queries, they may be employed to provide the summarization 

capabilities necessary for browsing. The sum of the cells in the 
shaded region provides the summary we desire: the number of 
photos falling within the range of the user’s query. However, we 
would not use the naive approach of actually summing the cells in 
the range of the query; in the worst case. this would involve 
summing every cell in the data cube, and thus would not be an 
efficient approach. There are currently several efficient methods 
which calculate range sum queries in data cubes, as briefly noted 
in Section 2. While a detailed description of the workings of 
these methods falls outside the scope of this paper, two of the 
methods, the prefix sum method [ 1 I] and the relative prefix sum 
method [7], efficiently calculate these range sums in constant time 
by precomputing various sums of the data cube. The dynamic 
data cube method [6] goes a step further by providing both 
efficient queries and updates on the data cube, and allows for 
dynamic growth of the data. The size of the shaded region, i.e. 
the area enclosed by the query. has no impact on the query 
performance of these methods; thus, these methods are suited for 
browsing environments, where it is expected that the area 
enclosed by user queries will vary greatly. 

A data cube would be constructed for the dimensions of interest in 
the collection and stored using one of these methods. Each cell ot 
the data cube would contain appropriate summary information for 
the items in the collection. While the figures show only one 
summary value per data cube cell. in general the summaries 
contained in each cell can be comprised of many values. For 
example, as in Figure 2, the summary stored in each cell might 
consist of an array of integers that count the number of library 
items falling into different continents, decades, and scales. A 
summary of the results of any query could then be calculated very 
efficiently using the range sum techniques. 

4. CLASSIFCATION HIERARCHIES 
The range sum methods discussed in Section 2 may be used to 
obtain the summaries we need. as long as the domains of the 
dimensions are numeric. However, digital libraries also utilize 
domains that are non-numeric, such as classification hierarchies. 
Support for browsing utilizing classification hierarchies is an 
important tool for users of digital libraries; and. in fact, is a 
general functionality that is useful in many database applications. 
In this section we argue for the importance of includme 
classification hierarchies in the browsing environment. M’r 
provide a mechanism for incorporating classification hierarchies 
into data cube techniques to support the summarization 
capabilities required for browsing. 

1 Latitude I 

1 
__--- 

Longitude 00 1oN 20 N / I 30 N 4 / 
I 

Figure 3. A range sum query over a data cube. 
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4.1 The Importance of Classification 
Hierarchies in Browsing 
Classification hierarchies provide an organization to data that is 
uniquely suited to digital library browsing because they organize 
collections from a user’s point of view. In contrast, there are some 
algorithmic methods that may be used to discover arbitrary 
associations and relationships in data. For example, Gibson et. al. 
[ 101 have sought to discover associations between categorical data 
items in a database. The method seeks to cluster related items, so 
that relationships between the data items will be come apparent, 
However, this method, and other methods that seek to find 
associations between data in the database (e.g., see the work done 
by H. Chen et. al.), may not be appropriate for data browsing 
environments in digital libraries. This is due to the fact that, 
while such methods are designed to discover arbitrary associations 
between the data items in the database, the exact nature of the 
relationships they reveal may not always be obvious. Gibson et. 
al. show that, in a database of automobile sales information, such 
methods may reveal that there is a relationship between the sales 
patterns of automobiles built by the manufacturers “Toyota” and 
“Honda. ” However, the exact nature of the relationship is not 
necessarily discovered by the methods; the methods reveal only 
that the sales figures for automobiles built by these manufacturers 
appear to be related in some way. Perhaps the association is due 
to the fact that these companies are both based in Japan and are 
subject to the same factors that influence overseas shipping, or 
perhaps they both are subject to the same seasonal patterns of car 
purchasing. 

Even when the exact nature of the discovered relationships is 
known, these relationships may not be the ones that users would 
choose to browse over. The relationships these methods discover 
are derived from the data items in the database; one could say that 
they present the database from the data’s point of view. Thus the 
relationships that are revealed are ones that are interesting from 
the data’s point of view; for example, that “Toyota” and “Honda” 
are related. While data analysts are eager to discover such 
relationships, users who are browsing may be baffled when data is 
organized in this manner. When the database is structured from 
the data’s point of view, it may not be clear to the user how the 
data is organized, why certain items are grouped together, and 
where a desired item may fall within that structure. Users desire 
the data to be structured in a way that makes sense from the user’s 
point of view. The purpose of the browsing environment, after 
all, is to present the data in a structured way that facilitates the 
user’s discovery of desired information. When the very structure 
of the information is not clear, the browsing process is derailed. 
After a user has found an item of interest, it may then be useful to 
ask the system to display related items; however, the user still has 
to be able to find that first item. Methods that discover arbitrary 
relationships in the database are not likely to be suitable for the 
primary browsing environment. 

Figure 4. A simple classification hierarchy. 

Classification hierarchies, on the other hand, are particularly 
suited to browsing. Classification hierarchies, such as the Library 
of Congress Subject Headings (LCSH), organize information in a 
manner that is hierarchical, consistent, user-understandable, and 
eminently navigable. Classification hierarchies allow users to 
begin at a high-level category, such as “Physiology,” and proceed 
to narrow their search, to “Physiology:Human,” for example. 
Indeed, libraries already organize their holdings using 
classification hierarchies, and users are familiar with the notion of 
using these hierarchies to refine their query. 

Existing range sum methods in data cubes may be used to support 
browsing in numeric domains. A new method is desired that 
would allow classification hierarchies to be incorporated into the 
browsing environment. We offer a solution which permits the 
incorporation of classification hierarchies into the range sum 
techniques described, thus creating a powerful, unified 
environment for database browsing. 

4.2 Data Cube Based Aggregation of 
Classification Hierarchies 
Figure 4 shows an example of a simple classification hierarchy 
presented as a tree. A user may “browse” such a classification 
tree, using an appropriate interface, by beginning at the root. 
Shneiderman et. al., for example, have proposed a number of 
interesting interface techniques for navigating hierarchical 
structures. The user would refine their search by choosing a node 
to visit. The user may continue to ascend or descend the various 
nodes of the tree, until the user is satisfied that their position in 
the classification tree is consistent with the intent of their query. 
While the tree in the figure is balanced, this is not required. 

We have envisioned browsing as an iterative process, wherein the 
user forms a broad query encompassing the general area of 
interest, and refines (narrows or broadens) the range of the query 
depending on the intent of the query and the results of previous 
queries. Our goal in earlier work was to generate summary 
information quickly for the result set of an arbitrary user query to 
enable the iterative browsing process. As we have argued, such 
summary information is useful in assisting the user to make 
decisions regarding the refinement of their search. In the case of 
classification trees, this means presenting summary information 
for each node visited: this information summarizes the data items 
that fall under the node. 

Our previous methods support efficient summary generation for 
arbitrary range queries over numeric domains. The classification 
tree is not a numeric domain, and does not obey the same 
properties as a numeric domain; as a result, it is not immediately 
apparent how range searching relates to such a tree. In the figure, 
we observe that the nodes Head and Hand are both children of the 
node Human, but have no natural ordering between them. 
Furthermore, the nodes Head and Leaf also have no ordering 
between them. The notion of “range searching” is clearly not 
generally applicable to such a tree. For example, it would not 
make sense to speak of a query having the range (Head..Leaf); 
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since there is no ordering between the nodes Head and Hand, it is 
not clear whether or not such a range includes the node Hand. 
Furthermore, from a semantic point of view, the range query 
(Head..Leaf) is nonsensical. 

We observe, however, that it does make sense to say that a query 
has a range (Human); and clearly the node Human may be seen as 
enclosing the nodes Head and Hand. Thus, each individual node 
of the classification tree can be seen as itself representing a range, 
i.e., the range that encloses all nodes of its subtree. When a range 
is defined in this manner, we do not encounter the problems 
inherent in ranges such as (Head..Leaf). Since all children of a 
node are included in the node’s range, the lack of ordering 
between siblings is not an issue; atso, the semantics of this 
definition of range are consistent with the expectations of users. 
A user whose query is, “show me what this database contains 
regarding Physiology:Human,” would expect to retrieve 
information regarding all nodes in the subtree rooted at the node 
Human in the tree. 

When range is defined in this manner, we may employ a 
straightforward process to map nodes in a classification tree to an 
integer domain so that the methods of previous sections can be 
utilized. The mapping must obey two properties: 

1) The range assigned to a node must always enclose the range of 
all nodes in its subtree. 

2) The roots of two subtrees that are disjoint must have ranges 
that are disjoint. 

We present a brief algorithm for numbering nodes in a tree such 
that the resulting node ranges obey these properties. Leaves in the 
tree are given the singleton range, e.g. (]..I). Each leaf is 
assigned a unique range that proceeds incrementally from the left- 
most child to the right-most child. Each parent node encompasses 
the range that is a union of all ranges of its children. Since the 
children are numbered sequentially, the range of the parent will be 
continuous. Furthermore, the ranges of siblings will be disjoint. 

Figure 5 shows the classification tree as numbered by the 
algorithm. The leaves are assigned unique, incrementing, disjoint 
singleton ranges from left to right. Note that the relative numbers 
assigned to siblings have no importance. For example, node Hand 
was arbitrarily assigned the range (1.. I), while Head was assigned 
(2..2); the assignments for these nodes could just as well have 
been reversed, since there is no inherent ordering between these 
nodes. Similarly, the subtree rooted at node Plant could have 
been numbered before the subtree rooted at Human. The relative 
numbering of siblings is not important because, as already 
discussed in the context of the range (HeadLeaf), range queries 
are only defined when the range of a single node is specified. It 

Figure 5. Classification hierarchy with node ranges. 

makes semantic sense to query over the “range” of Physiology, but 
not over the range (Hand..Leaf). Since a parent always encloses 
the range of all its children, either ali children of a node will be 
included in the resulting answer, or none will; therefore, the 
relative numbering of siblings is unimportant. Of course, a user 
may still form a query that is a union of disjoint ranges, e.g. “Find 
Physiology:Human OR Physiology:Plant:Leaf.” Since the ranges 
of these nodes are disjoint, such a query would be answered by 
summing the results of the two disjoint queries 
Physiology:Human and Physiology:Plant:Leaf. This is consistent 
with typical database querying models. 

On a system level, this method of constructing node ranges 
permits a classification tree to be used as a dimension of the data 
cube. The cIassification tree is numbered as described. Each leaf 
of the resulting tree has a singleton range. Summary information 
for each leaf is then placed in the data cube cell corresponding to 
the range of the leaf. The user navigates the classification tree via 
an appropriate user interface; the user need never be aware that 
nodes of the classification tree are assigned ranges “behind the 
scenes.” When the user visits a node, the system takes the range 
of the node and uses it in conjunction with the data cube methods 
described earlier to generate summary information for the user’s 
query. Since the range of a parent node encloses the ranges of all 
nodes in the parent’s subtree, the summary so generated will 
accurately reflect all items in the database that belong within the 
node’s classification. 

4.3 Browsing with Multiple Classifications 
There are many useful classification hierarchies for describing 
collections. For example, a set of library books may be classified 
using LCSH. If some books are in the computer science domain, 
they may also be classified using ACM. Each classification 
hierarchy approaches a collection from a unique viewpoint. It 
may be beneficial for users to have several, or many, classification 
hierarchies at their disposal when they are browsing. 

To support browsing with multiple active classifications, each 
classification hierarchy may be placed in its own dimension in the 
data cube. The data cube may contain many dimensions; using 
the techniques described here, each dimension may be comprised 
of a numerical domain, such as date of publication, or of a 
classification-based domain. Each of these dimensions is a 
component of a user’s browse query. Using an appropriate user 
interface, a user may modify the range of any or all of the 
dimensions in the process of narrowing down their search. When 
a user has not specified a range in a given dimension, the entire 
range of the dimension is assumed; since the range sum methods 
provide performance that is independent of the area enclosed by 
the query bounding box, there is no performance penalty for the 
large query areas thus formed. Thus, the techniques we have 
described permit browsing while simultaneously modifying query 
ranges along many dimensions, thus creating a powerful browsing 
environment. 
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5. CONCLUSION 
The data cube has been proposed for analytical processing 
environments. The powerful techniques that have been developed 
in this area are also useful in other domains. We have shown that 
data cubes can be used in a library context as a means of 
efficiently generating summaries of the results of user queries; 
such summaries can be very helpful during interactive searches of 
library collections, We have presented a means by which 
classification-based information can be incorporated into the data 
cube. The combination of the techniques we have presented allow 
a user to interactively modify a query through browsing, utilizing 
many different dimensions simultaneously; the dimensions can be 
a mix of numeric domains and classification hierarchies. Several 
classification hierarchies can be active for the same data, and 
users can interactively browse through the data using the different 
viewpoints provided by each hierarchy. At each step of the query 
process, the user is presented with summary information regarding 
their query results as an aid to further query refinement. The 
methods we have presented provide system-level support for the 
powerful database browsing environment we have envisioned. 
We are currently in development of a system which utilizes these 
techniques to provide a browsing environment for digital libraries. 
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